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Abstract Crop growth and yield can be efficiently monitored using canopy reflectance.

However, the spatial resolution of freely available remote sensing data is too coarse to fully

understand the spatial dynamics of crop status. The objective of this study was to down-

scale Landsat 7 (L7) reflectance from the native resolution of 30 9 30 m to that typical of

yield maps (ca. 5 9 5 m) over two fields in northeastern Colorado, USA. The fields were

cultivated with winter wheat (Triticum aestivum L.) in the 2002–2003 growing season.

Geospatial yield measurements were available (1 per ca. 20 m2). Geophysical (apparent

soil electrical conductivity and bare-soil imagery) and terrain (micro-elevation) data were

acquired (resolution \5 9 5 m) to characterize soil spatial variability. Geographically-

weighted regressions were established to study the relationships between L7 reflectance

and the geophysical and terrain data at the 30 9 30 m scale. Geophysical and terrain

sensors could describe a large portion of the L7 reflectance spatial variability

(0.83\R2\ 0.94). Maps for regression parameters and intercept were obtained at

30 9 30 m and used to estimate the L7 reflectance at 5 9 5 m resolution. To indepen-

dently assess the quality of the downscaling procedure, yield maps were used. In both

fields, the 5 9 5 m estimated reflectance showed stronger correlations (average increase in

explained variance = 3.2 %) with yield than at the 30 9 30 m resolution. Land resource

managers, producers, agriculture consultants, extension specialists and Natural Resource

Conservation Service field staff would be the beneficiaries of downscaled L7 reflectance

data.
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Abbreviations
L7 Landsat 7

ECa Apparent electrical conductivity

BS Bare-soil

GWR Geographically-weighted regression

Introduction

The delineation of crop input prescription maps in precision agriculture (e.g., maps of site-

specific management units for fertilizer, irrigation water, soil amendments, etc.) relies on a

careful study of the spatial variability of soil–plant relationships. Yield maps provide

pivotal information to implement precision agriculture techniques. However, they are often

characterized by noise in the data due to yield monitor and combine grain flow dynamics

and only provide a single ‘‘snapshot’’ in time (i.e., at the time of harvest) (Blackmore 1999;

Corwin et al. 2003; Ping and Dobermann 2005). To better understand soil–plant rela-

tionships through the growing season, crop canopy reflectance can be used (Mulla 2013).

Remote sensing canopy reflectance is used to predict production (Shanahan et al. 2001) and

estimate crop stress status through the season (Blackmer et al. 1995; Vina et al. 2004). One

clear benefit of the use of remote sensing over yield maps is the possibility of studying

spatio-temporal changes in crop development through the growing season. This dynamic

information can substantially help in understanding soil–plant relationships and soil-related

stress types, such as drought (Scudiero et al. et al. 2014b).

The new generation of satellites, such as Spot 5 and Spot 6 (Airbus Defence & Space,

Toulouse, France) and Quickbird and WorldView 2 and 3 (DigitalGlobe, Longmont,

Colorado, USA), provide multi-spectral data in the visible to infrared spectra that can be

extremely useful in precision agriculture because of their high spatial resolution (in the

4–100 m2 range) and low repeat interval (e.g., 1.1 days for WorldView-2) (Mulla 2013).

However, because of the greater expense associated with acquiring high resolution satellite

imagery, extensive use of these data sources in precision agriculture at the farm-scale (e.g.,

102–103 ha) has been limited. Instead, lower resolution satellite data is often used. A

popular source of free satellite sensor data provided at a moderately high resolution is the

Landsat 7 (L7) from the National Aeronautics and Space Administration and Geological

Survey (USGS) USA agencies. The L7 provides reflectance imagery with a 30 9 30 m

resolution over six spectral bands (see materials and methods). The L7 flies over the same

area every 16 days, potentially providing significant information for spatio-temporal

studies of crop health (Scudiero et al. 2014b). Unfortunately, as suggested by Scudiero

et al. (2014a), the 30 9 30 m resolution is generally too coarse to fully capture crop and

soil spatial variability, a clear downside for the use of L7 data in precision agriculture

practices.

Soil spatial variability is often described using soil proxy data (e.g., geophysical sensors

and/or terrain maps), which can characterize large areas while requiring calibration with

only a small number of soil samples (Adamchuk et al. 2004; Corwin and Lesch 2010;

Priori et al. 2013a). Unfortunately, a single sensor might not always be sufficient to
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describe the spatial distribution of all the soil properties influencing yield (Scudiero et al.

2013). Sensor measurements are, in fact, generally dominated by one or two soil properties

(Corwin and Lesch 2014). In order to obtain additional information on soil spatial vari-

ability, multi-sensory platforms are used (Martini et al. 2013, Priori et al. 2013b; Schepers

et al. 2004).

The most common type of spatial geophysical measurement used to characterize soil

spatial variability is soil apparent electrical conductivity (ECa) (Corwin and Lesch 2010).

Depending on the geographical region, ECa can be a proxy for a number of soil properties

(Corwin and Lesch 2010), as soil electrical conductivity is influenced by many factors

including soil salinity, texture, water content, bulk density and organic matter content. In

addition to ECa, bare-soil imagery/reflectance is commonly used as a proxy to map soil

properties including water content, texture, carbon content, iron oxides, organic matter and

high levels of soil salinity (Chang et al. 2001; Ellis and Mellor 2002; Viscarra Rossel et al.

2006). In addition to geophysical measurements, which are physically determined by soil

properties, terrain information, such as micro-elevation, could be used to describe spatial

variability (Iqbal et al. 2005; Kravchenko et al. 2002; Schmidt and Persson 2003) of soil

properties (locally) as influenced by the geomorphological characteristics of the area of

interest. Terrain features such as micro-elevation, slope and aspect maps have been used

successfully to describe spatial variability in soil moisture and changes in soil texture and

organic carbon caused by erosion processes (Iqbal et al. 2005; Kravchenko and Robertson

2007; Schmidt and Persson 2003).

The goal of this study was to provide land resource managers, producers, agricultural

advisors and extension specialists with an inexpensive option for the use of high resolution

canopy reflectance. In particular, a downscaling procedure that allows sharpening the L7

data from a spatial resolution of 30 9 30 m to that typical of yield maps (e.g., 5 9 5 m, or

higher) is proposed. The downscaling methodology is based on the notions that: (i) remote

sensing crop reflectance indicates crop health, unless the noise from other factors influ-

encing both yield and surface reflectance (e.g., weeds, see Braga et al. 2012) is too large

(Lobell et al. 2003), and (ii) crop growth is greatly influenced by edaphic properties

(Corwin et al. 2003; Savabi et al. 2013).

Materials and methods

Once soil properties are spatially characterized and their relationship with plant health is

known, one can easily and accurately describe the spatial variability of crop yield/health.

Very-high resolution maps of soil proxies will be used to characterize the spatial variations

in L7 canopy reflectance and, consequently, downscale it. The presented methodology

follows a multi-step approach for selecting the ideal multi (soil-) sensor platform:

• Acquire intense geospatial survey with available soil sensors. Sensor data acquisition

should be carried out according to shared protocols (e.g., Corwin and Lesch 2005) in

order to increase the accuracy and consistency of the survey across large areas;

• Carry out root-zone soil physical and chemical analysis over limited locations in the

study area. Sampling site number can be minimized using statistical modeling (Lesch

2005a; Van Groenigen and Stein 1998) according to the spatial variability of soil

properties (e.g., represented by soil sensors);

• Measure yield across each location and analyze soil–plant (yield/health) relationships

(e.g., Corwin et al. 2003; Scudiero et al. 2013);
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• Using the available set of sensor data, select those sensors which represent the spatial

variability of soil properties influencing crop yield/health (Priori et al. 2013b; Scudiero

et al. 2013).

Once a good soil multi-sensor platform is selected, the sensor data can be used to

describe crop health/yield spatial variability and consequently to drive the spatial down-

scaling of the L7 canopy reflectance from native reflectance to that of the soil sensors

(usually higher than 2 9 2 m).

To independently assess the quality of this procedure, the relationships between

observed yield data and reflectance at 30 9 30 m and sharpened (5 9 5 m) scales will be

discussed.

The study area

Two study fields cropped with winter wheat (Triticum aestivum L.) were investigated

(Fig. 1). The fields are about 30 km east of Sterling, in northeastern Colorado, in the semi-

arid Central Great Plains of the USA. The two fields were described in previous publi-

cations (Johnson et al. 2003a, b, 2008). Consistent with these studies, the two fields were

named F5 and F8 (Fig. 1). F5 is 23.9 ha, whereas F8 is 32.8 ha. Soils are a mixture of

Platner (fine, smectitic, mesic Aridic Paleustolls), Weld (fine, smectitic, mesic Aridic

Argiustolls), and Rago (fine, smectitic, mesic Pachic Argiustolls) loams (USDA Soil

Taxonomy). The regional climate is cool and semi-arid with a mean annual temperature of

10 �C and mean annual rainfall of 420 mm. Precipitation is highly variable, with 75 %

falling between April and September, mostly concentrated in May, June and July. The data

discussed in this manuscript refers to the cropping season of 2002–2003, when winter

wheat was sowed in mid-September 2002 and harvested in early July 2003, and the fields

were under no-tillage management. The fields in this study were (and continue to be)

farmed in a winter wheat, maize (Zea mays L.), proso millet (Panicum miliaceum L.) and

fallow rotation. Note that the wheat phase of the rotation follows a fallow year where no

Fig. 1 Map of the two study sites (F5 and F8), located in northeast Colorado, USA. The soil sampling
locations are shown (Color figure online)
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crop is grown and weeds are controlled. This is done in an effort to store water for the

following year’s wheat crop even though fallow stores, at best, only 40 % of the available

precipitation. Precipitation for the actual wheat cropping season (9/2002–7/2003) was

287 mm—far short of average (precipitation occurs mainly in May and June, averaging

420 mm annually). To make matters worse, precipitation during the entire fallow year (9/

2001–9/2002) was a mere 157 mm. This data comes from the National Weather Service

which, at the time, had its collection site ca. 1.5 km west of the fields addressed in this

study.

Landsat 7 canopy reflectance

The Landsat 7 (L7) satellite sensor provides reflectance imagery with a 30 9 30 m res-

olution over six spectral bands, namely: blue (B, 450–520 nm), green (G, 520–600 nm),

red (R, 630–690 nm), near-infrared (NIR, 770–900 nm), shortwave infrared 1 (IR1,

1550–1750 nm) and shortwave infrared 2 (IR2, 2090–2350 nm). Atmospherically-cor-

rected L7 reflectance data is freely provided by US Geological Survey (http://

earthexplorer.usgs.gov/) as Landsat 7 climate data record (CDR) surface reflectance.

The L7 CDR imagery is atmospherically corrected through the Landsat Ecosystem Dis-

turbance Adaptive Processing System according to Masek et al. (2006).

Eleven cloudless L7 scenes were available over the two fields, through the wheat

growing season (September 28, October 14, November 15, December 1 and 17 in 2002;

and January 1, February 20, March 8, April 9 and May 11 and 30 in 2003). For brevity, this

manuscript will present the spatial downscale of the seasonal average reflectance for each

L7 spectral band.

Geophysical and terrain data

The ancillary data considered in this study were: soil apparent electrical conductivity

(geophysical), aerial bare-soil reflectance intensity (geophysical) and micro-elevation

(terrain).

In April 2005, the fields were surveyed with intensive electromagnetic induction (EMI)

measurements, using an EM38 (Geonics Ltd., Mississauga, Ontario, Canada) Dual Dipole

sensor connected to a DGPS and mounted on a non-metallic sled, following the protocols

given by Corwin and Lesch (2005). The EM38 measured soil apparent electrical con-

ductivity (ECa) at 11583 and 15731 locations in F5 and F8, respectively, for both the

0–0.75 and 0–1.50 m soil profiles obtained from EMI measurements of ECa taken in the

horizontal (ECaH) and vertical (ECaV) configurations, respectively. The EM38 readings

are characterized by a spatial resolution of about 1–2 m2. ECa acquisitions were made

every *6.5 m along the same transect. Swath distance between transects was about

10–12 m.

Bare-soil aerial imagery over F5 and F8 was downloaded from the US Geological

Survey Earth Explorer database (http://earthexplorer.usgs.gov/). The aerial orthophoto was

acquired on the 14th of July 2011 by the National Agriculture Imagery Program (NAIP)

with the ADS40 (Leica Geosystem, Heerbrugg, Switzerland) digital sensor. The four-band

imagery (blue at 430–490 nm, green at 535–585 nm, red at 610–660 nm and near-infrared

at 835–885 nm) have a discrete value ranging from 0 to 255, based on the original bare-soil

reflectance intensity. The NAIP orthophoto has spatial resolution of 1 9 1 m.

Micro-elevation at the field was assessed in April 2005 at 1945 and 2002 locations over

F5 and F8, respectively, with a Radian IS and GRS 2600 (Sokkia Inc., Kansas, USA) Real
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Time Kinematic system. In F5, elevation ranged between 1351.7 and 1356.8 m above sea

level (asl), whereas in F8 it ranged between 1347.7 and 1353.2 m asl. The vertical

accuracy of the measurements was of ca. 20 mm, whereas the horizontal accuracy was ca

10 mm. From the micro-elevation maps (see following paragraph), slope maps were

obtained by calculating the maximum change in elevation (in degrees) between a target

cell and its eight neighbors. Low gradient values reflect a flat terrain, whereas steeper

terrains are associated with higher slope values.

The ECa and micro-elevation datasets were interpolated onto 30 9 30 and 5 9 5 m

grids, using ordinary kriging with a block support (Lobell et al. 2010). The following

isotropic exponential semi-variogram was used to model the spatial structure of the yield

data:

c dið Þ ¼ g þ r � 1� exp �h=rð Þ½ � ð1Þ

where c is the semi-variance for the variable di, g represents the nugget variance, r is the

spatial variance component (partial sill), h is the lag distance and r is the range. The

interpolations were carried out and tested with leave-one-out cross-validations using

ArcMap 10.1 (ESRI, Redlands, CA, USA). Table 1 presents the fitted semi-variogram

model specifications and the cross-validation errors.

The bare-soil imagery was re-sampled over the two grids in order to meet the spatial

resolutions of the other datasets.

Soil analysis

The EMI readings were analyzed using ESAP software (Lesch et al. 2000; Lesch 2005a) in

order to direct soil sampling with the Response Surface Sampling Design algorithm (Lesch

2005a). Undisturbed soil cores were sampled, in the days following the EMI surveys, at 18

(F5) and 19 (F8) locations at 0–0.15, 0–0.3, 0.3–0.6, 0.6–0.9, and 0.9–1.2 m. The gravi-

metric water content (WC, kg kg-1) and bulk density (BD, Mg m-3) were obtained for all

samples. Soil was sieved at 2 mm and analyzed for texture using the hydrometer method.

The samples were then saturated and the saturation percentage (SP, %) was derived. Water

was extracted from the soil saturated paste and analyzed for electrical conductivity (ECe,

dS m-1) and pH (hereafter referred as pHe). Total carbon (TC, %) was analyzed with the

CN2000 (LECO Corp. St. Joseph, Michigan, USA) and organic (SOC, %) carbon was

analyzed with a CM5011 (UIC Inc., Rockdale, Illinois, USA) CO2 coulometer.

Yield data

Grain yield measurements were taken in early July 2003 using a Micro-Trak grain yield

monitor (Micro-Trak Systems Inc., Eagle Lake, Minnesota, USA) and a DGPS. Combine

harvester speed was about 2.8 (F5) and 2.6 (F8) m s-1. Raw yield data were recorded

(frequency = 1 Hz) at a density of 1 measurement per 20.6 (F5) and 20.9 (F8) m2,

resulting in average grain flow of 5.1 (F5) and 5.3 (F8) Mg s-1. A spatial resolution of

5 9 5 m was chosen as native resolution for the yield maps. In the raw yield data, low

yield readings (\1 Mg ha-1), overlapping already harvested areas, were removed. Ordi-

nary kriging with a 30 9 30 and 5 9 5 m block supports was used to interpolate the yield

data into regular grids. Because the yield distribution was not normal, the dataset was
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firstly normalized by normal score transformation (Deutsch and Journel 1992). Table 1

presents the fitted semi-variogram models specifications and the cross-validation errors.

Landsat 7 spatial downscaling procedure

The L7 reflectance spatial downscaling (see workflow in Fig. 2) was carried out using

geographically-weighted regressions (GWR) (Brunsdon et al. 1998; Fotheringham et al.

2003; Wheeler and Páez 2009) using the geophysical and terrain datasets as explanatory

variables. GWR allow local variations of the equation parameters a, estimating their values

at each location i. For a dependent variable y (i.e., the six L7 spectral bands) the equation

reads:

Fig. 2 Schematic of the workflow for the Landsat 7 reflectance spatial downscaling
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yi ¼ ai0 þ
X

k

aikxik þ ei ð2Þ

where e, is a random error term, a0 is the regression intercept, and ak and xk are the

parameter and observed values for the kth independent (explanatory) variable. Spatial

weighting is determined by incorporating all the dependent and explanatory variables

falling within a geographical kernel of each target feature. The values of the regression

parameters and goodness-of-fit of the GWR depend on how the kernel size is chosen (see

Fotheringham et al. 2003; Wheeler and Páez 2009 for additional details). The GWR were

performed with ArcMap 10.1 (ESRI, California, USA) using an adaptive kernel of

neighbors. The selection of the best set of neighbors was carried out using the akaike

information criterion (Akaike 1974). This process indicated that, at both fields, the best

number of neighbors was 22.

The GWR technique was first used to model the relationships between L7 bands and the

ancillary geophysical and terrain data at the L7 native resolution (30 9 30 m). At this step,

maps for a0 and ak were determined over the 30 9 30 m grid. Secondly, these intercept

and parameters maps were employed to estimate the L7 reflectance using the geophysical

and terrain data, on the 5 9 5 m grid, as explanatory variables (Fig. 2). In order to allow

comparison of the influence of each independent variable in the GWR models, the geo-

physical and terrain data were standardized as follows:

kSTAND;i ¼ ki � lk

rk

ð3Þ

where kSTAND,i is the standardized sensor geophysical or terrain sensor reading at location

i, ki is the sensor value at location i, and lk and rk are the average and standard deviation of

the considered dataset, respectively.

Similarly to traditional regression models, GWRs present issues with over-fitting when

explanatory variables present multi-collinearity. Global (i.e., at field scale) multi-

collinearity between variables was assessed using the variance inflation factor (VIF) (Hair

et al. 1995; Mohammadi et al. 2003). In the case of multi-collinearity between explanatory

variables, backward stepwise linear regressions were used to identify the best variable

describing L7 reflectance, which were then used in the GWRs. The outputs of the GWRs

were tested for local (i.e., within each 22-neighbors kernel) multi-collinearity of the

explanatory variables using the condition number (CN) (Brunsdon et al. 2012; Fother-

ingham et al. 2003).The CN is the square root of the ratio between largest and smallest

eigenvalues of each local regression (Fotheringham et al. 2003). Values of CN[ 30

indicate remarkable local collinearity between the explanatory variables used. Addition-

ally, the regression residuals were tested for spatial autocorrelation using the Moran’s I test

for residual spatial autocorrelation (Cliff and Ord 1981).

Downscaling quality assessment

The ideal validation for sharpened multi-spectral imagery would require knowing ‘‘true’’

reflectance at the target resolution (Rodriguez-Galiano et al. 2012; Wald et al. 1997). No

reflectance data with such high spatial resolution was available for the area. Consequently,

the quality of the downscaled reflectance was assessed using the yield maps. The rela-

tionships between yield and the observed L7 reflectance (30 9 30 m grid) were compared
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with those of yield and the estimated L7 reflectance (5 9 5 m grid). The coefficients of

determination for these relationships were compared both for ordinary least square (R2)

and geographically-weighted R2
GWR

� �
regressions. For these GWRs, the bandwidth dis-

tance was assigned according to the range distances of the yield semi-variograms

(Table 1). For F5 and F8, the bandwidth sizes were 60 and 39.9 m, respectively. Addi-

tionally the goodness-of-fit for the two linear regressions was compared with the nor-

malized root mean square error (nRMSE, % = RMSE/range of the dependent variable as

measured in the field 9 100), as the RMSE should not be used when comparing models

with data sets that have different scales (i.e., different maximum, minimum and standard

deviation) (Hyndman and Koehler 2006). A Welch’s t test (Welch 1947) was used to

compare the R2
OLS, R

2
GWR, and nRMSE for the six L7 bands at the two spatial resolutions.

Table 2 Mean and range statistics for various soil physico-chemical properties over the 0–0.15 m depth
increment of field 5 (18 locations) and field 8 (19 sampling locations)

Soil propertiesa Average Minimum Maximum SD SE Coefficient of variation Skewness

Field 5

WC (kg kg-1) 24.34 20.23 28.14 2.28 0.54 0.09 -0.11

BD (Mg m-3) 1.20 1.02 1.32 0.09 0.02 0.08 -0.38

SP (%) 42.24 35.51 53.14 4.59 1.08 0.11 0.79

Sand (%) 37.46 24.78 50.47 8.03 1.89 0.21 0.04

Silt (%) 41.63 26.57 53.50 7.72 1.82 0.19 -0.51

Clay (%) 20.91 16.64 30.15 3.53 0.83 0.17 1.14

TC (%) 0.96 0.65 1.30 0.23 0.05 0.24 0.11

SOC (%) 0.92 0.00 1.30 0.31 0.07 0.34 -1.40

IC (%) 0.04 0.00 0.65 0.15 0.04 4.24 4.24b

pHe 6.38 5.93 7.18 0.31 0.07 0.05 0.82

ECe (dS m-1) 0.61 0.31 1.29 0.27 0.06 0.45 1.04

Field 8

WC (kg kg-1) 20.24 13.49 28.36 4.50 1.03 0.22 0.20

BD (Mg m-3) 1.30 1.10 1.44 0.08 0.02 0.06 -0.76

SP (%) 40.40 32.32 50.00 4.72 1.08 0.12 0.21

Sand (%) 40.17 25.46 52.14 7.00 1.61 0.17 -0.66

Silt (%) 40.60 32.72 52.83 6.15 1.41 0.15 0.79

Clay (%) 19.23 14.92 23.84 2.70 0.62 0.14 0.12

TC (%) 0.94 0.63 1.52 0.29 0.07 0.31 1.03

SOC (%) 0.88 0.62 1.50 0.26 0.06 0.30 1.31b

IC (%) 0.06 0.00 0.74 0.18 0.04 3.25 3.51b

pHe 7.05 6.15 7.75 0.39 0.09 0.06 -0.26

ECe (dS m-1) 0.43 0.33 0.54 0.08 0.02 0.18 0.32

a WC water content, BD bulk density, SP saturation percentage, TC total carbon, SOC soil organic carbon,
IC inorganic carbon, pHe pH measured from the soil saturated paste extract, ECe electrical conductivity of
the the soil saturated paste extract
b Significant. Skewness is significant if skewness divided by standard error of skewness (SES)[2. SEK
calculated according to Tabachnick et al. (2001)
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Results and discussion

Soil properties and yield

Preliminary exploratory analyses indicated that the 0–0.15 m depth increment (topsoil) had

the strongest correlation with yield. The two fields were characterized by similar soil

properties in the topsoil profile (Table 2). In general, texture was slightly finer in F5 than

F8. According to the sand content, the median soil sample at F5 was a fine loam/slit loam

(sand = 34.3 %, silt = 48.7 %) whereas for F8 it was a loam, with sand = 41.92 % and

Table 3 Correlation matrix (Pearson r)for winter wheat yield, bare-soil (BS) orthophoto in the blue, green,
red, and near-infrared (nir) bands, apparent electrical conductivity for the 0–0.75 m (ECaH) and 0–1.5 m
(ECaV) soil profiles, and micro-elevation slope with various soil properties for the 0–0.15 m soil increment,
at fields 5 and 8

YIELD BS blue BS green BS red BS nir ECaH ECaV Slope

Field 5

WC 0.43 0.57 0.58 0.60 0.57 20.52 20.41 20.21

BD 20.20 20.65 20.66 20.71 20.70 0.42 20.03 0.52

SP 0.03 0.35 0.34 0.39 0.31 20.30 20.28 20.14

Sand 20.56 20.85 20.83 20.88 20.82 0.73 0.17 0.72

Silt 0.70 0.84 0.85 0.88 0.83 20.89 20.34 20.71

Clay 20.26 0.10 0.03 0.07 0.05 0.29 0.35 20.08

TC 0.51 0.82 0.82 0.85 0.81 20.71 20.46 20.49

SOC 0.55 0.68 0.68 0.71 0.64 20.63 20.51 20.36

IC 20.37 20.18 20.19 20.19 20.12 0.24 0.37 0.01

pHe 20.47 20.29 20.29 20.34 20.33 0.46 20.03 0.47

ECe 0.03 0.17 0.23 0.19 0.24 0.00 0.07 20.03

YIELD – 0.59 0.58 0.55 0.61 20.86 20.35 20.61

Field 8

WC 0.29 0.27 0.23 0.30 0.25 20.32 20.31 20.10

BD 20.33 20.51 20.45 20.45 20.47 0.21 0.29 20.15

SP 0.06 20.02 20.05 20.05 20.04 0.35 20.10 0.25

Sand 20.50 20.47 20.42 20.38 20.43 0.20 0.46 0.17

Silt 0.60 0.53 0.48 0.44 0.49 20.46 20.48 20.25

Clay 20.08 20.01 20.02 20.02 20.02 0.45 20.09 0.11

TC 0.35 0.45 0.41 0.39 0.42 20.23 20.33 0.14

SOC 0.62 0.70 0.65 0.62 0.67 20.48 20.60 20.12

IC 20.33 20.30 20.28 20.28 20.30 0.33 0.35 0.39

pHe 20.23 20.17 20.16 20.21 20.22 0.53 0.06 0.10

ECe 20.17 20.31 20.28 20.32 20.30 0.28 0.52 0.12

YIELD – 0.69 0.66 0.67 0.66 20.77 20.48 20.56

Bold numbers are significant at the p\ 0.05 level

WC water content, BD bulk density, SP saturation percentage, TC total carbon, SOC soil organic carbon, IC
inorganic carbon, pHe pH measured from the soil saturated paste extract, ECe electrical conductivity of the
soil saturated paste extract

Precision Agric

123



silt = 17.89 %. Both F5 and F8 were characterized by organic carbon contents smaller

than 1.5 %. Measured ECe for the two fields indicated non-saline soils (\2 dS m-1).

Wheat yields were similar in the two fields, with an average grain yield of 2.3 and

2.6 Mg ha-1 for field 5 and 8, respectively (Table 1). In both fields, yield was significantly

influenced by texture, soil carbon and, in field 5 only, by pHe (Table 3). Soil carbon was

highly correlated (p\ 0.05) with sand and silt content in both fields, with r = -0.74 and

0.78 in F5 and r = -0.78 and 0.83 in F8. As expected in soils with low organic carbon

content, such organic fraction was associated with the finer texture (Lugato et al. 2009).

Additionally, in F5, pHe was significantly correlated with silt (r = -0.51). It is, therefore,

reasonable to assume that the main factor influencing yield spatial variability was soil

texture. Rainfall was scarce in the 2002–2003 growing season (287 mm), so crop growth

was limited by water availability. The WC was significantly (p\ 0.05) correlated with

sand (r = -0.57) and silt (r = 0.60) in F5. For F8, relationships were similar yet not

highly significant (p\ 0.1).

Geophysical and terrain sensor data

Geophysical and terrain sensor measurements helped to describe the spatial variability of

yield in the two fields. Both ECaH and bare-soil imagery were significantly (p\ 0.05)

correlated with sand, silt and soil carbon content (Table 3). Micro-elevation slope in F5

was significantly correlated with silt, sand and total carbon contents, and with pHe. These

relationships were not significant in F8. However, micro-elevation slope was negatively

correlated (p\ 0.05) with yield for both fields (Table 3), indicating that the flatter the

terrain the higher the yield. The higher observed yield in level terrain was likely due to

increased water availability (Moore et al. 1993; Peterson et al. 1993; Kravchenko et al.

2002).

The ECaH values (Table 1) were low at both fields (\0.35 dS m-1), as one would

expect in non-saline soils (Scudiero et al. 2013). The correlations of ECa in both fields was

positively correlated with sand, and negatively correlated with silt and yield (Table 3).

These observations were consistent with those reported by Johnson et al. (2003a) for winter

wheat (in 1999) and maize (in 2000) in the same fields. Johnson et al. (2003a) measured

ECa in 1999 from resistivity readings obtained with a Veris 3100 Sensor Cart (Geoprobe

Syst., Salina, Kansas, USA) over the 0–0.3 and 0–0.9 m soil profiles. Their ECa mea-

surements were also negatively correlated with yield and silt. Moreover, they observed that

the shallow measurements best reflected yield for both crops. The Veris 3100 ECa mea-

surements at 0–0.3 m taken in 1999 were significantly correlated with EM 38 ECaH

measurements taken in 2005 at the soil sampling locations with r = 0.69 and 0.64 in F5

and F8, respectively, indicating that spatial patterns in ECa generally remain stable over

time.

The bare soil imagery (blue, green, red, and near-infrared bands) and the ECaH data

were collinear according to the variance inflation factor. Indeed, both measurements were

highly correlated with spatial changes in texture. This collinearity between the two geo-

physical measurements is, in geographical terms, a local phenomenon. Indeed, the use of

sensors to characterize soil spatial variability is an empirical practice, even though based

on physical relationships between soil and sensor measurements. The relationships

between soil properties and sensor readings vary across regions, with apparent electrical

conductivity being used to map (regional-scale) soil salinity in the western USA (Corwin

and Lesch 2014; Lesch 2005b) and (regional-scale) texture in the central USA (Harvey and

Morgan 2009). Consequently, different regions require the use of different sensors:
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Scudiero et al. (2013) used ECa and bare-soil reflectance to monitor yield spatial variability

in a delta plain affected by saltwater intrusion and contrasting soil properties in Italy;

Triantafilis et al. (2009) used ECa and bare-soil imagery to classify a strongly sodic

irrigated field with contrasting lithography in Australia; Priori et al. (2013b) improved the

harvest quality of wine through harvest zoning in Italy using a combination of ECa, bare-

soil imagery and micro-elevation data. Conversely, in this work, bare-soil imagery data

were discarded due to collinearity with ECaH. Indeed, exploratory backward multiple

linear regressions indicated that ECaH was a better independent variable than any bare-soil

imagery bands, in either field. Moreover, ECaV did not describe variations in canopy

reflectance for the two fields. Finally, for both fields, ECaH and micro-elevation slope were

chosen as independent variables for the GWR model.

Downscaling Landsat 7 reflectance

As a first step in the downscaling procedure, the spatial variability of the six L7 spectral

bands was described with GWRs using ECaH and micro-elevation slope maps as

explanatory variables (Table 4). All the GWRs were characterized by CN maps with

values smaller than 30, indicating that local collinearity between explanatory variables was

not significant (Brunsdon et al. 2012; Fotheringham et al. 2003). Moreover, the residuals of

the regression did not show significant spatial autocorrelation.

For both fields, use of a multi-sensor platform described a high fraction of the spatial

variability in L7 canopy reflectance with high R2 and low RMSE values, in all six spectral

Table 4 Landsat 7 observed data and geographically-weighted regression (GWR) specifications

Spectral banda Observed data (reflectance %) GWR specifications

Average Minimum Maximum Explanatory variablesb R2 RMSEc (%)

Field 5

B 8.8 7.9 9.6 ECaH Slope 0.89 0.11

G 11.4 10.2 12.4 ECaH Slope 0.93 0.13

R 14.0 12.4 15.5 ECaH Slope 0.94 0.18

NIR 24.8 23.5 27.0 ECaH Slope 0.89 0.22

IR1 32.6 30.3 34.8 ECaH Slope 0.91 0.23

IR2 25.9 22.8 28.3 ECaH Slope 0.92 0.29

Field 8

B 8.7 7.7 9.5 ECaH Slope 0.85 0.12

G 11.2 9.9 12.2 ECaH Slope 0.87 0.15

R 13.6 11.4 15.2 ECaH Slope 0.87 0.22

NIR 24.8 22.9 28.6 ECaH Slope 0.83 0.34

IR1 32.0 28.9 34.4 ECaH Slope 0.88 0.28

IR2 25.6 21.9 27.6 ECaH Slope 0.86 0.35

a B blue (450–520 nm), G green (520–600 nm), R red (630–690 nm), NIR near-infrared (770–900 nm), IR1
shortwave infrared 1 (1550–1750 nm), and IR2 shortwave infrared 2 (2090–2350 nm)
b ECaH apparent electrical conductivity for the 0–0.75 cm soil profile, and Slope, micro-elevation slope
c RMSE root mean square error
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bands. Generally, the B and NIR bands were characterized by the lowest observed-esti-

mated R2 values (Table 4). The GWR provided stronger relationships at F5 than F8 with

average R2 of 0.91 and 0.86 and RMSE of 0.19 and 0.25 %, respectively. The slight

difference in goodness-of-fit between the two fields could indicate that: (i) soil properties

described by the sensor data influence crop health more in F5 than in F8; (ii) L7 reflec-

tance-wheat health relationships are stronger in F5 than F8 (e.g., no biasing influences from

weeds in F5); or (iii) a combination of the two. One way to analyze this difference could be

through local R2 maps of the observed L7 reflectance versus the explanatory variables (not

shown). These maps can be used as indicators of the extent of the influence of the

described soil properties on crop growth: low local R2 values would suggest that other soil

properties or non-edaphic factors might play (locally) an important role on influencing crop

growth.

Fig. 3 Geographically-weighted regression (GWR) for the a green band of Landsat 7 at field 8. The
g estimated reflectance is calculated using the maps of b the GWR intercept, c apparent electrical
conductivity of the 0–0.75 m soil profile (ECaH), d the GWR coefficient for ECaH, e micro-elevation slope,
and f the GWR coefficient for micro-elevation slope. The observed versus estimated relationship is reported
in (h) (Color figure online)
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Figure 3 depicts the GWR for the G band in F8. This field was chosen over F5 because

the range of reflectance values was wider (Table 3). The choice of the G band was arbi-

trary, as data from all spectral bands showed highly significant (p[ 0.01) Pearson cor-

relations (not shown). Observed (Fig. 3a) and estimated (Fig. 3g) G reflectance showed

similar spatial patterns. The two maps were characterized by similar average values (both

ca. 11.16 %), but had different minimum (10.07 and 10.29 % for the observed and esti-

mated, respectively) and maximum (12.21 and 12.01 % for the observed and estimated,

respectively) reflectance values. The observed:estimated relationship was characterized by

fairly high R2 = 0.87 and low RMSE = 0.15 % (Fig. 3h).

The maps for intercept (Fig. 3b), and ECaH and micro-elevation slope coefficients

(Fig. 3d, f, respectively), were generated using the GWR process for each L7 band, in both

fields. It is clear from the ECaH and micro-elevation slope coefficient maps that the

influence of soil properties (i.e., those represented by these two sensors) on canopy

reflectance varied greatly across fields. The coefficient maps (Fig. 3d, f) might help

quantify the influence of each independent variable on the dependent variable across each

field. This can be useful for multiple purposes, such as identifying areas affected by a

particular soil-related stress or nutrient deficiency. In the example, ECaH influence in the

GWR was generally (ca. 77 % of times) greater than micro-elevation slope. The coefficient

map values ranged from -0.26 to 1.09, and -0.64 to 0.63 for ECaH and micro-elevation

Fig. 4 Maps for a apparent electrical conductivity of the 0–0.75 m soil profile (ECaH) at 5 9 5 m,
b micro-elevation slope at 5 9 5 m, c the observed (at 30 9 30 m) and d downscaled (at 5 9 5 m) Landsat
7 reflectance in the green band, and wheat yield maps at e 30 9 30 m and f 5 9 5 m, in field 8. The dashed
selection in f highlights a portion of the field characterized by contrasting changes in grain yield over short
distances (Color figure online)
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slope, respectively; the lower the coefficient value at each pixel, the lower the (local)

influence in describing L7 reflectance.

Once the coefficient maps were obtained for all L7 bands, they were used to model

downscaled values of L7 reflectance at the target resolution of 5 9 5 m grid. The

30 9 30 m coefficient maps were employed to estimate the reflectance over the thirty-six

5 9 5 m cells included in each of their pixels, as shown in Fig. 2. The ECaH, micro-

elevation slope, and downscaled G reflectance for F8 are shown in Fig. 4 a, b, d,

respectively. Figure 4a, b shows very similar yet non-identical spatial patterns. Indeed, the

two variables were not collinear and their Pearson relationship was weak (r = 0.11).

Figure 4d resembles the observed L7 G data (Fig. 4c) yet with spatial patterns and scale of

variation observed in Fig. 4a, b. The observed and the downscaled G reflectance at F8 were

characterized by different minimum (10.07 and 9.71 %, respectively), maximum (12.21

and 12.39 %, respectively) and standard deviation (0.42 and 0.39 %, respectively), but

were characterized by very similar average reflectance (11.16 and 11.13 %, respectively).

Quality assessment of the downscaled L7 canopy reflectance

The ordinary least square coefficients of determination ðR2
OLSÞ between yield and L7

reflectance at the native (i.e., over the 30 9 30 m grid) resolution are reported in Table 5.

For both fields, NIR reflectance was not significantly correlated with yield; therefore, the

ðR2
OLSÞ and nRMSE values are not reported. Overall, larger ðR2

OLSÞ values were observed

for F8 than F5 (Table 5). Based solely on ðR2
OLSÞ values, this could suggest two things: (i)

Table 5 Ordinary least square coefficient of determination (R2) and normalized root mean square error

(nRMSE) and geographically-weighted coefficient of determination ðR2
GWRÞ between the observed

(30 9 30 m) and downscaled (5 9 5 m) Landsat 7 (L7) reflectance with the winter wheat yield at the two
spatial scales, at the two fields

L7 Banda R2 nRMSE (%) R2
GWR

30 9 30 m 5 9 5 m 30 9 30 m 5 9 5 m 30 9 30 m 5 9 5 m

Field 5

B 0.27 0.28 11.37 7.33 0.83 0.84

G 0.25 0.26 11.50 7.34 0.88 0.87

R 0.26 0.26 11.43 7.33 0.89 0.86

NIR ns ns ns ns 0.81 0.70

IR1 0.20 0.21 11.85 7.59 0.87 0.84

IR2 0.24 0.25 11.61 7.38 0.87 0.84

Field 8

B 0.37 0.43 13.20 9.22 0.85 0.85

G 0.42 0.44 12.60 13.92 0.88 0.84

R 0.35 0.41 13.42 10.07 0.87 0.84

NIR ns ns ns ns 0.85 0.87

IR1 0.26 0.34 14.29 9.93 0.88 0.89

IR2 0.42 0.47 12.63 8.84 0.89 0.87

a B blue (450–520 nm); G green (520–600 nm), R red (630–690 nm), NIR near-infrared (770–900 nm), IR1
shortwave infrared 1 (1550–1750 nm), and IR2 shortwave infrared 2 (2090–2350 nm)

ns omitted because ordinary least square regression was non-significant
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in F8, the yield-reflectance relationships were stronger than in F5; or (ii) the yield-L7

relationships are of equal strength in both fields but the ordinary least square approach does

not sufficiently describe them. Indeed, when the geographically-weighted coefficients of

determination ðR2
GWRÞ at the native spatial scale (30 9 30 m) were considered, reflectance-

yield relationships for the two fields were of approximately the same magnitude (Table 5).

Moreover, the NIR-yield relationships were characterized by R2
GWR values similar in size to

those of the other five spectral bands. This suggests that the localized approach provided by

GWRs greatly improves the ability to describe spatial plant-soil relationships, compared to

the ordinary least squares approach.

The criterion adopted to assess the quality of downscaled L7 reflectance was the fol-

lowing: if the strength of the relationships between L7 canopy reflectance and wheat yield,

at the 5 9 5 m resolution, were of similar (or greater) strength than those at the 30 9 30 m

resolution, then the downscaled reflectance would be considered ‘‘acceptable’’. The t-test

indicated that the R2 and R2
GWR values between yield and all six spectral bands, across the

two fields, were not significantly different at the two spatial scales. Nevertheless, the

downscaled L7 reflectance was always characterized by higher R2 values with yield than

that of observed data at 30 9 30 m (Table 5). On average, the downscaling procedure

increased the yield-reflectance ordinary least squares relationships by 3.2 %. The nRMSE

values of the downscaled L7 reflectance for the six bands were significantly (p\ 0.01)

lower than those at the native spatial resolution, with an average improvement across the

two fields of 3.49 % (Table 5). These observations indicate that the downscaled L7

reflectance quality is comparable (or slightly better) than that at 30 9 30 m.

The maps of wheat yield at 30 9 30 m (Fig. 4e) and 5 9 5 m (Fig. 4f) were charac-

terized by similar average values (2.63 and 2.65 Mg ha-1, respectively). Figure 4f was

characterized by lower minimum = 1.02 Mg ha-1 (1.18 Mg ha-1 for the 30 9 30 m

map) and higher maximum = 6.00 Mg ha-1 (4.73 Mg ha-1 for the 30 9 30 m map) yield

values, and higher standard deviation = 0.61 Mg ha-1 (0.59 Mg ha-1 for the 30 9 30 m

map). The quality of the L7 downscaling procedure was remarkable: patterns in the

downscaled G band (Fig. 4d) were very similar to those of the yield map at the 5 9 5 m

resolution (Fig. 4f). It is clear that the reflectance downscaling procedure allows for the

characterization of spatial variability in crop status/yield at a very high spatial resolution,

with detailed accuracy. This was particularly evident in areas of the field where grain yield

changed dramatically within short distances, such as the eastern side of the field (dashed

selection in Fig. 4f). Little small scale variation was captured by the native L7 reflectance

map (Fig. 4c), whereas it was well described by the downscaled maps (Fig. 4d).

Using downscaled reflectance

Monitoring crop health at the farm scale (e.g., hundreds of hectares) at high spatial res-

olution is still a challenge for farmers, land resource managers, agriculture consultants, and

extension specialists. Remote sensing can be used effectively to monitor crop health during

the growing season and therefore address site-specific agronomic practices. High resolution

data is needed to fully understand and address crop spatial variability. However, high

spatial resolution comes at a very high price. For example, 2 9 2 m multi-spectral imagery

would cost, for a 25 9 25 km farmland, at least 2000 USD (as of May 2015) per acqui-

sition. The methodology proposed herein can be used to monitor plant-soil relationships at

a very-high spatial resolution using free satellite data and maps of soil sensors. The high

resolution sensor maps required for the procedure (and advisable for most site-specific
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practices) are generally only necessary to establish initial soil patterns of spatial variability.

As discussed above for ECa, spatial patterns of soil properties, especially those related to

and influenced by soil texture, tend to be very stable in time under consistent agricultural

management practices. The downscaling service could be offered, at the farm scale, by

agricultural consultants and extension agents, or, at a larger scale, by Natural Resource

Conservation Service field staff (or equivalent, outside the USA) in order to aid decision

making of producers and natural resource managers.

Conclusions

In this manuscript, a spatial statistics approach to sharpen Landsat 7 canopy reflectance

data from its native resolution of 900–25 m2 (or higher) using spatial information provided

by multiple soil (i.e., geophysical and terrain) sensors is presented. A geographically-

weighted regression described large portions of the spatial variability (R2 range 0.83–0.94)

of Landsat 7 canopy reflectance in all six (visible to infrared) spectral bands using maps of

soil apparent conductivity and micro-elevation slope as independent variables. The results

provided reliable high spatial resolution reflectance that may be used for precision agri-

culture practices at the farm scale. In fact, the relationships between Landsat 7 reflectance

and yield maps (used as ground truth for assessing the quality of the downscaling pro-

cedure) were similar (or improved) using high resolution simulated reflectance, as opposed

to the original 900 m2 resolution Landsat 7 data. The quality of the downscaled procedure

depended on: (a) the selection of appropriate soil sensors that accurately reflect spatial

variability in those soil properties that influence crop health/yield (texture, soil carbon

content and pHe), and (b) the accurate measurement of crop status (with little to no biasing

effects from other non-edaphic factors, such as weed pressure) by Landsat 7 reflectance.

This methodology should be tested using multi-year studies in crop status spatio-tem-

poral variability. Different meteorological settings across years can alter the spatial pat-

terns of plant-soil relationships and different crops can show varying spatial patterns in

yield over the same field. As a matter of fact, Northeast Colorado was in the throes of a

severe drought during the time period covered in this paper. Yields were remarkably below

average. At the time, average yields for the sites were around 2.5 Mg ha-1 while in a good

year they could exceed 3.8 Mg ha-1. However, spatial patterns in soil properties described

by soil sensors do not generally change in short time periods (e.g., 5–7 years). Thus, the

same multi-sensor platform could be used for several years, to provide highly accurate

downscaled L7 reflectance because the geographically-weighted regression technique

allows for local changes in each regressor coefficient.

Clearly this manuscript and others highlight the benefits of using multiple sensors to

characterize spatial variability in soil–plant relationships at farm scale. Often though, only

a single sensor is used to carry out precision agricultural practices (e.g., modeling yield,

delineating site-specific management zones and optimizing soil sampling designs) with no

guarantee that all relevant soil properties are actually represented/sensed. More research is

needed to investigate the benefits of using multiple sensor platforms in precision agri-

culture in order to define, by geographical region, which sensor measurements are most

useful for improving soil and crop management.
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