Energy Sorghum in Subtropical/Temperate Climates

W.L. Rooney
Texas A&M University, College Station
Outline

• Bioenergy Sorghum Development
 – Sweet Sorghum
 • Development
 • Challenges
 – Energy Sorghums
 • Development
 • Challenges
Emphasis on Subtropical/Temperate Environments means.....the fall/winter season precludes year round production.

Implication: Year round production (just-in-time harvest) is not possible.
Sorghum Types and Use

- **Grain Sorghum**
 - Grain
 - Stover

- **Forage Sorghum**
 - Hay, Grazing
 - Silage

- **Sweet Sorghum**
 - Accumulate sugar in the stalk

- **Energy Sorghum**
 - Delayed flowering in temperate environments
Why Sweet Sorghum in U.S.?

• High Yield Potential
 – Sugars, Starch, and Lignocellulose

• Harvest Flexibility
 – Ratoon
 – Staggered Planting

• More Water-Use Efficient than other sugar production crops

• Sugar to Ethanol is proven technology....
Sweet Sorghum

• Component Yields
 – Sugars in Juice from Stalk
 – Starch in Grain
 – Structural Carbohydrates in bagasse

• Production System use combined infrastructure
 – Sorghum-based planting
 – Modified Sorghum Production model
 – Modified Cane-Based harvest system
 – Modified Cane-Based Processing System
Sweet Sorghum: Challenge No. 1

- Sweet Sorghum Cultivars
 - Low seed yield
 - Difficult to produce
 - Don’t capture heterosis

- Sweet Sorghum Hybrids
 - Subtropical/Temperate Adaptation
 - High Sugar Yield
 - High Sugar Content in Juice
 - High Juice Yields
Sweet Sorghum Hybrid Development in Texas AgriLife Research

- Seed Parent Development
 - High Brix
 - Short Height
 - Med to High Juice Volume
 - Good Seed Production
 - Daylength Insensitive

- Seed Parent Distribution
 - Available through Texas AgriLife/TAMU OTC

- Hybrid limitations will be solved quickly.
Sweet Sorghum: Challenge No. 2

• Short harvest season in temperate zones
 – Reduces Length of Mill Season

• Seasonal limitations in subtropical zones
 – Sugar yields / biomass yields vary across seasons
 – Cropping systems for sweet sorghum are important
Sweet Sorghum: Challenges

• Challenge No. 3
 – Hybrid sweet sorghum produces starch (primarily in grain);
 • Harvest/Processing Systems
 • Plant physiological processes must be modified through genetics and breeding

• Challenge No. 4
 – Need Agronomic and Pest Management Practices for Sweet Sorghum
Energy Sorghum
Why Energy Sorghum in U.S.?

• **Photoperiod Sensitive** - Reproductive growth is initiated in response to increasing night length/diminishing daylengths
 • genotype defines trigger
 • ranges from 13’30” to as low as 11’30” (daylength)

• **Why is this Beneficial?**
 – Long Canopy Duration
 – Enhanced Drought Tolerance
 • Vegetative Growth
 • Quiescent Periods
 – Higher Biomass Yields and less sensitive to timing of moisture
Energy Sorghum

• Component Yields
 – Ligno-cellulosic biomass
 – minimal, if any, sugar or starch

• Hybrids
 – Dual Purpose (multicut)
 – Bioenergy (single cut)

• Production is roughly modeled on Forage Production Systems.
Development of Energy Sorghum

- Germplasm Development
 - High Yield
 - No Lodging
 - Dry Matter
 - Composition

- Breeding
 - Hybrid Development and Testing

- Existing Hybrids are good....

- Future Hybrids will be better....
Ceres-Texas AgriLife Sorghum Commercialization

- Products from collaboration will be sold under Ceres’ Blade brand
 - High biomass and sweet types
- Late-stage trials & seed scale-up
- Royalties support future research
Energy Sorghum: Challenges

• Challenge No. 1
 – Efficient and economic biofuel conversion system for lignin, cellulose and hemicellulose

• Challenge No. 2
 – Modification of NSC composition to match conversion system
 – Genetic manipulation of PS systems to match production regions
Energy Sorghum: Challenges

• Challenge No. 3
 – Efficient agronomic production practices

• Challenge No. 4
 – Efficient harvest, storage and pre-processing practices
“Sorghum is drought tolerant and performs well on marginal soils.”

- Crop specialists interpretation:
 Compared to other crops, sorghum will yield under stress.

- Non crop specialist’s interpretation:
 Sorghum is a crop that will produce high yields with very little water and little, if any, fertilizer.

- Reality:
 Sorghum will produce proportionally to inputs
Summary

• Sorghum is the logical choice for use as an annual dedicated bioenergy crop
• Sweet sorghum have potential in specific production regions
• Energy sorghums have wider adaptation and greater potential in temperate regions.
• There are challenges to be solved; it will require research.
Questions?