Page Banner

United States Department of Agriculture

Agricultural Research Service

Science Projects in Agriculture

Agriculture Is a Science...

What picture comes to your mind when you think of agriculture? Do you see some guy in overalls plowing the dirt with an old tractor, or women picking corn in a field? Maybe what you should picture is a scientist using a satellite-linked computer program to examine global climate changes or a researcher developing a new product that can absorb 1,600 times its own weight in water.

Agriculture today has gone high-tech. It had to, because keeping U.S. agriculture productive requires research that is every bit as complex as the space program. As a matter of fact, many agricultural research scientists work with the National Aeronautics and Space Administration (NASA) on a regular basis. They use satellites to examine fields for crop damage, to map soil conditions, and to look for changes in the environment that could affect farming--or be caused by farming.

Agricultural scientists may be microbiologists, chemists, veterinarians, engineers, plant pathologists, nutritionists or many other specialties. What they all have in common is that they are working out how to grow crops, raise livestock, produce renewable raw materials for industry and help preserve our environment.

Don't let all the dirt make you think that agriculture isn't a science.

Science Projects in Agriculture

You don't have to live on a farm or even have a garden to do an agricultural science project. You just have to be interested in what goes into growing plants and animals or how this affects the world around you.

So when your teacher asks you to come up with a science project for class or as part of a science fair, think agriculture. It isn't a separate category in most science fairs, but ag science is part of other fair categories, including biochemistry, botany, environmental sciences, medicine and health (nutrition), microbiology and zoology.


Click here for ideas to get you started...

more experiments and ideas

Want more? We've added new experiments and ideas...

What is a Science Project?

The idea behind a science project is to see what happens if...

What happens to one thing if you change something else while you keep all of the other conditions the same? All of a sudden you're a scientist.

That's the heart of all research, and a science project is just another name for research.

One thing to keep in mind: science projects are not the same as science demonstrations. The idea behind a science project is to learn something new--through an experiment. You might guess the result beforehand, but you won't know for sure what will happen until you try out the experiment.

A demonstration is different. It's fun to show that vinegar and baking soda together cause a reaction, for example. And if the reaction occurs like a volcano, you really do see the reaction explode. But that's all it is--a demonstration. No new information is discovered. You know exactly what the reaction is going to be. (Note: science demonstrations may be acceptable at some science fairs. Check with your teacher about the rules.)

Parts of a Science Project

While your science project may be simpler than a scientist's, it still needs to follow the same basic steps that make up the Scientific Process.

The Research Question

Exactly what do you hope to figure out? What is the what if question? You should be able to write the research question in a simple sentence.

In fact, keep the whole project simple. This is important to the scientific process: the simpler the experiment, the easier it is to keep "all other conditions" the same and change only one thing. That's how you can be sure that the thing you are changing is actually causing any difference you measure.

The Hypothesis

"Hypothesis" means "what do you expect to happen in your experiment?" Suppose your research question is, "what happens to seeds if I change the temperatures they are kept at before they are planted?" The hypothesis might be "the higher the temperature that seeds are kept at, the quicker I expect them to sprout."

It's important to word your hypothesis correctly. For example, don't say "higher temperatures are better for seeds." "Better" cannot be measured. Decide on a hypothesis that can be proved in a measurable way. For example, "higher temperatures will make the seeds sprout faster."

It is perfectly fine for your experiment to disprove your hypothesis. If something unexpected happens during your experiment, the project doesn't need to be trashed. You just discovered something new and showed that what we expect is not always what we get.

Do some studying before you decide on your hypothesis. Sources of information include school and public libraries and the Internet. Also, once you have some background, you might consider writing, telephoning or e-mailing a scientist who works in the field you've chosen for your project.

The Procedure

The procedure is how you plan to do things: how you are going to conduct your experiment.

An experiment can only have one variable. That means you can only change one condition in each experiment.

For example, with the seed-sprouting experiment, if you vary the temperature at which the seeds are stored before you plant them, keep each group of seeds at that temperature for the same amount of time. And make sure all of the seeds get the same amount of light and water after you plant them.

If there's more than one variable, the experiment becomes flawed. It can be hard to figure out what other conditions must stay the same. But it may help to think it through before you start your experiment.

Also think about how long your experiment will take before you decide on your procedure. If you only have a few weeks to do your experiment, don't decide on a procedure that will take months to carry out.

Think about your "sample size." How many seeds will you test at each temperature? Allow a big enough sample so you can have a few duds in each group.

Once you decide on a procedure, write it down step by step. That way, you can prove what you did and can follow the same procedure if you need to repeat the experiment.

The Results

This is where you collect the information or data. Your data should be in numbers, not just what you see. For example, say that some of your plants grew 1 centimeter the third day. Don't say that the plants "look bigger today than they did yesterday." Words like "bigger" mean different things to different people, so reporting your results using only words can lead to confusion. You want to tell people exactly how much your plants grew.

Keep all your results in one notebook.

The Conclusion

It can be hard to understand the difference between results and conclusion, but the two are very different.

Results are the specific data collected during the experiment. The conclusion is what you learned from doing the experiment, and what the results mean. You might also think of the conclusion as a summary. In just a few sentences, you need to explain what happened in your experiment and whether it agreed with your hypothesis.

Did your data (the measurements you took) support your hypothesis? If not, that's a result, too. It doesn't mean that the experiment didn't work. Also, consider other possible explanations for your results. Did your treatment kill your plants or was it that you left them outside and some insects ate some of the leaves? You're not out to "prove" your hypothesis but to test it. Think more along the lines of "here's what I thought was going to happen and here's what actually happened." Then go on to explain why you think things happened the way they did.

TOP / Ideas for Science Fair Projects / Back to:

Last Modified: 2/14/2011
Footer Content Back to Top of Page