Potential of Three Trap Crops in Managing *Nezara viridula* (Hemiptera: Pentatomidae) on Tomatoes in Florida

T. L. Gordon,¹ M. Haseeb,¹,² L. H. B. Kanga,¹ and J. C. Legaspi²

¹Center for Biological Control, College of Agriculture and Food Sciences, Florida A&M University, 1740 S. Martin L. King, Jr. Boulevard, Tallahassee, FL 32307. ²United States Department of Agriculture-Agricultural Research Service (USDA-ARS), CMAVE, 6383 Mahan Drive, Tallahassee, FL 32308, and ³Corresponding author, e-mail: muhammad.haseeb@famu.edu

Subject Editor: Michael Furlong

Received 20 January 2017; Editorial decision 1 September 2017

Abstract

The southern green stink bug, *Nezara viridula* (L.) (Hemiptera: Pentatomidae), is a serious insect pest of tomatoes in Florida. In this study, we examined the use of three species of trap crops to manage *N. viridula* in North Florida tomato crops in 2014 and 2015. We used striped sunflower (*Helianthus annuus*) (Asteraceae) and wild game feed sorghum (*Sorghum bicolor*) (Poales: Poaceae) in both years, but different species of millet each year: browntop millet (*Panicum ramosum*) (Poales: Poaceae) in 2014 and pearl millet (*Pennisetum glaucum*) (Poales: Poaceae) in 2015. The number of stink bug adults collected from wild game feed sorghum exceeded the number from sunflower, and none were collected from either species of millet. Sorghum attracted a significantly higher number of adults than did striped sunflower; however, both sunflower and sorghum attracted the adults of *N. viridula*. Adults of the pest feed on the sorghum panicle and sunflower head (inflorescence). Although fewer stink bugs were found feeding on sunflower, the sunflower was found to be a good source of other natural enemies and pollinators and also attracted significantly greater numbers of the brown stink bug *Euschistus servus* (Say) (Hemiptera: Pentatomidae) (another pest of tomatoes). While this study demonstrated the effectiveness of sorghum, we recommend that sorghum be planted with another trap crop, preferably sunflower, for better preventive control of the southern green stink bug.

Key words: southern green stink bug, trap crop, tomato, pest management

The Southern Green Stink Bug, *Nezara viridula* (L.) (Hemiptera: Pentatomidae), is a highly polyphagous feeder that attacks many important commercial crops (Squillier 2013). Virtually, all vegetable crops are affected, including fresh market tomatoes in Florida (USDA: FASB, 2014). *N. viridula* reduces the quality and quantity of tomatoes, making them unmarketable and thus affecting grower’s profitability and productivity. Currently, limited options are available to vegetable growers in Florida to combat the southern green stink bug. In addition, reliance on conventional pesticides contributes to pest problems including pesticide resistance, pest resurgence, secondary pest outbreaks, and pesticide residues (NRDC 2013). There is a substantial amount of research on the use of trap crops in vegetable production. As defined by Shelton and Badenes-Perez (2006), trap crops are plants that are cultivated to attract, divert, intercept, and/or retain targeted insect pests (often vectoring pathogens) in order to reduce damage to the main crop.

In addition, successful crop production and protection of organically grown vegetables requires a higher level of preventive pest management for crop profitability and productivity because growing organic vegetables is extremely expensive and labor intensive. Push-pull strategies use a combination of behavior-modifying stimuli to manipulate the distribution and abundance of pest or beneficial insects in pest management with the goal of pest reduction on the protected host or resource (Radcliff et al. 2009). Pests are repelled or deterred away (push) from the resource by using stimuli that mask host appearance or are deterrent or repellent in nature. Pests are simultaneously attracted (pull), using highly apparent and attractive stimuli, such as trap crops, where they are concentrated, facilitating their elimination (Radcliff et al. 2009). The use of trap crops to pull pests from the main crop is also referred to as a ‘push-pull’ strategy (Kahn and Pickett 2008).

Trap crops benefit vegetable growers and increase crop quality by attracting beneficial insects, enhancing biodiversity and reducing use of synthetic insecticides (Pollock 2013). Farmer interest in trap cropping, a traditional tool of pest management, has increased considerably in recent years. The concept of trap cropping fits into the ecological framework of habitat manipulation of an agro-ecosystem for the purpose of pest management (Shelton and Badenes-Perez 2006). Overall, the benefits of trap cropping include reduced dependence on synthetic insecticides, low cost of trap crop seed,
conservation of natural enemies, and better crop and environmental quality (Majumdar 2014).

Insect pests are often one of the key constraints to crop production in organic and conventional cropping systems. Generally, pesticides are widely used to manage vegetable pests on commercial crops in Florida, but reliance on synthetic pesticides as the primary method of pest control is not a sustainable approach to pest management (Fisher et al. 1999). Repeated pesticide use leads to pesticide resistance, resurgence, secondary pest outbreaks, and pesticide residues (Fisher et al. 1999). *N. viridula* is a major pest of tomato and a secondary pest of cotton. In the United States, *N. viridula* and other stink bugs invaded transgenic (Bt) cotton (*Gossypium hirsutum*) due to reduced insecticide applications in South Carolina; subsequently, pentatomid damage to Bt cotton bolls ranged from 15 to 71% in 1995 (Greene and Turnipseed 1996). *N. viridula* is tolerant to many insecticides, and thus, it is very difficult to suppress its population.

The possible buildup of toxic residues in the environment by some pesticides and the development of pesticide resistance leads to an imbalance in agroecosystems (Lewis et al. 1997). The elimination of pesticide applications and the establishment of habitats that are favorable to beneficial fauna within the agroecosystem can boost the survival, reproduction, dispersal, and ultimately the regulation of pest populations by natural enemies (Landis et al. 2000, Flint and Gouveia 2001).

The main goal of this study is to provide critical knowledge-based solutions to stakeholders, organic farmers, and conventional farmers that will enable them to effectively protect and conserve plant and human resources. The continued use of conventional pesticides causes major hazards to human health and the environment. The purpose of this study was to evaluate the effectiveness of plant-mediated pest management strategies (use of trap crops) to manage *N. viridula* on tomato crop in Florida. In particular, this study focuses on the most effective plant species to be used as trap crops for the management of *N. viridula*.

Materials and Methods

The study was conducted at the Vegetable IPM Demonstration Site, located at the Center for Viticulture and Small Fruit Research (CVSFR), Florida Agricultural and Mechanical University, in Leon County, Florida (at approximately 30° 28’ 39” N, 84° 10’ 16” W). The size of the plot was 0.137 acre (0.055 ha). On the West of the study site were cultivated muscadine grapes cultivar: majesty, carlos, and several small fruit trees (peach [cultivar: gulfcrest], pear [cultivar: baldwin], apple, fig [cultivar: brown turkey], citrus [cultivar: satsuma], and others); on the East, persimmon (cultivar: fuyu) and oriental chestnuts (Chinese); on the North, citrus (cultivar: satsuma); and on the South, no fruit crop. The soil was primarily sandy loam, fairly well drained with a good infiltration rate, and a pH of 6.5. The study was carried out during the summers of May to July 2014 and 2015.

Trap crop plant species were selected based on previous studies (Tillman 2006, Frank et al. 2008, Mizell 2008, Majumdar 2014). All seeds were purchased from Gramlings (Tallahassee, FL), Johnny’s Seed (Fort Myers, FL), and Harris Seeds (Rochester, NY). Trap crops (three rows, each 60 ft in length), and tomatoes (six rows, each 60 ft in length) (Table 1) were planted. Trap crop seeds were sown directly in the field approximately 2 wk before the main crop in order to allow early start and good synchronization between plant species and arrival of insect pests. Proper fertilization and irrigation were provided to promote growth and development of plants. Drip irrigation was provided twice per day or as needed.

Experimental Design

The experimental trap crops were cultivated on the two outer rows and in the center row of the major crop (tomato) plot. In total, trap crops were cultivated in three throw rows (each 60 ft) with 20 ft of each traps crop (sorghum, millet, and sunflower). The control was a similar plot of six rows of tomatoes grown under the same agronomic practices in a plot about 70 ft (21 m) north of the experimental plot. The design of the experiment was a randomized complete block design with three treatments and three replicates. Each section of the rows of trap crops was 20 × 3 ft. (6 × 0.91 m) in size. Field layout of plots is provided in Fig. 1.

The three trap crops were compared to each other regarding their attractiveness to *N. viridula*. The 2014 experiment was conducted using the following three trap crops: Striped sunflower (*Helianthus annuus*), wild grain feed sorghum (*Sorghum bicolor*), and browntop millet (*Panicum ramosum*). Because browntop millet was ineffective in 2014, another variety of millet (pearl millet) was used for the 2015 season.

Sampling and Monitoring Procedure

Within the total research plot of 300 tomato plants, 30 plants were randomly chosen for each sampling date, representing 10% of the total plants. For each of the three treatment blocks of trap crops (sunflower, millet, and sorghum), five plants per block were randomly sampled on each sampling date. Samples were taken weekly in 2014 and 2015 during the cropping season. Sampling continued until all tomatoes were harvested. Adults of *N. viridula* on the main crop, trap crops, and control were collected and recorded. Temperature, rainfall, and relative humidity data were downloaded from a local weather channel on each sample date. Insects were sampled in the morning (09:00-11:00 a.m.) because most adult insects are less mobile under cooler temperatures. Stink bugs were sampled with sweep nets (three sweeps per treatment) using the sampling procedure of Todd and Herzog (1980) with some modifications. Insects collected via sweep net were recorded by sample number and then placed in plastic vials and resealable plastic bags (quart). Species which could not be immediately identified in the field were taken to

Table 1. Tomato crop and trap crops monitored from May to July 2014 and 2015

<table>
<thead>
<tr>
<th>Common name</th>
<th>Family</th>
<th>Scientific name</th>
<th>Collection method/tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomato var: Marglobe</td>
<td>Solanaceae</td>
<td>Solanum lycopersicum</td>
<td>Handpicked</td>
</tr>
<tr>
<td>Striped sunflower</td>
<td>Asteraceae</td>
<td>Helianthus annuus</td>
<td>Sweep Net/Aspirator</td>
</tr>
<tr>
<td>Browntop millet (2014)</td>
<td>Poaceae</td>
<td>Panicum ramosum</td>
<td>Sweep Net</td>
</tr>
<tr>
<td>Pearl millet (2015)</td>
<td>Poaceae</td>
<td>Pennisetum glaucum</td>
<td>Sweep Net</td>
</tr>
<tr>
<td>Wild game feed sorghum</td>
<td>Poaceae</td>
<td>Sorghum bicolor</td>
<td>Sweep Net</td>
</tr>
</tbody>
</table>

Sweep net with handle from Bioquip: 15” diameter collapsible net, 12” net handle extension; BioQuip Aspirator with 9-dram clear styrene tubes and snap-on caps.
the laboratory for identification. All insects collected from trap crops and tomatoes were identified and tabulated.

Statistical Analysis and Evaluation
All data were checked for normality and homoscedasticity and were log$_{10}$ (x + 1) transformed when necessary. Data on number of insect pests for each trap crop were analyzed to determine if treatment effects were statistically significant. Data were subjected to two-way analysis of variance (ANOVA) and treatment means were separated using Tukey’s HSD (honestly significant difference) test. Alpha level of 0.05 was used to determine statistical significance for all major variables. All analyses were done using SAS v 9.4 statistical software (SAS 2013).

Results
Major Insect Pests Present on Cultivated Crops
Six insect pests found in this study were identified to species and two were identified to genus (Table 2). Most common in samples were the southern green stink bug N. viridula, the brown stink bug Euschistus servus (Say) (Hemiptera: Pentatomidae), and a leaffooted bug Leptoglossus phyllopus (L.) (Hemiptera: Coreidae).

Preventative Control Strategies for N. viridula
Over the two seasons of study, the highest number of N. viridula was recorded on sorghum (362 adults) as compared to sunflower (26 adults) and millet (0 adults) (Fig. 2). In this study, significantly more adults of N. viridula were recorded in sorghum (93%) than in sunflower (7%).

For the other hemipterans, sorghum attracted a total of 45 and sunflower a total of 206 E. servus adults, indicating a significant preference of this species for sunflower ($F = 5.38$; df = 1, 31; $P = 0.02$). Sorghum and sunflower attracted 86 ($F = 0.85$; df = 1, 21; $P = 0.3664$) and 76 L. phyllopus adults, respectively, indicating no significant difference in trap crop preferences for this coreid bug.

The adults of N. viridula were first recorded feeding on sunflower in June and on sorghum in May. The insect like to feed and mate on sunflower inflorescence and sorghum panicle. Sorghum heads reached maturity during weeks 8 and 9 and cumulative insect pests caught at maximum level on this trap crop were 87 in week 9 (Fig. 3), the highest peak. Two population peaks of N. viridula occurred in sorghum. Attraction of N. viridula to sorghum increased to 84 stinkbugs by week 9 and dropped to 8 by week 11.

Highest population of N. viridula in control plots were in July (130 adults) followed by June (75 adults) and May (11 adults). These results indicate that the trap crop(s) were successful in trapping N. viridula in tomato crop in north Florida.

Discussion
All three hemipteran species, N. viridula, E. servus, and L. phyllopus feed on both sunflower inflorescence and sorghum head. The time of inflorescence/heading formation started attracting N. viridula. Their increase in numbers seemed to be a result of availability of mature sorghum panicles. At week 11, the number of N. viridula adults dropped which may be due to heavy rain; however, the number increased to 70 by week 13. Sunflower inflorescence attracted the first N. viridula in week 6, when five N. viridula adults were captured. Thereafter, the number of N. viridula increased slightly for week 8 with a total of nine adults of N. viridula captured (Fig. 4). N. viridula numbers continued to rise and then decreased on week 11 to 1 and then zero by week 12. Our data suggest that the crop and time were important factors in determining N. viridula abundance. The slight differences in colonization timing we observed between sunflower and sorghum suggested that they could be used synergistically to provide at least a 7-wk period of attractiveness to N. viridula. Together, the attractive period of sunflower and sorghum coincides with peak activity of N. viridula, from mid-June to July. Ehler (2000) reported that endemic stink bugs track plant phenology and this was further validated by Mizell et al. (2008) for potential trap crop species in Florida. In addition to these plants, several other

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Replicates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trap Crops</td>
<td>TC<sub>1</sub>, TC<sub>2</sub>, TC<sub>3</sub></td>
</tr>
<tr>
<td>Main crop</td>
<td>TC<sub>2</sub>, TC<sub>3</sub></td>
</tr>
<tr>
<td>Trap Crops</td>
<td>TC<sub>1</sub>, TC<sub>2</sub></td>
</tr>
<tr>
<td>Main crop</td>
<td>TC<sub>1</sub>, TC<sub>2</sub></td>
</tr>
<tr>
<td>Trap Crops</td>
<td>TC<sub>2</sub>, TC<sub>3</sub></td>
</tr>
</tbody>
</table>

Fig. 1. Field layout. TC₁: browntop millet; TC₂: sunflower; and TC₃: sorghum.

Table 2. List of insect pests collected from cultivated crop (tomato) and trap crops during summer of 2014 and 2015

<table>
<thead>
<tr>
<th>Orders/status</th>
<th>Species/status</th>
<th>Tomato, Solanum lycopersicum</th>
<th>Sunflower, Helianthus annuus</th>
<th>Millet, Panicum ramosum</th>
<th>Sorghum, Sorghum bicolor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera</td>
<td>N. viridula</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Hemiptera</td>
<td>E. servus</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Hemiptera</td>
<td>L. phyllopus</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
</tbody>
</table>

* Species present; – species absent.
insect pests and natural enemies were found during this study. The plant that produced bloom (sunflower) served as host to other herbivores [tarnished plant bugs, *Lygus lineolaris* (Palisot de Beauvois) (Hemiptera: Miridae) and glassy winged sharpshooter, *Homalodisca vitripennis* (Germar) (Hemiptera: Cicadellidae)] and their natural enemies including generalist predators, big-eye bugs, *Geocoris* spp. (Hemiptera: Geocoridae); minute pirate bug, *Orius insidiosus* Say (Hemiptera: Anthocoridae); spined soldier bug, *Podisus maculiventris* Say (Hemiptera: Pentatomidae); and multicolored Asian ladybird beetle, *Harmonia axyridis* (Pallas) (Coleoptera: Coccinellidae).

None of the three major insect pests were found on the both varieties of millet tested. More *E. servus* were found on sunflower, *N. viridula* was more abundant on sorghum, and *L. phyllolus* was equally present on both, but none of these were found on either variety of millet. Tillman (2014) reported that taller trap crops appeared to be a barrier to *E. servus, C. hilaris, and N. viridula* in cotton. The striped sunflower variety can grow as tall as 2.4–3.6 m, while sorghum only grows to 1 m, and millet is shorter (0.6 m).

The use of trap crops for managing any insect pests depends on strong host preference by the pest for the trap crop over the cash crop (Hokkanen 1991). In 2014 and 2015, the study confirmed that *N. viridula* adults strongly preferred sorghum to tomato because populations of *N. viridula* were higher in sorghum compared with sunflower and millet. Millet did not attract any major stink bug species; therefore, it is not recommended for the management of *N. viridula*. According to Hokkanen (1991), an ideal trap crop should be able to arrest the pests reducing the likelihood of them dispersing into the main crop. Sunflower attracted *N. viridula*, pollinators, and other beneficial species. The extrafloral nectaries provide ready-made food to most of adult insects. Polyphagy is an apparent manifestation of the stringent requirements the stink bugs have for their food quality (Patel et al. 2006). Food quality is important in trap crops, because it is necessary to provide a continuous source of high-quality food embedded in the trap crops to prevent the buildup of *N. viridula* in the cash crop, which at some point will be very favorable for stink bugs feeding. Thus, the reason why trap crops require multiple plant species to maintain competitive food source to outcompete and lessen the incidence of stink bugs on cash crop (Mizell et al. 2008). When the trap crops were planted as perimeter and interplanted with tomato, the total number of stink bugs and leaf-footed bugs remained much higher in the trap crops than in the tomato crop. These results showed the potential of using selected trap crops for tomatoes preventive pest management strategy against *N. viridula*. Sorghum was very effective in capturing *N. viridula* adults reducing their numbers in tomato crop. Therefore, this crop has a great potential to be used for the IPM for *N. viridula* on tomatoes.

In both the 2014 and 2015 study periods, *N. viridula* adults strongly preferred sorghum to tomatoes because density of *N. viridula* adults was higher in sorghum when compared to tomatoes (control) for almost every sampling date. Compared with the control tomato fields, the density of *N. viridula* adults was much lower in tomato fields with sorghum trap crops demonstrating that the sorghum was serving as a suitable trap crop for *N. viridula*. Sorghum was a suitable trap crop for *N. viridula* confirming results from other studies with cotton where sorghum reduced the need for insecticide applications against *N. viridula* (Rea et al. 2002, Tillman and Mullinix 2003). This
suggested the possibility of using sorghum as a trap crop for tomatoes. Mizell et al. (2008) recommended a variety of different flower and crop species (triticale, sorghum, millet, buckwheat, and sunflower) throughout the season to control native stink bug populations in the southern coastal plain. In an earlier study in north Florida, Mizell et al. (2008) identified sorghum and sunflower as potential trap crops for use against E. servus, N. viridula, and C. bilis. In this present research, no Chinavia was found; otherwise, results agreed with Mizell et al. (2008), who showed sunflower as the better trap crop for E. servus.

Our results are in agreement with those of Mizell et al. (2008).

Trap cropping may be an effective management tool for several stink bug species in an organic agroecosystem. Both sunflower and sorghum serve as host plants for N. viridula. Therefore, this crop has a great potential to be used in integrated pest management for N. viridula on tomato crops in conventional and organic cropping systems in Florida.

Although this study demonstrated the attractiveness of sorghum to N. viridula, we recommend that sorghum could be planted with another trap crop, preferably sunflower, for the management of N. viridula. Trap cropping along with other methods, such as habitat management for natural enemies and possibility of using biobased selective chemicals, could provide better pest management option against N. viridula in tomato cropping system. This will certainly increase the tomato grower’s productivity and profitability in Florida. Trap cropping is a useful integrated pest management tool that has a great potential to control insect pests in tomato cropping system. This strategy is even more useful for organic tomato pest management. The current study demonstrated that sorghum and sunflower as potential trap crop to manage N. viridula. Trapping may eliminate the need for pesticides in tomatoes, thereby reducing the cost of pest management, selective pressure for pest resistance development, and impact on beneficial species. Additional studies are needed to further evaluate trap crops in combination with other pest tactics to manage high population densities of N. viridula in tomato production systems.

Acknowledgments

Thanks to Neil Miller (USDA-ARS) and Gohar Umar for technical support and Gilbert Queley for assistance with statistical analyses. José Jimenez assisted in sowing seeds and maintaining vegetable plots. Janice Peters provided a helpful review. This research was funded by the United States Department of Agriculture, National Institute for Food and Agriculture (NIFA), Extension IPM Coordination and Support Program and the USDA, NIFA 1890 Capacity Building Grants Program.

References Cited

