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A series of oligonucleotide primer pairs covering the entire genome of Solenopsis invicta virus 1 (SINV-1)
were used to probe the genome of its host, S. invicta, for integrated fragments of the viral genome. All of
the oligonucleotide primer sets yielded amplicons of anticipated size from cDNA created from an RNA
template from SINV-1. However, no corresponding amplification was observed when genomic DNA (from
32 colonies of S. invicta) was used as template for the PCR amplifications. Host DNA integrity was verified
by amplification of an ant-specific gene, SiGSTS1. The representation of fire ant colonies included both
social forms, monogyne and polygyne, and those infected and uninfected with SINV-1. Furthermore,
no amplification was observed from genomic DNA from ant samples collected from Argentina or the
US. Thus, it appears that SINV-1 genome integration, or a portion therein, has not likely occurred within
the S. invicta host genome.

Published by Elsevier Inc.
1. Introduction protection to the host from infection by the corresponding virus
Solenopsis invicta virus 1 (SINV-1) is a dicistrovirus that infects
the red imported fire ant, S. invicta (Valles et al., 2004). SINV-1 is
the first virus reported to infect any ant (Formicidae) species (Oi
and Valles, 2009). Since its discovery, additional characterization
studies have been conducted including, host specificity (Valles
et al., 2007), molecular detection and quantitation (Hashimoto
et al., 2007), tissue tropism (Hashimoto and Valles, 2007), struc-
tural protein elucidation (Valles and Hashimoto, 2008), genotyping
(Tufts et al., 2010; Valles and Strong, 2005), genome mutation rate
(Allen et al., 2010), cap-independent translation (Nakashima and
Shibuya, 2006; Nakashima and Uchiumi, 2008), and phylogenetic
relationships (Bonning, 2009; Bonning and Miller, 2010). Thus,
the biology of this virus is gradually emerging.

SINV-1 infection of fire ants resembles similar RNA virus infec-
tions in honeybees. Specifically, the virus occurs as a chronic,
asymptomatic infection with no overt effects. However, when the
infected host experiences external stress, the virus rapidly repli-
cates often resulting in characteristic symptoms and/or death
(Chen and Siede, 2007; Valles et al., 2004). Recently, portions of
some positive-strand RNA viruses (including a dicistrovirus) have
been reported to be integrated into their host genomes. This result
is highly unexpected because no DNA stage is synthesized during
the life cycle of positive-strand RNA viruses. Furthermore, and
most interestingly, the integration event apparently afforded
Inc.

alles).
(Crochu et al., 2004; Maori et al., 2007; Tanne and Sela, 2005).
Indeed, shrimp purposely transfected with, and expressing an anti-
sense Taura syndrome virus (TSV) coat protein, had a nearly 2-fold
increased survival rate compared with wild-type shrimp against
TSV challenge (Lu and Sun, 2005). Although SINV-1 appears to
cause a persistent, asymptomatic infection in S. invicta, its effect
on the host population is not understood. It has been suggested
that SINV-1 may be exploited as a microbial control agent of
S. invicta. Thus, integration of a portion of the SINV-1 genome into
the host, S. invicta, may influence its effectiveness as a microbial
control agent. With this possibility in mind, experiments were
conducted to determine whether a portion of the SINV-1 genome
had been integrated into the fire ant host genome.

2. Materials and methods

S. invicta ants used for the study included colony samples of
workers from Florida, Texas, and Argentina (Table 1). In all cases,
RNA and DNA were extracted from the same colonies and each
examined by molecular analyses to determine the social form of
the colony, the SINV-1 virus infection status, and whether integra-
tion of a portion of the SINV-1 genome occurred based on produc-
tion of an amplicon by PCR with genomic DNA as template.

Total RNA was extracted from 10 field-collected fire ant worker
ants by the Trizol method according to the manufacturer’s instruc-
tions (Invitrogen, CA). The RNA was evaluated for SINV-1 infection
by the multiplex RT-PCR method described previously (Valles et al.,
2009). DNA was extracted from a pooled group of 10 worker ants
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Table 1
Summary data for Solenopsis invicta colonies examined for SINV-1 genome integration.

Colony sample Collection SINV-1 infection status Social form Integration result

Location Date

37/11A/42/6 Newberry, FL Oct-2010 Negative Monogyne Negative
39/11A/27/1 Windsor, FL Oct-2010 Negative Monogyne Negative
43/11A/44/4 Otter creek, FL Nov-2010 Negative Monogyne Negative
43/11A/44/3 Otter creek, FL Nov-2010 Negative Monogyne Negative
55/103/145/197 Kenedy, TX May-2010 Negative Monogyne Negative
57/103/135/1101 Formosa, Argentina Oct-2008 Negative Monogyne Negative
57/103/135/986 Formosa, Argentina Oct-2008 Negative Monogyne Negative
57/103/135/990 Formosa, Argentina Oct-2008 Negative Monogyne Negative
37/11A/39/2 Paines Prairie, FL Oct-2010 Positive Monogyne Negative
39/11A/27/3 Windsor, FL Oct-2010 Positive Monogyne Negative
42/11A/22/1 Micanopy, FL Nov-2010 Positive Monogyne Negative
42/11A/22/2 Micanopy, FL Sept-2010 Positive Monogyne Negative
43/11A/33/2 Gainesville, FL Oct-2010 Positive Monogyne Negative
57/103/135/962 Formosa, Argentina Oct-2008 Positive Monogyne Negative
57/103/135/1000 Formosa, Argentina Oct-2008 Positive Monogyne Negative
55/103/145/208 Kenedy, TX Oct-2006 Negative Monogyne Negative
55/103/145/217 Kenedy, TX Oct-2006 Negative Monogyne Negative
55/103/145/245 Kenedy, TX May-2010 Positive Monogyne Negative
37/11A/44/6 Otter Creek, FL Nov-2010 Negative Polygyne Negative
55/103/145/196 Kenedy, TX Oct-2006 Negative Polygyne Negative
57/103/135/985 Formosa, Argentina Oct-2008 Negative Polygyne Negative
57/103/135/988 Formosa, Argentina Oct-2008 Negative Polygyne Negative
57/103/135/978 Formosa, Argentina Oct-2008 Negative Polygyne Negative
37/11A/44/3 Otter Creek, FL Nov-2010 Positive Polygyne Negative
39/11A/27/2 Windsor, FL Oct-2010 Positive Polygyne Negative
39/11A/27/4 Windsor, FL Oct-2010 Positive Polygyne Negative
42/11A/22/5 Micanopy, FL Sept-2010 Positive Polygyne Negative
42/11A/22/6 Micanopy, FL Sept-2010 Positive Polygyne Negative
43/11A/24/2 Otter Creek, FL Nov-2010 Positive Polygyne Negative
55/103/145/257 Kenedy, TX Sept-2010 Positive Polygyne Negative
55/103/145/341 Kenedy, TX Sept-2010 Positive Polygyne Negative
55/103/145/342 Kenedy, TX Sept-2010 Positive Polygyne Negative
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from each corresponding colony (Valles et al., 2002). Nucleic acid
concentration was determined spectrophotometrically and ad-
justed to 50 ng/ll by further dilution with diethyl-pyrocarbon-
ate-treated water (RNA) or TE (10 mM Tris, pH 8.0, 1 mM EDTA)
buffer (DNA). Colony social form was determined by conducting al-
lele-specific PCR at the Gp-9 locus using a DNA template (Valles
and Porter, 2003). Homozygous (Gp-9BB) samples were considered
monogyne and heterozygous (Gp-9Bb) samples polygyne (Krieger
and Ross, 2002).

Oligonucleotide primers were designed and synthesized to pro-
vide complete coverage of the SINV-1 genome (Genbank accession
number AY634314) in approximately 150 nucleotide sections
(Supplementary Table). Once the oligonucleotide primers were
synthesized, they were evaluated for their ability to amplify the
corresponding section of the SINV-1 genome by PCR with cDNA
synthesized from SINV-1-infected S. invicta (i.e., SINV-1 RNA).
The reverse oligonucleotide primer from each pair was used in
the cDNA synthesis reaction. Two-step RT-PCR was employed to
amplify each SINV-1 region. First, 0.5 ll (25 ng) of the total ex-
tracted RNA was mixed with 10 mM dNTPs, 1 lM reverse oligonu-
cleotide primer, heated to 65 �C for 5 min, and then placed on ice
for at least 1 min. First strand buffer and Superscript reverse trans-
criptase (RT, Invitrogen) were then added and the reaction mixture
incubated at 55 �C for 1 h before inactivating the RT at 70 �C for
15 min.

PCR was subsequently conducted with the cDNA and DNA tem-
plates. The reaction was conducted in a 25 ll volume containing
2 mM MgCl2, 200 lM dNTP mix, 0.5 units of Platinum Taq DNA
polymerase (Invitrogen), 0.2 lM of each primer, and 5 ll of the
cDNA preparation. PCR products were separated on a 1% agarose
gel and visualized by SYBR-safe (Invitrogen) staining. The integrity
of each of the DNA sources was verified by amplification (with an
identical quantity of DNA used in the integration assays) of a long
template for the S. invicta glutathione S-transferase gene, SiGSTS1
(Valles et al., 2003). Negative controls (non-template) were run
alongside treatments. Amplification was completed in a thermal
cycler under the following temperature regime: one cycle at
94 �C for 2 min, 35 cycles of 94 �C for 15 s, 55 �C for 15 s, 68 �C
for 2 min, followed by a final elongation step of 68 �C for 5 min.
Several oligonucleotide primer sets required lower annealing tem-
peratures as indicated in the Supplementary Table.
3. Results and discussion

All oligonucleotide primer sets yielded amplicons of anticipated
size from cDNA created from an RNA template from SINV-1-in-
fected ants indicating that the oligonucleotide primers were spe-
cific for SINV-1 and functioning properly (Fig. 1). However, no
corresponding amplification was observed when genomic DNA
(from 32 colonies of S. invicta) was used as template for the PCR
amplifications (Fig. 1). Furthermore, no extraneous bands were ob-
served in PCR amplifications from DNA templates. However, arti-
facts were observed for a few reactions. These diffuse bands were
significantly smaller than the corresponding amplicon from cDNA
templates and considered dimerized primers. Integrity of each of
the DNA templates was verified by successful amplification of a
portion of the SiGSTS1 gene from these DNA sources (Fig. 1). The
representation of fire ant colonies included both social forms,
monogyne and polygyne, and those infected and uninfected with
SINV-1 (Table 1).

The possibility that a bottleneck could have occurred during the
founding event of S. invicta into the US in which a SINV-1-contain-
ing integrated ‘‘allele’’ (i.e., integrant) could have been lost was
considered. Consistent with this possibility is the fact that SINV-1
prevalence tends to be slightly higher among US S. invicta
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Fig. 1. Representative summary of PCR amplification results with cDNA (upper
panel of each block) prepared from RNA extracted from SINV-1-infected S. invicta
and DNA (lower panel in each block) from S. invicta with oligonucleotide primer
pairs covering the genome of SINV-1 (colony designation 37/11A/44/3 from
Table 1). Molecular marker positions are identified in the first gel of panel A and
are consistent for all gels. Panel A includes the genome region covered by
oligonucleotide primer sets 1 through 15 (see Supplementary Table for key); B
includes 16 through 30; C includes 31 through 44; D includes 45 through 59; E
includes 60 through 71. Panel F represents an evaluation of the DNA integrity by
amplification of the fire ant gene, SiGSTS1. Lane assignments for panel F include: (1)
molecular marker (2) SiGSTS1 amplicon (3) non-template control. Reactions
conducted at a lower annealing temperature (see Supplemental Table) are indicated
with an asterisk.
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populations compared with Argentinean populations (Valles et al.,
2007). However, no region of the SINV-1 genome was amplified
from genomic DNA purified from Argentinean or US sample colo-
nies. Thus, it appears that SINV-1 genome integration, or a portion
therein, has not likely occurred within the S. invicta host genome.
Obviously, limitations in the methodology used and the possibility
of rare integration events having occurred must be considered.
Although the oligonucleotide primer sets completely covered the
entire SINV-1 genome (mean amplicon size yielded by each oligo-
nucleotide primer set was 133 ± 24 nucleotides), a smaller frag-
ment or fragment across the boundaries of the oligonucleotide
primer margins could be present which would have resulted in a
false negative, or non-detection. However, among the integration
events reported to date, virus genome fragments detected in host
genomes range in size from 428 to 1500 nucleotides, a sizable pro-
portion of those viral genomes (Crochu et al., 2004; Geuking et al.,
2009; Katzourakis and Gifford, 2010; Maori et al., 2007; Tanne and
Sela, 2005). Despite these precedents, a smaller fragment may still
be integrated in the S. invicta genome – a possibility that must re-
main a consideration.

The frequency of integration must also be considered. Maori
et al. (2007) reported that 30% of tested honey bee (Apis mellifera)
individuals from 19 colonies carried a segment of the dicistrovirus,
Israeli acute paralysis virus (IAPV), which apparently conferred
host resistance to this virus. Indeed, if a portion of the SINV-1 gen-
ome was integrated into the S. invicta genome and it provided a
competitive advantage against viral infection, it would be expected
to be present in a moderate portion of the population. However,
among the 32 colony samples examined from the US and Argentina
(each comprised of 10 ant workers), the introduced and native
ranges of S. invicta, respectively, the ant genome used as template
for PCR failed to amplify any region of the SINV-1 genome. Hypo-
thetically, in cases where an integrant was contributed from a male
fire ant during mating, all members of the resulting colony would
possess the integrant because males are haploid and all of their ge-
netic material is passed on to their progeny (assuming a single
mating event). A similar result would occur in situations where
the integrant was contributed by a homozygous fire ant queen
(diploid). If an integrant was contributed from a heterozygous
(for the integrant) fire ant queen, 50% of her progeny would pos-
sess the integrant. In this case, the binomial probability of identify-
ing a single integrant from 10 workers sampled randomly from a
colony would be expected to be greater than 99.9%. Thus, although
the possibility of SINV-1 genome integration exists, the lack of
amplification from genomic ant (host) DNA, and the fact that posi-
tive, single-strand RNA viral integration has been reported rarely,
support our results for SINV-1. However, it is impossible to fully
support a negative result and, as such, integration of a portion of
the SINV-1 genome into the fire ant host genome must remain a
possibility.

Although SINV-1 appears to cause a persistent, asymptomatic
infection of S. invicta, its effect on the host population is not under-
stood. SINV-1 could be exploited as a microbial control agent or
even as a vector to shuttle deleterious genes or toxins into S. invic-
ta. In these situations, SINV-1 genome (or genome fragment) inte-
gration may influence the efficacy of such uses. In addition,
knowing whether integration of SINV-1 into the S. invicta genome
occurs, advances the understanding of the biology of this virus.
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