Organic Compounds in the Environment

Two-Dimensional Model Simulation of 1,3-Dichloropropene Volatilization and Transport in a Field Soil

D. Wang,* J. A. Knuteson, and S. R. Yates

ABSTRACT

A modeling study was conducted to simulate 1,3-dichloropropene (1,3-D) emission and concentration distribution in soil profiles when the chemical was applied with subsurface drip irrigation with reduced rate. The purpose was to evaluate the effect on emission reduction as compared with conventional shank injection application. To compare with field measurements, simulated scenarios included a shallow drip application at 2.5 cm, covered with a polyethylene film; a deep drip application at 20.3 cm with bare soil surface; and a conventional shank injection at 30.5 cm with a regular application rate. A convective and diffusive two-dimensional model was used to simulate the simultaneous transport of 1,3-D in both liquid and gaseous phases. Diurnal variations of soil temperature were predicted to calculate 1,3-D diffusion coefficient and the Henry’s constant. Predicted 1,3-D emissions compared well with field measurements for the shallow and deep drip irrigation treatments. The model simulation underpredicted 1,3-D emission in the shank injection plot, where other transport mechanisms such as gas phase convection likely occurred during and immediately after application. Results from the modeling study indicate that computer simulation can be used effectively to study the environmental fate and transport of 1,3-D under conditions where vapor phase diffusion and liquid phase convection are the dominant transport mechanisms. Applying 1,3-D with subsurface drip irrigation appeared to be useful for emission reduction.

A ccurate characterization of fate and transport of volatile organic chemicals such as 1,3-D is important to determine environmental air pollution from anthropogenic contaminant sources (Singh et al., 1992). Adverse environmental effects occur when the volatile compounds reach the atmosphere by volatilization from the soil surface (Spencer and Cliath, 1973). The dynamics of chemical volatilization are strongly controlled by the subsurface transport and ambient environmental conditions, which may be described with process-based transport models (Jury et al., 1983). Because a volatile chemical will have a significant portion in the vapor phase, its fate and transport in a porous media would simultaneously occur in both the gaseous and liquid phases (Amali et al., 1996). Adsorption and desorption with the solid phase or soil particles would make the transport process more transient (Petersen et al., 1996). Temperature also affects the transport parameters, especially for the vapor phase diffusion and vapor-to-liquid phase partition coefficients for methyl bromide (MeBr) (Wang et al., 1997a, 1998a).

It has been shown that 1,3-D is a very effective fumigant that controls many soil-borne pests and plant pathogens (Noling and Becker, 1994) and is being considered as a potential alternative to MeBr. However, current agricultural use of 1,3-D in California and other regions of the USA is restricted to very low rates and under restricted conditions because of observed large gas emission losses. Chen et al. (1995) reported that about 25 to 50% of the applied 1,3-D could be lost to the atmosphere by volatilization when applied with conventional shank injection. To reduce 1,3-D volatilization loss, an alternative management method is to apply 1,3-D with subsurface drip irrigation at a reduced rate (a fraction of the shank injection). Subsurface drip irrigation has an advantage over the shank injection since the drip tapes may be installed prior to 1,3-D application and the compound is pre-mixed or diluted in water to concentrations less than the solubility. In the shank injection, however, significant amounts of 1,3-D may be lost because of direct evaporation of 1,3-D liquid through the shank fractures during or immediately after application, such as in MeBr (Yates et al., 1997).

This modeling study was designed to simulate 1,3-D fate and transport in soil and volatilization into the atmosphere when the chemical was applied with either shank injection or drip irrigation at two different depths. The overall objective was to reduce 1,3-D emission losses with subsurface drip irrigation, which was achieved by comparing different application scenarios. Model predictions also were compared with field measurements using independently obtained input parameters.

MATERIALS AND METHODS

Model Description

A generic two-dimensional finite element code CHAIN_2D (Simunek and van Genuchten, 1994) was used for simulating 1,3-D fate and transport in the soil and volatilization into the atmosphere. The governing equation for describing 1,3-D transport in both gaseous and liquid phases can be written as:

\[
\frac{\partial C_L}{\partial t} + \frac{\partial p C_L}{\partial t} + \frac{\partial a_t C_L}{\partial t} = \Theta D_L \frac{\partial \left[\frac{\partial C_L}{\partial x} \right]}{\partial x} - \frac{\partial q C_L}{\partial z} - \mu_t \Theta C_L - \mu p C_L
\]

where \(C_L, C_g, \) and \(C_s \) are 1,3-D concentrations in the soil in liquid (M L^{-3}), solid (M M^{-1}), and gaseous (M L^{-3}) phases.

Abbreviations: 1,3-D, 1,3-dichloropropene; MeBr, methyl bromide; PE, polyethylene.

D. Wang and S.R. Yates, U.S. Salinity Laboratory, 450 West Big Springs Road, Riverside, CA 92507-4617; and J.A. Knuteson, Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268-1053. Received 29 March 1999. *Corresponding author (dwang@usslars.usda.gov).

A field experiment was conducted, with direct measurement of 1,3-D gas emission and concentration distribution. Soil-air samplers were installed at several depths to 1 m below the soil surface to measure 1,3-D emission flux density. Activated charcoal tubes were used to absorb 1,3-D from the air stream. The field treatments were: (i) shallow drip application at 2.5 cm with bare soil surface; (ii) deep drip application at 20.3 cm with bare soil surface; and (iii) shank injection at 30.5 cm with bare soil surface. The soil was an Arlington fine sandy loam (coarse-loamy, mixed, thermic Haplic Durixeralf).

Application of 1,3-D with the irrigation system at 11.2 g m\(^{-2}\) (112 kg ha\(^{-1}\)). In the shank injection treatment, 1,3-D application lasted only about 5 min to inject 4.7 g m\(^{-2}\) (47 kg ha\(^{-1}\)). Water flow was continued for an additional 1.5 h after 1,3-D injection to flush out residual 1,3-D.

To simulate 1,3-D emission, the model used a volatilization equation, determined the rate of 1,3-D convective transport and determined the rate of 1,3-D adsorption. The initial 1,3-D concentration in the soil profile is considered to be constant. Because 1,3-D was injected 30.5 cm below bed center with a vegetative barrier, the rate constant.

The liquid flux density (q), calculated with the Richards' equation, determines the rate of 1,3-D convective transport. Soil-air samplers were placed over the top, side, and furrow of the field beds of each application treatment to measure 1,3-D gas concentration distribution. To compare with the field experiment, 1,3-D was applied at 2.5- and 20.3-cm depths and called shallow and deep drip, respectively.

The model assumes nonequilibrium partition between the three phases. Degradation of 1,3-D was considered in the solution and adsorbed phases, but not in the air, using a first order decay having the same rate constant.

The liquid flux density (q), calculated with the Richards' equation, determines the rate of 1,3-D convective transport. Soil-air samplers were placed over the top, side, and furrow of the field beds of each application treatment to measure 1,3-D gas concentration distribution. To compare with the field experiment, 1,3-D was applied at 2.5- and 20.3-cm depths and called shallow and deep drip, respectively.

1,3-D was added in the liquid or solution phase. The model assumes nonequilibrium partition between the three phases. Degradation of 1,3-D was considered in the solution and adsorbed phases, but not in the air, using a first order decay having the same rate constant.

The liquid flux density (q), calculated with the Richards' equation, determines the rate of 1,3-D convective transport. Soil-air samplers were placed over the top, side, and furrow of the field beds of each application treatment to measure 1,3-D gas concentration distribution. To compare with the field experiment, 1,3-D was applied at 2.5- and 20.3-cm depths and called shallow and deep drip, respectively.

The model assumes nonequilibrium partition between the three phases. Degradation of 1,3-D was considered in the solution and adsorbed phases, but not in the air, using a first order decay having the same rate constant.

The liquid flux density (q), calculated with the Richards' equation, determines the rate of 1,3-D convective transport. Soil-air samplers were placed over the top, side, and furrow of the field beds of each application treatment to measure 1,3-D gas concentration distribution. To compare with the field experiment, 1,3-D was applied at 2.5- and 20.3-cm depths and called shallow and deep drip, respectively.

The model assumes nonequilibrium partition between the three phases. Degradation of 1,3-D was considered in the solution and adsorbed phases, but not in the air, using a first order decay having the same rate constant.

The liquid flux density (q), calculated with the Richards' equation, determines the rate of 1,3-D convective transport. Soil-air samplers were placed over the top, side, and furrow of the field beds of each application treatment to measure 1,3-D gas concentration distribution. To compare with the field experiment, 1,3-D was applied at 2.5- and 20.3-cm depths and called shallow and deep drip, respectively.

The model assumes nonequilibrium partition between the three phases. Degradation of 1,3-D was considered in the solution and adsorbed phases, but not in the air, using a first order decay having the same rate constant.

The liquid flux density (q), calculated with the Richards' equation, determines the rate of 1,3-D convective transport. Soil-air samplers were placed over the top, side, and furrow of the field beds of each application treatment to measure 1,3-D gas concentration distribution. To compare with the field experiment, 1,3-D was applied at 2.5- and 20.3-cm depths and called shallow and deep drip, respectively.

The model assumes nonequilibrium partition between the three phases. Degradation of 1,3-D was considered in the solution and adsorbed phases, but not in the air, using a first order decay having the same rate constant.

The liquid flux density (q), calculated with the Richards' equation, determines the rate of 1,3-D convective transport. Soil-air samplers were placed over the top, side, and furrow of the field beds of each application treatment to measure 1,3-D gas concentration distribution. To compare with the field experiment, 1,3-D was applied at 2.5- and 20.3-cm depths and called shallow and deep drip, respectively.

The model assumes nonequilibrium partition between the three phases. Degradation of 1,3-D was considered in the solution and adsorbed phases, but not in the air, using a first order decay having the same rate constant.

The liquid flux density (q), calculated with the Richards' equation, determines the rate of 1,3-D convective transport. Soil-air samplers were placed over the top, side, and furrow of the field beds of each application treatment to measure 1,3-D gas concentration distribution. To compare with the field experiment, 1,3-D was applied at 2.5- and 20.3-cm depths and called shallow and deep drip, respectively.
Table 1. Partition of 1,3-D between percent emitted, degraded, and remaining in the soil at selected times after application with days

<table>
<thead>
<tr>
<th>Elapsed time</th>
<th>Emission</th>
<th>Emission</th>
<th>Degradation</th>
<th>Balance</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.78</td>
<td>34.4</td>
<td>13.5</td>
<td>8.9</td>
<td>56.3</td>
</tr>
<tr>
<td>0.4</td>
<td>0.64</td>
<td>5.3</td>
<td>0.2</td>
<td>8.8</td>
<td>85.3</td>
</tr>
<tr>
<td>0.6</td>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.9</td>
<td>0.79</td>
<td>9.4</td>
<td>3.7</td>
<td>11.1</td>
<td>78.9</td>
</tr>
<tr>
<td>1.2</td>
<td>3.32</td>
<td>40.8</td>
<td>52.1</td>
<td>34.0</td>
<td>29.4</td>
</tr>
<tr>
<td>1.5</td>
<td>2.31</td>
<td>34.0</td>
<td>43.4</td>
<td>27.3</td>
<td>41.1</td>
</tr>
<tr>
<td>1.8</td>
<td>3.32</td>
<td>62.3</td>
<td>62.6</td>
<td>23.5</td>
<td>17.8</td>
</tr>
<tr>
<td>2.1</td>
<td>2.31</td>
<td>58.2</td>
<td>54.4</td>
<td>19.3</td>
<td>24.9</td>
</tr>
<tr>
<td>2.4</td>
<td>29.8</td>
<td>68.7</td>
<td>66.3</td>
<td>36.9</td>
<td><0.1</td>
</tr>
<tr>
<td>2.7</td>
<td>9.78</td>
<td>68.1</td>
<td>66.0</td>
<td>33.9</td>
<td>3.5</td>
</tr>
<tr>
<td>3.0</td>
<td>1.40</td>
<td>49.7</td>
<td>30.3</td>
<td>14.1</td>
<td>36.3</td>
</tr>
<tr>
<td>3.3</td>
<td>1.79</td>
<td>28.3</td>
<td>35.0</td>
<td>23.0</td>
<td>49.7</td>
</tr>
</tbody>
</table>

Deeper drip irrigation at 20.3 cm depth, bare soil.
Shallow drip irrigation at 2.5 cm depth with surface covered with polyethylene film.

WANG ET AL. (1997a) evaluated the gaseous phase diffusion coefficient, D_g, for the deep drip and shank injection treatments. The boundary condition was used for the bottom boundary.

The temperature dependent model parameters were obtained from measurements reported in Wang et al. (1999). To account for temperature effect on 1,3-D transpiration dynamics, the modified Henry's constant is used in model simulation to calculate apparent soil or air temperature (E_{T}).

Therefore, the model closely simulated 1,3-D volatilization when the chemical was applied with drip irrigation at 2.5 cm and the surface covered with a PE film. Over $1,3$-D was lost via atmospheric emission, while the measurements indicated that 66.3% was lost (Table 1).
Fig. 2. Volatilization flux density of 1,3-dichloropropene from field beds of the deep drip irrigation plot with bare soil surface. Symbols are measured values and lines are simulated fluxes.

At selected times after application, about 37% had been lost to soil degradation. The simulation is reasonable because the numerical mass balance error was less than 6%.

Deep Drip Irrigation

When 1,3-D was applied to 20.3 cm depth with the drip irrigation, the maximum emission flux density occurred from the furrow location and reached a maximum value of 67 pg m$^{-2}$ s$^{-1}$ (Fig. 2). The model prediction of the maximum flux was 58 pg m$^{-2}$ s$^{-1}$ for the same field location. Emission from the bed top reached a maximum of 39 pg m$^{-2}$ s$^{-1}$ at about 10 h after the deep drip application. It appears that 1,3-D reached the bed furrows before reaching the bed top after application with the drip irrigation water. This is possible because the transport to the bed top was against gravity and the coupled convective flow with the irrigation water had to overcome the gravity force. For the lateral movement to the furrows, both convective flow by water potential gradient and gas diffusion would drive the chemical to the soil surface in the bed furrows. In addition to losses from both the top and furrows of the field beds, significant emission loss also occurred from the sides of the field beds, where the maximum flux was 9.6 pg m$^{-2}$ s$^{-1}$ and persisted for about 8 h. The model simulation closely predicted emission from all three bed locations. Compared with the shallow drip plot, neither the model prediction nor the field measurements showed any diurnal variation in the emission flux density. This is caused by the absence of plastic film since the temperature effect on the permeability of the PE film was not a factor in the deep drip application. The model simulation predicted a total of 51.6% emission loss, while the field measurements showed that 56.8% was lost via atmospheric emission (Table 1). This is a significant reduction (10 to 17%) from the shallow drip application. According to the predictions, the total 1,3-D mass lost by volatilization was 3.2 and 2.4 g m$^{-2}$ for the shallow and deep drip, respectively. However, the small dosage was sufficient in controlling soil nematodes (Wang and Yates, 1999). A maximum of about 7% numerical mass balance error was produced during the simulation and the model predicted that 55.6% of the 1,3-D would have been lost to soil degradation.

Shank Injection

Extremely high flux density (about 1150 pg m$^{-2}$ s$^{-1}$) was observed from the furrow locations when 1,3-D was applied with slanted shanks at 30.5 cm depth (Fig. 3). If the soil is uniform, the predicted maximum flux was only 38 pg m$^{-2}$ s$^{-1}$ and should occur on the top of the field beds. The model simulation predicted a total of about 40% (or 4.5 g m$^{-2}$) of the shank-injected 1,3-D being lost to atmospheric emission (Table 2). However, the field measurements indicated that over 90% (or >10 g m$^{-2}$) was lost by emission. In either case, more 1,3-D was lost than in the subsurface drip irrigation treatments. The most probable cause for the underprediction was that the slanted shanks created a fracture during the injection and a significant amount of 1,3-D was lost through the preferential pathways during and right after the shank injection. To simulate such a nonuniform soil condition, a narrow zone of low density soil along the shank trace was used in a modified two-dimensional simulation domain. This zone of unconsolidated soil was used to simulate the shank fractures to determine the effect of preferential diffusion flow on 1,3-D emission losses. Holding all other parameters the same, the predicted maximum flux did occur in the furrow location and reached a maximum value of about 920 pg m$^{-2}$.
Table 2. Partition of 1,3-D between percent emitted, degraded, and remaining in the soil at selected times after shank injection at 30.5 cm depth.

<table>
<thead>
<tr>
<th>Elapsed time</th>
<th>Simulated</th>
<th>Measured</th>
<th>Simulated</th>
<th>Remaining in soil</th>
<th>Numerical</th>
<th>mass balance</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>emission</td>
<td>emission</td>
<td>degradation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.20</td>
<td>8.2</td>
<td>35.5</td>
<td>19.6</td>
<td>71.9</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>18.1</td>
<td>73.3</td>
<td>30.4</td>
<td>53.3</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.63</td>
<td>27.8</td>
<td>89.8</td>
<td>35.4</td>
<td>34.4</td>
<td>2.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.63</td>
<td>31.5</td>
<td>93.0</td>
<td>48.2</td>
<td>26.2</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.63</td>
<td>33.9</td>
<td>95.2</td>
<td>52.6</td>
<td>20.3</td>
<td>6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.78</td>
<td>37.9</td>
<td>98.4</td>
<td>62.5</td>
<td>7.6</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.03</td>
<td>39.5</td>
<td>98.9</td>
<td>69.1</td>
<td><0.1</td>
<td>8.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulation with Uniform Soil:
- 0.00: 0.0
- 1.20: 12.1
- 2.12: 23.7
- 3.63: 34.0
- 4.63: 37.9
- 5.63: 40.7
- 9.78: 46.4
- 30.03: 49.4

Simulation with Nonuniform Soil:
- 0.00: 0.0
- 1.20: 12.1
- 2.12: 23.7
- 3.63: 34.0
- 4.63: 37.9
- 5.63: 40.7
- 9.78: 46.4
- 30.03: 49.4

Nonuniform soil consisted of a shank trace with reduced soil bulk density.

Concentration in Soil
Consistent with the emission predictions, predicted 1,3-D gas concentrations in the soil profile compared reasonably well with the direct soil air measurements in the shallow drip plot (Fig. 4). At 0.63 and 0.78 d after 1,3-D application, the model slightly underpredicted the gas concentration due to the overprediction in the emission fluxes. The predicted maximum gas concentration, however, was very similar to the measurements, reaching about 8.4 and 5.2 μg cm⁻³ for 0.63 and 0.78 d, respectively. At longer times, the predicted concentrations became closer to the field measurements. In the deep drip treatment, the predicted 1,3-D concentrations matched well with the measured values (Fig. 5). At 0.64 and 0.79 d after application, the predicted peak concentrations appeared to be closer to the soil surface or subjected to less downward movement than the measured values. At longer times after application, the model slightly overpredicted 1,3-D concentrations in the soil profile. This is consistent with the flux predictions since a small underprediction was found in the total cumulative emission for the deep drip treatment (Table 1). Significant overprediction was found for 1,3-D gas concentrations in the soil profile when the chemical was applied with the shank injection method (Fig. 6). Although the center mass remained at about 30 to 40...
Fig. 6. Concentrations of 1,3-dichloropropene in soil air directly below the bed center of the shank injection plot. Symbols are direct field measurements and lines are simulated concentrations in the soil profile.

The predicted absolute concentration values were about twice the actual field measurements. This would verify that the measured total emission losses should be twice the predicted total emission (Table 2). The results suggest that other transport mechanisms such as vapor phase convection may be needed in predicting 1,3-D volatilization during shank injection.

CONCLUSIONS

Fate and transport of 1,3-D in soil fumigation was simulated with a two-dimensional multiphase solute transport model. Less 1,3-D mass loss was found for application with drip irrigation than shank injection. Compared with the field measurements, model simulation predicted well the emission flux density and soil gas concentrations when 1,3-D was applied with drip irrigation. The model underpredicted emission when the chemical was applied with shank injection. It appears that computer modeling can be used effectively to study the environmental fate and transport of 1,3-D under conditions where gas diffusion and liquid phase convection are dominant.