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ABSTRACT

Lavine, B.K., Morel, L., Vander Meer, R.K., Gunderson, R.W., Han, J.H., Bonanno, A. and Stine, A., 1990. Pattern
recognition studies in chemical communication: nestmate recognition in Camponotus floridanus. Chemometrics and
Intelligent Laboratory Systems, 9: 107-114.

The combination of gas chromatography and pattern recognition (GC/PR) analysis is a powerful tool for
investigating complicated biological problems. Clustering, mapping, and principal component modelling are necessary
to analyze large chromatographic data sets and to seek meaningful relationships between chemical constitution and
biological variables.

We have applied GC/PR to the problem of deciphering the complex chemical messages of Camponotus floridanus (a
carpenter ant) and have learned that GC traces of soaks obtained from the carpenter ants are characteristic of their
colony of origin, social caste, and social experience. In this study gas chromatographic data obtained from 119 red

carpenter ants was analyzed using principal component analysis and the FCV clustering algorithm.

INTRODUCTION

Nestmate recognition is the ability of a worker
ant to discriminate workers belonging to the same
colony from alien workers. It has been docu-
mented in many species of social insects [1]. In
ants and bees chemical signals are the only nest-
mate recognition cues known [2). These chemical
signals are present on the (insect’s) cuticle as a
result of genetically controlled production, e.g. the
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ant Pseudomyrmex ferruginea, [3] and/or adsorp-
tion of chemicals from the environment, e.g. the
ant Solenopsis invicta [4). Indeed, social insects
have demonstrated their great virtuosity by ex-
hibiting a reliance for nestmate recognition on
either genotypic or environmental factors or some
combination of the two [1].

We have investigated [5] the nature of nestmate
recognition cues and the effect of social experi-
ence on these cues in Camponotus floridanus, a
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highly evolved social insect, and now wish to
report that the colony of origin, social caste, and
social experience of these ants can be directly
correlated to specific concentration patterns of
cuticular compounds as represented by their gas
chromatographic (GC) profiles. In this study,
capillary column gas chromatography was used to
analyze the soaks obtained from 119 red carpenter
ants; principal component analysis and fuzzy pat-
tern recognition techniques were then used to
analyze the GC traces of the soaks. The focus of
this report will be on the analytical methodology
used to solve this rather interesting classification
problem, with particular emphasis on the cluster-
ing techniques used to identify the various
fingerprint patterns in the GC data.

EXPERIMENTAL

For this study 119 ants (see Table 1) were
obtained from two different laboratory colonies
(A and B) which were maintained in the USDA-
ARS Fire Ant Project Laboratory in Gainesville,
Florida, U.S.A. Ants from both colonies were fed
regularly with honey-water (1:1), and immature
insects. Five different work categories were repre-
sented in the data set: (1) foragers, (2) normal
callow workers less than 12 hours old, (3) normal
five-day-old callow workers, (4) naive callow
workers less than 12 hours old, and (5) naive

TABLE 1

Camponotus floridanus data set

Worker category Colony Number of
specimens
Forager A 21
S-day-old callow A 10
0-day-old callow A 11
5-day-old naive callow A 12
0-day-old naive callow A 11
Forager B 13
S5-day-old callow B 10
0-day-old callow B 10
5-day-old naive callow B 11
0-day-old naive callow B 10
Total 119
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Fig. 1. A gas chromatographic trace of the hydrocarbon extract
obtained from a forager showing the 15 peaks used for pattern
recognition analysis.

five-day-old callow workers. Foragers were col-
lected at the honey source in the foraging area.
Callow workers were removed from each colony as
they emerged from their cocoon and were main-
tained in small Petri dishes with nurses (normal
callows) or without nurses (naive callows).

The chemical composition of the cuticle was
determined by first soaking individual ants in 150
pl of hexane. After three hours, the ant was re-
moved from the hexane wash, and the solution
was transferred via a Pasteur pipet to a clean vial.
GC analysis was performed on the extract using a
Varian 3700 gas chromatograph equipped with a
flame ionization detector. A representative GC
trace of a soak obtained from a forager is shown
in Fig. 1. A 30-m DB-1 fused silica capillary
column (J&W Scientific) was used in the analysis,
and the column was temperature programmed
from 50°C to 285°C at 5°C/minute. Further
details regarding the collection of the GC data can
be found elsewhere [5].

No qualitative differences were apparent in the
chemical composition of the soaks obtained from
ants that were from different colonies or from
different worker categories. If the compounds
comprising the cuticle do in fact play an im-
portant role in nestmate recognition, it would
seem likely that quantitative differences in the
soaks would result in concentration profiles char-
acteristic of the colony of origin and the worker’s
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category. In order to investigate this hypothesis,
data base of information concerning the relative
concentration of the compounds comprising the
cuticle (i.e. the GC traces) which we compiled was
analysed using pattern recognition techniques.

PATTERN RECOGNITION METHODOLOGY

For pattern recognition (PR) analysis, each gas
chromatogram was represented by a data vector
X = (X}, X3, X3, Xg5..., j»--- X,) Where compo-
nent x; is the area of the jth peak. In this study
the chromatographic data were normalized to con-
stant sum using the total area of the forty GC
peaks. Each peak was then expressed as percent of
total area to indicate the relative concentration. Of
the 40 peaks comprising each chromatogram, only
15 were considered for pattern recognition analy-
sis (see Fig. 1). Each of the 15 had an area
representing more than 1% of the total in every
chromatogram. Computer integration of these
peaks always yielded reliable results. Furthermore,
each of these peaks was well resolved and readily
identifiable in all of the chromatograms. Because
this feature selection process was carried out on
the basis of a priori considerations, the probability
of exploiting random variation in the data was
minimized.

Of the 119 ant samples, 103 comprised the
training set (see Table 2). There were 53 ants from
colony A and 50 ants from colony B in the train-

TABLE 2

Training set

Worker category Colony Number of
specimens
Forager A 15
5-day-old callow A 10
0-day-old callow A 8
S-day-old naive callow A 10
0-day-old naive callow A 10
Forager B 10
5-day-old callow B 10
0-day-old callow B 10
5-day-old naive callow B 10
0-day-old naive calow B 10
Total 103

TABLE 3

Prediction set

Worker category Colony Number of
specimens

Forager A 6

0-day-old callow A 3

5-day-old naive callow A 2

0-day-old naive callow A 1

Forager B 3

5-day-old naive callow B 1

Total 16

ing set. Of the 53 ants from colony A, fifteen were
foragers, ten were 5-day-old callows, eight were
0-day-old callows, ten were 5 day-old-naive cal-
lows, and ten were 0-day-old naive callows. Of the
50 ants from colony B, each of the five different
worker categories were represented by 10 ant sam-
ples. The prediction set (see Table 3) consisted of
12 samples from colony A (six foragers. three
0-day-old callows, one 0-day-old naive callow and
two 5-day-old naive callows), and 4 samples from
colony B (3 foragers and one 5-day-old naive
callow). Members of the prediction set were cho-
sen by random lot. The raw data vectors for the
prediction set ants were sent to our laboratory
under separate cover and served as blind samples
in the study. The class assignment of each predic-
tion set sample was made known after the colony
of origin and worker category of the ants were
postulated.

In this study we used the FCV clustering al-
gorithm [6-8] to seek relationships between the
GC profiles of the ants and the biological vari-
ables; age, social experience, and colony of origin.
The FCV clustering algorithm attempts to fit each
of the ¢ classes in the data set to a linear model
(i.e. principal component model) of the form

x=v+ thdj (1)

where x denotes a prototypical class membership
vector, v is the center of the class in the n-dimen-
sional space R,,, the vectors {d,} are an orthonor-
mal set spanning a subspace of R, and {; are the
coordinates of the prototypical vector in the sub-
space. An interesting feature of the FCV cluster-
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ing algorithm is that each data vector in the train-
ing set is assumed to contribute to the modelling
of each of the classes within the data. The actual
algorithm consists fo solving simultaneously the
following set of equations.

v, = Z (u:k)mxk/ Z (“ik)m (2)
k=1 k=1
uy=1/ ¥ (Dy/Dy)""™" (3)
j=1
Sl= Z (ulj)m(xk_vi)(xk—vi)r (4)
k=1
, 1,2
D,= |x:—vl|2‘ Z <xk_vij’dlj>2 (5)
j=1

The membership value of sample k with respect
to class i(i=1,2,3,...) is u,, and these values
are subjected to the condition 0 <u,; <1 and
Yu, =1. D, is the distance of sample k from
cluster center i, v; is the center of cluster (ie.
class) i, d,, is a unit eigenvector corresponding to
the jth largest eigenvalue of the fuzzy within-clus-
ter scatter matrix, S,, m is a fixed weighting
exponent which usually is assigned a value of 2,
and r defines the shape of the cluster (=0 for
round clusters, r=1 for linear varieties, and so
forth).

To obtain an approximate solution to this set
of four equations, the user must supply the start-
ing cluster centers. The class membership values,
the within-cluster scatter matrix for each cluster,
and the distance of each sample from each cluster
are computed in rapid succession. New cluster
centers are then computed for the samples in the
final step of the first iteration. The algorithm
continues by using these new cluster centers as the
starting point for a second iteration through the
same set of four equations. This process continues
until convergence is achieved. The number of iter-
ations required to achieve convergence depends
upon the minimum pre-specified change criterion
for the class membership values (which has been
set at 0.005 in our studies).

Usually one chooses m =2, but by increasing
m, less weight is attached to the importance of
samples with small membership values. This means

that the higher the value of m, the fuzzier the
algorithm becomes, in the sense that points whose
membership values are uniformly low through the
iterative procedure tend to become increasingly
ignored in determining the membership functions
(i.e. clusters) and the defining linear varieties. It is
this feature of the FCV clustering algorithm that
is particularly appealing when one suspects the
data may not exist in compact well separated
clusters. The ability to ‘tune out’ noise in the data
by adjusting m can be of great value in obtaining
favorable and meaningful clustering results.

One of the advantages of the FCV clustering
algorithm is the possibility of using the fuzziness
of a given cluster configuration as an indicator of
its quality. This can be achieved by computing the
cluster validity coefficient (CVC). It is a measure
of the separation between clusters and is de-
termined by computing the ratio of the distance
between the two cluster centers to the weighted
scatter of the two clusters [9]. The larger the value
of the coefficient, the better the separation be-
tween clusters. By successively increasing the value
of m, the effect of samples with poor class mem-
bership values can be filtered out. An indication
of the cluster quality can therefore be obtained by
comparing the values of the cluster discriminant
from computations where m is increased stepwise.
If there is little change in the value of the CVC,
the conclusion is that most of the data have shared
membership values close to either zero unity, which
suggests the presence of two distinct clusters (i.e.
classes) in the data. On the other hand, a marked
increase in the value of the CVC as m increases
would be taken as an indication of substantial
overlap between the two data clusters.

When investigating the data with the FCV clus-
tering algorithm, one may choose to search for
round clusters in the data by specifying r =0, or
find the best fit of the data to linear clusters by
specifying r=1, or in general attempt to fit the
data to other geometric shapes by setting r > 2.
This feature of the FCV algorithm allows the
investigator to compare the fit of the data to a
number of geometrically distinct cluster shapes
and to select the fit which appears to best repre-
sent the actual structure of the data. Clearly, this
feature results in a very definite advantage.
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RESULTS AND DISCUSSION

In the first step of our study principal compo-
nent analysis [10] was employed to examine the
structure of the data. In Fig. 2 the results of a
principal component mapping experiment are
shown for the 103 ants samples in the training set.
The 53 ant samples from colony A are well sep-
arated from the 50 ant samples from colony B in
the two-dimensional map. It is important to note
this projection is made without the use of infor-
mation about the class assignments of the sam-
ples. i.e. colony A or colony B. The resulting
separation is, therefore, a strong indication of real
differences in the cuticular patterns of these ants
as reflected in their GC profiles.

The FCV clustering algorithm was then used to
partition the data into two classes and to assess
the degree of separation between the two classes
(i.e. colony A and colony B). The starting centers
for this clustering experiment were a forager from
colony A and a 0-day-old naive callow from col-
ony B. The values of m and ¢ were set at 2, and
the value of » was set at 0. (For GC profile data,
we have learned from previous experience that »
should usually be set to zero.) The FCV clustering
experiment was performed on the 15 raw vari-
ables. The algorithm converged after 25 iterations,
The 53 samples from colony A had a larger class
membership value for cluster one than cluster two,
and the 50 samples from colony B had a larger
class membership value for cluster two than clus-
ter one. The CVC value was computed to be 6.20.
CVC values were also computed for other values
of m. Only minor changes in the CVC were ob-
served for increasing values of m. The FCV clus-
tering experiment was repeated using different
starting centers (a 5-day-old callow from colony A
and a forager from colony B), and the same results
were achieved. Evidently, it is reasonable to divide
the training set into two distinct classes: colony A
and colony B.

The principal component models developed in
the FCV clustering experiment were validated
using the 16 samples from the prediction set. The
chromatograms in the prediction set were fitted to
the class models and were assigned a membership
value for each class. An ant sample would be

assigned to colony A if its class membership value
Was greater than 0.50 for cluster 1. If the ant
sample had a class membership value greater than
0.50 for cluster 2, it would be assigned to colony
B. The results of this experiment are summarized
in Table 4. Every chromatogram in the prediction
set was correctly classified. This result demon-
strates that information derived solely from the
hydrocarbons can categorize ant specimens as to
colony of origin. Because differences in odor for
the laboratory colonies are only due to genotypic
factors, we would expect differences between field
colonies which would also include environmental
factors to be even more pronounced.

The GC profiles were also found to be char-
acteristic of the worker’s category. The training set
of 103 chromatograms was further subdivided into
two smaller sets — one of 53 chromatograms
(colony A) and the other of 50 chromatograms
(colony B). Each set was analyzed separately using
the FCV cluster algorithm. For colony A, r was
set equal to 0, m was set equal to 2, and ¢ was
varied from 2 to 8. As ¢ increased in value,
clustering of samples on the basis of social caste
was observed. When ¢ =6, an interesting result
was obtained. Five of the fifteen foragers had a
large membership value (greater than 0.60) for
cluster six. None of the other samples had a large
membership value for that cluster. The other ten
foragers had a large membership value for cluster
one. Only two other samples (0-day-old naive cal-
lows) had a large membership value for cluster
one. All of the 5-day-old callows had a large
membership value for cluster 2. Only two other
samples (5-day-old naive callows) had a large class
membership value for cluster two. Six 0-day-old
callows had a large membership value for cluster
three. None of the other samples had a large class
membership value for this cluster. The remaining
eight 5-day-old naive callows had a large member-
ship value for cluster four, and eight 0-day-old
naive callows has a large membership value for
cluster five. When the ant samples were assigned
to the cluster where they had the highest class
membership value, it was evident the data could
be partitioned into different classes on the basis of
the worker’s category. The results of this experi-
ment are summarized in Table 5.
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TABLE 4

Prediction set results for colony of origin

Worker category Colony  Membership value
Cluster 1 Cluster 2

Forager (#1) A 0.75 0.25
Forager (%2) A 0.80 0.20
Forager (#3) A 0.70 0.30
Forager (£4) A 0.65 0.35
Forager (#5) A 0.85 0.15
Forager (£6) A 0.74 0.26
S-day-old naive

callow (# 1) A 0.88 0.12
5-day-old naive

callow (#2) A 0.90 0.10
0O-day-old callow (#1) A 0.87 0.13
0O-day-old callow (#2) A 0.82 0.18
0-day-old callow (#3) A 0.82 0.18
0-day-old naive callow A 0.79 0.21
Forager (#1) B 0.28 0.72
Forager (#2) B 0.20 0.80
Forager (#3) B 0.30 0.61
5-day-old naive callow B 0.22 0.78

The six principal component models developed
in this experiment were validated using 12 of the
16 samples from the prediction set. These 12 sam-
ples were from colony A. The samples were fitted
to each principal component model, and the class
membership values for each sample were com-
puted. Each sample was assigned to the cluster
where it had the highest membership value. Ten of

TABLE 5
Training set results for colony A
Number of Caste Maximum
samples membership
cluster

10 Foragers 1

2 0-day-old naive callows
10 5-day-old callows 2

2 S-day-old naive callows

0-day-old callows 3

S-day-old naive callows 4

6

8

8 0-day-old naive callows
2 0-day-old callows

5

Foragers 6

113
TABLE 6
Training set results for colony B
Number Caste Maximum
of samples membership
cluster

7 Forager 1

2 0-day-old naive callows

9 S-day-old naive callows 2

2 0-day-old callows

5 0-day-old naive callows 3

3 Foragers 4
10 S-day-old callows 5

0-day-old callows 6
1 5-day-old naive callow
3 0-day-old naive callows 7

the twelve samples were correctly classified. A
0-day-old callow was classified as a 5-day-old
callow (i.e it was assigned to cluster 2 instead of
cluster 3), and a forager was classified as a 5-day-
old callow (i.e. it was also assigned to cluster 2
instead of cluster 1 or 6). Clustering experiments
were performed for the 50 ant samples from col-
ony B, and favorable classification results were
also obtained (see Table 6). The prediction set
results were equally encouraging. All four samples
from colony B in the prediction set were correctly
classified. (The three foragers had the largest class
membership value for cluster 1, and the 5-day-old
naive callow had the largest class membership
value for cluster 2.) .

The results of this study demonstrate that for-
agers and callows (normals or naives) can be dif-
ferentiated from one another on the basis of their
GC profile. This implies a direct relationship be-
tween the concentration pattern of the cuticular
components and the social caste of these ants. The
results also demonstrate that the GC traces of the
ants convey information about their social experi-
ence. For example, we were able to readily dif-
ferentiate 5-day-old callows from 5-day-old naive
callows by examining the GC traces of their hexane
soaks. The only difference between 5-day-old cal-
lows and 5-day-old naive callows is that 5-day-old
callows have interacted with the nurses whereas
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the 5-day-old naive callows do not participate in
such an interaction. It seems probable this interac-
tion leads to an exchange of cuticular chemicals
which contain the nestmate recognition label. Be-
havioral studies carried out in conjunction with
the GC/PR analysis [5] demonstrate the impor-
tance of this interaction. If the callows do not
interact with the nurses, they will not acquire the
full colony label.

The pattern recognition methods used in the
study also deserve comment. Massart and Kauf-
man in their classic text, The Interpretation of
Analytical Data by the use of Cluster Analysis ([11]
p. 39), note that a clustering method combined
with a mapping and display technique, preferably
principal component analysis, is the best approach
to take for tackling a classification problem. These
techniques do not utilize information about the
class assignment of the sample. Therefore, if the
results from the principal component mapping
and clustering experiments confirm our a priori
assumption that we have about the structure of
the data, we therefore have a very strong indica-
tion that real differences exist between chromato-
grams belonging to samples from different col-
onies or worker categories. Although supervised
pattern recognition techniques could be used for
classification problems, we believe that we have
used the appropriate pattern recognition method-
ology given the scope and nature of the study.

CONCLUSION

GC traces representing hydrocarbon extracts
could be related to the social experience, colony or
origin and social caste of the ants using pattern
recognition techniques. These results support a
potential role for cuticular hydrocarbons in nest-
mate recognition. They also demonstrate the GC/
PR is an important technique for evaluating the
informational content of highly complex chemical
communicatory systems.
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