Sweet Sorghum Genetics, Breeding and Plantation Studies in China

Ruiheng Du
Institute of Millet Crops,
Hebei Academy of Agricultural and Forestry Sciences
Shijiazhuang 050031, Hebei, China
E-mail: rhdu@hotmail.com
• Sweet Sorghum Economic Characters Genetics Studies in China
 Plant Height
 Stalk Texture
 Juice Percentage
 Juice Brix
 Grain Weight per Spikes and grain yield
• Sweet Sorghum planting in China
 Area
 Purpose
 Cultivars
 Yield
 Problems
• Sweet Sorghum Breeding in China
 Breeding Objective
 Approaches to Breeding and Main Cultivars
 Problem
 Breeding in Hebei
• **Plant Height:** Plant height is significant correlation with the yield of the stalk. Plant height relates to the number of nodes and length of internode. The long internode is dominant over the short internode; length of internode is sensitive to the temperature and water supply. The more nodes is dominant over the less nodes; the number of nodes is photoperiod sensitivity. The more number of nodes are, the long growing period is. Tall is dominant over the dwarf stalk. Long photoperiod, high temperature and sufficient water supply are necessary for getting high plant and stalk yield.

• **Juice Percentage:** Juice percentage of the stalk varies widely among varieties and growing conditions. The range is 51.19%-80%. Juice percentage of the compact stalk varies in a small range and the juice can keep for long time. The compact stalk is with good keeping quality. It is difficult to getting the posterity with juice by using the variety without juice as the crossing parent.

• **Juice Brix (Sugar Content):** Porous without juice is dominant over porous with juice. Stem sugar content is a quantitative inheritance controlled by a minor multiple genes. The genes controlling Low juice Brix were partially dominant; a few genes controlling high juice Brix are dominant. Few combination is superdominance. The broad heritability of sugar degree (Brix) in stalk is not high, the character is easily affected by environment, like as soil nitrogen content, temperature. There is no correlation between stem sugar Brix and plant height or blossom date. There is a significant negative correlation between sugar degree and 1000-kernel weight.
Sweet Sorghum Economic Characters
Genetics Studies in China

• Stalk Texture and its Value in use for Biofuels

Table 1 Sorghum Stalk Texture types and its Value in use

<table>
<thead>
<tr>
<th>Types</th>
<th>Porous</th>
<th>Compact</th>
<th>Juicy</th>
<th>Sugar Content</th>
<th>value in use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>√</td>
<td></td>
<td>No</td>
<td>No</td>
<td>Cellulose</td>
</tr>
<tr>
<td>2</td>
<td>√</td>
<td></td>
<td>√</td>
<td>Low</td>
<td>Cellulose</td>
</tr>
<tr>
<td>3</td>
<td>√</td>
<td></td>
<td>√</td>
<td>High</td>
<td>Sugar Cellulose</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>√</td>
<td>√</td>
<td>Low</td>
<td>Cellulose</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>√</td>
<td>High</td>
<td>Sugar Cellulose</td>
</tr>
</tbody>
</table>

• Grain Weight per Spike and grain yield
Most of sweet sorghum variety is with low grain weight per spike and grain yield. There is a significantly negative relation ship between grain yield and stalk sugar (Cao, Junfeng, 1982). A few sweet sorghum variety is with high grain weight per spike and grain yield. Some hybrid is with high grain yield and high sugar content. It is best way to get high grain yield and high sugar yield by using hybrid.
Area: To develop the biofuels must not compete with food producing in China. saline/alkaline land is fit for planting sweet sorghum in China. The area is about 1000 million ha. But at present, Sorghum planting area is about 20 million ha; Sweet sorghum planting area is less than 1000 ha.

Purpose: Grain sorghum is used as raw material to produce alcohol for drink or as feed. Sweet sorghum is used as raw material for producing biofuels test or forage.

Cultivars: M-81E, Lvneng No.1, 2, 3, Nengsi No.1 and other varieties are planted at present. Chuntian No.2, Liaotian No.1, 2, Nengsiza No.1 and other hybrids are planted at present.

Yield: 15 sweet sorghum cultivars was planted in saline-alkaline land with deferent salt content in four sowing times in 2006-2007. The results show that:

- average fresh stalk yield: 44.830t/ha; range: 30.675 - 79.365 t/ha.
- average juice percentage of fresh stalk: 66.5%; range: 60-73%
- average juice Brix: 15.48%; range: range: 11-21%
- average ethanol yield: 22.78t/ha; range: 1.206 - 4.056 t/ha.
- average dry bagasses yield: 6.856t/ha; range: 4.655 - 10.556 t/ha.
- average dry leaf yield: 2.143t/ha; range: 1.282 - 4.160 t/ha.
- average grain yield: 2253kg/ha; range: 1.470 - 3.497 kg/ha.
The sweet sorghum demonstration farm in Hebei Salty and alkali land
Nengsi No. 1 demonstration farm in Hebei
M-81E and Nengsi No.1
M-81E in China
Problems

• 8 tests or trials have been done in saline-alkaline land in 2006-2007 (variety test, date of planting test, fertilization field trial, plant density trial, irrigation trial, soil salinity test, reaping time test, stalk storing time test). The results show that Low emergence rate of Seedlings, serious Insect Pest, long growing period, short reaping and storing time are the main problems for biofuels.

• The National sweet sorghum regional test shows that lodging and low sugar content are the problems for biofuels.
Salty and alkali land in Hunaghua

Salty and alkali land is very drought in Spring

percentage of seedling success is low in the Salty and alkali land
Aphides living on the leaf of sorghum

Aphides damage the spike

Aphides damage the stalk and leaf

Aphid controlling is difficulty

Seedling Under the damage of aphid
• Yield reduction
• Juice reduction
• Shorten storage period

borer

Plant damaged by the borer

Stalk damaged by the borer

The stalk damaged by the borer don’t suit to store
Breeding Objective: high biomass, high and steady sugar content, resistance to major pests, different maturities are as the breeding objectives for alcohol making.

Approaches to Breeding of Cultivars: introduction and breeding by selection; utilization of heterosis; cross breeding; induced mutation breeding; transgenic breeding. The cultivars were developed are in the table 2.

Problems: short of resistance to major pest, early maturity and high sugar content germ plasm. Short of Transgenic technic and available genes.

<table>
<thead>
<tr>
<th>cultivar</th>
<th>Plant height (Cm)</th>
<th>Stalk yield (t/ha.)</th>
<th>Brix %</th>
<th>Grain yield (t/ha.)</th>
<th>Growing period (days.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-81E</td>
<td>420</td>
<td>75</td>
<td>17</td>
<td>3.31</td>
<td>160</td>
</tr>
<tr>
<td>Chuntia n no.2</td>
<td>395</td>
<td>73</td>
<td>18</td>
<td>4.52</td>
<td>140</td>
</tr>
<tr>
<td>Liaotian No.1</td>
<td>410</td>
<td>75</td>
<td>16</td>
<td>4.51</td>
<td>150</td>
</tr>
<tr>
<td>Nengsiza No.1</td>
<td>420</td>
<td>76</td>
<td>16</td>
<td>4.50</td>
<td>130</td>
</tr>
<tr>
<td>Yuantian No.1</td>
<td>400</td>
<td>73</td>
<td>17</td>
<td>3.20</td>
<td>150</td>
</tr>
<tr>
<td>823</td>
<td>420</td>
<td>60</td>
<td>14</td>
<td>3.75</td>
<td>150</td>
</tr>
<tr>
<td>Nengsi No.1</td>
<td>350</td>
<td>47</td>
<td>16</td>
<td>3.0</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2 The developed Cultivars in China
Early maturity variety “nengsi No.1” growing in Salty and alkali land
盐碱地上种植的晚熟甜高粱

Lvneng No.3-Late maturity variety growing in Salty and alkali land
Hybrid of sweet sorghum
Contrapose the questions in planting and breeding, the breeding works have been done in Hebei Academy of Agricultural and Forestry Sciences are as follows.

• Breeding of the male sterile line with the resistance to aphid.
• Breeding of the male sterile line with high sugar content.
• Breeding of the restoring line with the resistance to aphid, and with the high sugar content.
• Breeding of the B-line with the resistance to aphid high sugar content.
• Developing sweet sorghum and grain sorghum hybrids with high yield and early mature.
• Transgenic breeding.
The stalk character of sweet sorghum A-line
抗蚜恢复系后代

The R-line with resistance to Aphid
抗蚜不育系选育

Breeding of A-line with Aphid resistance

不育度达95%；不育株率99%

抗蚜不育系选育Breeding of A-line with Aphid resistance
抗蚜不育系的抗性 Aphid resistance of the A-line
T93: A sweet sorghum R-line with high sugar content (Brix degree up to 23%) and the genes of sugar content in its combinations show superdominance sometimes. Its growing period is about 100 days.
带有红色荧光蛋白标记转基因引物处理后种子在白光下无差异
sweet sorghum seeds under white light.

带有红色荧光蛋白标记转基因引物处理后种子在荧光下为红色
sweet sorghum seeds under ultraviolet radiation.
Left: transformed is read; Right: untransformed is dark.
We hope to cooperate on:

- transgenic breeding to resist the borer;
- marker-assisted selection for high sugar content and the resistance to aphid;
- Breeding of Short growing period and high biomass;
- Breeding of sorghum hybrid with high grain yield which can be planted in fertile soil and suit machine reaping.
Thanks!
Welcome Your Suggestions
Welcome to cooperate

Ruiheng Du
Institute of Millet Crops,
Hebei Academy of Agricultural and Forestry Sciences
Shijiazhuang 050031, Hebei, China
E-mail: rhdu@hotmail.com