OBEZA FLORIDANA, A PARASITOID
OF CAMPONOTUS ABDOMINALIS FLORIDANUS
FROM FLORIDA
(HYMENOPTERA: Eucharitidae, Formicidae)

LLOYD R. DAVIS, JR.,¹,² AND DONALD P. JOUVENAZ²

¹Insects Affecting Man and Animals Research Laboratory
United States Department of Agriculture
Agricultural Research Service
P. O. Box 14565
Gainesville, FL 32604
²Research Associate of the Florida State
Collection of Arthropods, Division of Plant Industry,
Gainesville, Florida

Colonies of the carpenter ant, Camponotus abdominalis floridanus (Buckley) frequently harbor commensals. In northern Florida these include the inquilines Microdon
fulgens Wiedemann (Diptera: Syrphidae), Myrmecophila perpandei Bruner (Orthoptera: Gryllidae), an undetermined species of Atelurinae (Thysanura: Nicoletiiidae) and the parasitoid Alachua floridensis Schaff and Bouck (Hymenoptera: Eulophidae) (L.R.D., unpublished data). Deyrup & Fisk (1984) have reported the occurrence of a cockroach, Myrmecoblatta wheeleri Hebard (Blattaria: Polyphagidae) with this ant in southern Florida. Obeza floridana (Ashmead), a eucharitid parasitoid whose host was previously unknown, is reported here to parasitize C. a. floridanus.

Four colonies of C. a. floridanus were collected August 12, 1988 in Alachua County, Florida (T10S R19E section 1; W of Gainesville). This ant thrives in urban trash piles and was collected at several dispersed dump sites which contained a variety of discarded appliances, furniture, and building material scraps. The vegetation varied from open to dense and was dominated by laurel oaks (Quercus laurifolia), with thickets of wild plum (Prunus sp.), blackberry (Rubus sp.), green brier (Smilax sp.), smooth sumac (Rhus sp.), and persimmons (Diospyros virginiana). Ants of the genera Odontomachus, Pogonomyrmex, Crematogaster, Aphaenogaster, and Pheidole were also encountered. Colonies were collected by picking up large pieces of trash and dumping the assorted ants and brood into plastic Fluon® lined buckets.

On August 19, 1988 an adult female Obeza floridana emerged from one of the four colonies. This wasp was ignored by the ants in the colony, jumped when an attempt was made to capture her, and buzzed when held with forceps. After this eucharitid was found, the pupae of other colonies of the carpenter ant were examined for parasitism. One of the other colonies had 6 parasitized Camponotus pupae, 5 of which contained an O. floridana pupa, the sixth contained a larva (instar unknown). Ten additional C. a. floridanus colonies were collected from the same area. Two colonies collected on August 22 and 29 contained O. floridana parasitized pupae; 3 were found in the first colony and 1 in the second. Thus, 4 of the 14 well-established colonies samples on the site contained O. floridana pupae. On August 30, another C. a. floridanus pupa parasitized by O. floridana was found in a colony about 2 kilometers north of the first site. Less than 1% of brood collected (brood collection was always incomplete) from these 5 colonies was parasitized by O. floridana. Only one parasitoid per infested host cocoon was found.

Parasitized pupae of this ant are easily recognized. Normal C. a. floridanus pupae have a distinctly darkened area on the posterior end (adjacent to the meconium), whereas pupae infected with O. floridana are only dark anteriorly. In contrast, pupae infected with the internal parasitoid Alachua floridensis are darkened both posteriorly and anteriorly, while retaining a pale medial band.

A female wasp that emerged August 29, 1988 was given the opportunity to mate with a newly emerged male on Sept. 1. Mating did not occur, but when she was presented twigs with fruit of green brier (Smilax sp.) and unripened pokeweed (Phytolacca americana, Phytolaccaceae), (plants that were both present at the collection site), she immediately inserted her ovipositor into the fruit of the pokeweed. Plant oviposition is expected for eucharitids (Clausen 1940), but not fruit oviposition. Heraty & Barber (in press) provide additional records of fruit oviposition by O. floridana. Rather than dissect the fruit for eggs, we placed it in a healthy ant colony in an unsuccessful attempt to establish parasitism. Apparent oviposition sessions were about 15 min long for each of the first two, 10 min for the third, and 5 min for the fourth. The female was still alive on the morning of September 5, but obviously less vigorous. She did not respond to water drops, honey agar, or the male (which was re-introduced). She did climb onto smooth sumac and attempt to oviposit for less than 1 min before leaving to rest on the side of her cage. She died at about 6:00 pm September 2, 1988.

This parasitism of C. a. floridanus is the first host record for O. floridana and the first indication that O. floridana may oviposit in fruit of pokeweed. We find it interesting that the first host for O. floridana was discovered in 1988, exactly 100 years after
Ashmead described this species from a male collected in Florida, probably near Jacksonville.

The specimens of O. floridana mentioned in this paper are deposited in the Florida State Collection of Arthropods, Gainesville, Florida. The authors appreciate the constructive comments of John Heraty and Drs. John Sivinski, Fred Santana, and Clifford Lofgren. Marie Benoit kindly typed several early drafts.

REFERENCES CITED

