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Site-specific crop management utilizes site-specific management units (SSMUs) to apply inputs when,
where, and in the amount needed to increase food productivity, optimize resource utilization, increase
profitability, and reduce detrimental environmental impacts. It is the objective of this study to demon-
strate the delineation of SSMUs using geospatial apparent soil electrical conductivity (EC,) and bare-soil
reflectance measurements. The study site was a 21-ha field at the southern margin of the Venice Lagoon,
Italy, which is known to have considerable spatial variability of soil properties influencing crop yield.
Maize (Zea mais L.) yield maps from 2010 and 2011 showed high spatial heterogeneity primarily due
to variation in soil-related factors. Approximately 53% of the spatial variation in maize yield was success-
fully modeled according to the variability of four soil properties: salinity, texture, organic carbon content,
and bulk density. The spatial variability of these soil properties was characterized by the combined use of
intensive geospatial EC, measurements and bare-soil normalized difference vegetation index (NDVI) sur-
vey data. On the basis of the relationships with these soil properties, EC, and NDVI were used to divide
the field into five SSMUs using fuzzy c-means clustering: one homogeneous with optimal maize yield, one
unit affected by high soil salinity, one characterized by very coarse texture (i.e., sandy paleochannels),
and two zones with both soil salinity and high organic carbon content. Yield monitoring maps provide
valuable spatial information, but do not provide reasons for the variation in yield. However, even in cases
where measurements like EC, and bare-soil NDVI are not directly correlated to maize yield, their com-
bined use can help classify the soil according to its fertility. The identification of areas where soil prop-
erties are fairly homogeneous can help managing diverse soil-related issues optimizing resource use,
lowering costs, and increasing soil quality.
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1. Introduction more, saltwater intrusion is a major threat to crop production (De

Franco et al., 2009; Viezzoli et al., 2010) because the area lies down

The southern margin of the Venice Lagoon in Italy is a highly
heterogeneous environment subject to both natural changes and
anthropogenic pressures (De Franco et al., 2009). The area is part
of the Po River alluvial plain and is characterized by high spatial
geomorphologic variability with highly permeable sandy paleo-
channels crossing soils rich in organic matter (Rizzetto et al.,
2003). Due to the presence of peat, the area has been subsiding
since its reclamation for agricultural purposes at the beginning of
the 20th century (Teatini et al., 2007; Zanello et al., 2011). Further-

Abbreviations: EC,, soil apparent electrical conductivity; NDVI, normalized
difference vegetation index; EC;.,, soil salinity electrical conductivity of a soil-water
extract ratio 1:2; p, soil bulk density; SOC, soil organic carbon.
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to 4 m below average sea level (asl) and continuous drainage
causes the saltwater-freshwater interface to rise close to the soil
surface (Bear, 1988).

Spatial and temporal variations in edaphic properties cause
within-field crop yield variation due to various crop stresses that
cannot be managed effectively with conventional farming strate-
gies (Robert, 2002). Site-specific crop management (i.e., application
of resources when, where, and in the amount needed) represents
the best option to manage within-field spatial variation of crops
and soils. In particular, the use of site-specific management units
(SSMUs; i.e., the delineation of sub-sections of a field that are man-
aged the same in order to achieve a specific goal) has proved to be a
reliable solution for managing heterogeneous farmlands (Robert,
2002).
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Spatial variation of yield is affected by a large range of factors,
including topographic, edaphic, biological, meteorological, and
anthropogenic factors (Corwin and Lesch, 2005a). However, only
a portion of these can be practically managed in order to increase
crop productivity. Indeed, as suggested by Corwin and Lesch
(2010), a simplified and effective way of designing SSMUs is to ana-
lyze the effect of a single factor (e.g., edaphic) on yield spatial var-
iability. The extent of yield variation specifically related to changes
in soil properties can be substantial (Corwin et al., 2003; Li et al.,
2007; Savabi et al., 2013).

Intensive and relatively inexpensive spatial measurements of
soil apparent electrical conductivity (EC,) are commonly used to
characterize the spatial variability of a vast group of soil properties
(Corwin and Lesch, 2005a). Apparent soil electrical conductivity is
influenced by, and therefore correlated with, soil properties,
including soil salinity, water and organic matter content, texture,
and bulk density (Corwin and Lesch, 2005a). Unfortunately, in
most cases EC, measurements are not sufficient to describe the
spatial distribution of all the soil properties influencing yield. Of-
ten, EC, measurements in a field are dominated by one or two soil
properties (Johnson et al., 2005; Corwin, 2008). In such cases other
types of ancillary information could be used to complement EC,.
Several types of sensors have been recently used to provide ancil-
lary data for characterizing large farmlands based on a limited
number of soil samples (Adamchuk et al.,, 2004; Mulder et al.,
2011; Viscarra Rossel et al., 2011), including optical and radiomet-
ric sensors in the visible (400-700 nm) and near-infrared (700-
2500 nm) regions.

In particular, radiometric sensors in the visible range provide
reflectance measurements which are closely related to soil color
(Post et al., 2000). Dark soils are generally characterized by high
organic matter and/or iron oxides contents (FitzPatrick, 1986;
Leone and Escadafal, 2001). A lighter color can identify areas rich
in carbonate (Ellis and Mellor, 2002), or areas affected by high
salinity (Metternicht and Zinck, 2003), or sandy areas (Rizzetto
et al.,, 2002; Goovaerts and Kerry, 2010). Soil color also depends
on water content, as moisture increases color intensity (Post
et al., 2000). Near-infrared reflectance is primarily related to the
presence of -OH, -CH, and -NH groups (Gomez et al., 2008). Nev-
ertheless, near-infrared reflectance has been correlated with a
wide range of soil properties, including total C, total N, water con-
tent, and texture (Chang et al., 2001; Viscarra Rossel et al., 2006).
An improved benefit on describing soil properties comes when
visible and near-infrared data are combined (e.g. calculating the
so called “vegetation indices” as done in vegetation remote sens-
ing) to enhance their relationships with soil organic carbon (Go-
mez et al., 2008; Zhang et al.,, 2012) and, in general, soil color
(Singh et al., 2004).

The delineation of SSMUs driven by ancillary data from prox-
imal soil sensors has become a common practice (Corwin et al.,
2003; Johnson et al., 2008; Morari et al., 2009; Roberts et al.,
2012). Previous delineation of SSMUs driven by soil proximal sen-
sor data has generally relied on a single type of sensor, mainly on
geospatial EC, measurements (Corwin et al., 2003; Corwin and
Lesch, 2010). It is hypothesized that the combined use of proxi-
mal sensing techniques, such as electromagnetic induction and
radiometric measurements on bare-soil, provides complementary
data that augment the ability to define SSMUs. Indeed, the re-
sponse of a single sensor is influenced by several soil properties
making the measurements difficult to interpret. Conversely, mul-
ti-sensor data represent an effective mean of separating out
edaphic influences on crop yield. In this context, the objective
of this study was to use a combination of EC, and bare-soil NDVI
to delineate SSMUs in a highly contrasting coastal basin affected
by saltwater intrusion at the southern margin of the Venice
Lagoon.

2. Materials and methods

The basic approach for delineating SSMUs followed the proce-
dure introduced by Corwin and colleagues (Corwin et al., 2003;
Corwin and Lesch, 2010). The first step of the procedure consisted
of investigating the effect of soil salinity and other soil properties
on the spatial variability of crop yield. Secondly, the suitability of
proximal-sensing data for characterizing the spatial distribution
of soil properties influencing yield was tested. Finally, a relation-
ship between edaphic properties and yield was developed from
which SSMUs were derived.

2.1. Study site

The study site (Fig. 1) is a ca. 21 ha field located at Chioggia,
Venice, Italy (45°10'57”N; 12°13’55”E) along the southern margin
of the Venice Lagoon. With an elevation ranging between 1 and
3.3 m below asl, the soil is mainly silt-clay (Molli-Gleyic Cambisols,
FAO-UNESCO, 1989) with the presence of peat and sandy drifts (i.e.
paleochannels). In particular, two well preserved-paleochannels
(i.e. western and eastern), generally characterized by coarse tex-
ture, cross the study site in a SW-NE direction (Donnici et al.,
2011). A pumping station and a dense network of ditches control
the depth to the water table, which is generally maintained at
~0.6 m during the summer season in order to promote sub-
irrigation.

Maize (Zea mais L.) was cultivated in the years 2010 (seeding
April 22nd and harvest September 10th) and 2011 (seeding April
4th and harvest September 2nd). Soil tillage was an autumn plow-
ing at 30 cm, followed by standard seedbed preparation opera-
tions. Maize was fertilized with a base-dressing of 64 kg N ha™!
and 94 kg P,0s ha™! and a top-dressing of 184 kg N ha~! (urea).
Meteorological data were recorded by a nearby automatic station
(Regional Agency for Environmental Protection, Veneto). From a
meteorological point of view, the two cropping seasons were char-
acterized by contrasting conditions with higher rainfall (540 mm)
and lower reference evapotranspiration (497 mm) in 2010 than
2011 (200 mm and 599 mm, respectively).

2.2. Soil sampling and analyses

Both undisturbed and disturbed soil samples were collected in
May 2010 at 41 points selected according to an EC,-directed sam-
pling scheme based on simulated spatial annealing (Scudiero et al.,
2011). Disturbed samples were taken at 4 depth increments: 0-
0.15, 0.15-0.45, 0.45-0.8, and 0.8-1.2 m. Undisturbed cores were
extracted with a hydraulic sampler from the upper 1-m profile
and then analyzed at 0-0.15, 0.15-0.45, 0.45-0.8, and 0.8-1.00 m
for bulk density (pp, Mg m~>). The ground elevation Z at the sam-
pling points was obtained by a Trimble FM 1000 CNH (Trimble
Navigation Ltd., Sunnyvale, CA, USA) with a #0.02 m vertical
accuracy.

Disturbed soil was analyzed for texture (Mastersizer 2000, Mal-
vern Instruments Ltd., Great Malvern, UK), pH and electrical conduc-
tivity (i.e. EC;.,, soil-water extract ratio 1:2) (Rhoades et al., 1999),
total carbon (TC), organic carbon (SOC), total N (TN), and total sulfur
(TS) (CNS Vario Macro elemental analyzer, Elementar, Hanau, Ger-
many). Inorganic carbon was converted to CaCO3 percentage.

2.3. Soil proximal-sensing

2.3.1. Apparent electrical conductivity

A number of EC, surveys were carried out during the experi-
ment with a frequency-domain electromagnetic induction sensor
(CMD-1, GF Instruments, Brno, Czech Republic). In particular, the
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Fig. 1. Map of the study area with highlights on local poorly and well preserved paleochannels (after Donnici et al. (2011)) and soil sampling locations.

CMD-1 probe provides two different depths of investigation,
named Low and High, corresponding respectively to 0-0.75 m
(EC, Low) and 0-1.5 m (EC, High). For continuous measurements,
the CMD-1 probe was placed on a mobile platform and connected
to a GPS, using a 0.5 s acquisition time interval.

The surveys revealed a similar EC, pattern irrespective of the
acquisition time. Due to the largest number of monitoring points,
equal to 18,053 and 20,470 for EC, Low and EC, High, respectively,
the survey carried out in April 20, 2011, was used in the present
analysis. On the same day, gravimetric water content (6g) was also
assessed in the soil profile at the 41 sampling locations.

2.3.2. Bare-soil reflectance

In spring 2012 bare-soil reflectance at 590 nm (VIS) and at
880 nm (NIR) was measured with a handheld active spectrometer
(APS1-CropCircle, Holland Scientific, Lincoln, NE, USA) linked with
a GPS. A number of 10,214 locations covered the site usinga 1 s
time acquisition interval. The well-known normalized difference
vegetation index (NDVI) (Rouse et al., 1973) was calculated as
follows:

NIR — VIS

NDVI = SR VIS M

2.3.3. Interpolation of soil proximal-sensing data

Proximal-sensing data did not exactly overlay the soil sampling
locations. Consequently, EC, and reflectance measurements were
interpolated to estimate their values at the 41 locations. The spatial
correlation structure of each dataset (6;) was modeled by an isotro-
pic spherical semivariogram:

15h 05K
V(o)) = (N +0) x (T— 3 )

(2)

where # represents the nugget variance, ¢ the spatial variance com-
ponent (partial sill), h the lag distance, and r the range. Because the
EC, distribution was not normal, the dataset was preliminary nor-
malized by the normal score transformation (Deutsch and Journel,
1992). Data were interpolated by ordinary kriging and tested with
leave-one-out cross validations using ArcMap 10.0 (ESRI, Redlands,
CA, USA).

2.4. Yield data

Maize yield was measured in 2010 and 2011 by a combine har-
vester equipped with a yield monitor (Agrocom, Claas, Harsewin-
kel, Germany) and a DGPS. Raw data were corrected for values
below a threshold equal to 2 Mg ha™!. The operation eliminated
very low yield readings that were almost exclusively due to
field-edge effect.

2.5. Delineation of Site-Specific Management Units (SSMUs)

A simple methodological approach was developed to delineate
and validate the SSMUs at the study site. Fig. 2 is a schematic out-
lining the steps involved. As suggested by Corwin et al. (2003), the
soil properties significantly influencing yield spatial variability
were identified with a spatial linear model using the yield maps
and the soil properties measured by lab tests on samples collected
in the field. The second step investigated the possibility of repre-
senting the variability of the soil properties selected in the previ-
ous step by using soil proximal-sensing measurements (Lesch
and Corwin, 2008). In particular, we tested the use of soil apparent
electrical conductivity (EC,) and a possible improvement of the
characterization accuracy using bare-soil reflectance. Finally, prox-
imal-sensing maps were used to classify the study site into man-
agement units by a fuzzy c-means clustering (Fridgen et al.,
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Fig. 2. Schematic of the workflow for the delineation of site-specific management units (SSMUs).

2004). The variance of soil properties and crop production within
the management units was lastly analyzed to verify the goodness
of the SSMU delineation.

2.5.1. Spatial linear models

The identification of the soil properties influencing yield spatial
variability and the soil spatial characterization using proximal
sensing data were both carried out using spatial linear models
(Corwin et al., 2003; Lesch and Corwin, 2008).

Ordinary least square (OLS) multiple linear regressions (MLRs)
can reliably estimate a spatially distributed random variable when
the regression residuals are spatially uncorrelated (Lesch et al.,
1995; Corwin et al., 2003; Schabenberger and Gotway, 2004; Lesch
and Corwin, 2008). Multiple linear regression represents a special
case of geostatistical mixed linear models, which represent a more
general family of models including many well-known geostatisti-
cal techniques, such as universal kriging (Lesch and Corwin,
2008). According to Corwin et al. (2003) and Lesch and Corwin
(2008), the MLR residuals were examined for outliers, normal dis-
tribution (Shapiro-Wilk Normality Test; Shapiro and Wilk, 1965)
and spatial autocorrelation (Moran’s I Test for Residual Spatial
Autocorrelation; Cliff and Ord, 1981). The regression models show-
ing a significant residual spatial autocorrelation were then recalcu-
lated using the spdep library (Bivand et al., 2011) in R (R
Development Core Team, 2012) with the maximum-likelihood ap-
proach (Corwin et al., 2003; Lesch and Corwin, 2008) to avoid
biased parameter estimates (Cressie, 1993).

Preliminarily to the formulation of the yield response model,
the soil properties were tested for multicollinearity, which was ob-
served between clay and sand and silt, and between SOC and TC
and TN and TS. Hence, based on this exploratory correlation anal-
ysis, the primary (independent) soil properties considered for the
yield model were Z, EC;.», 0, clay, pp, pH, SOC, and CaCOs. The yield
response model was calibrated with backward stepwise procedure,
allowing both linear and quadratic relationships between yield and
soil properties (Corwin et al., 2003). The approach was performed
on each depth intervals (i.e., 0-0.15, 0.15-0.45, 0.45-0.8, and 0.8-
1.2 m) and the weighted average of increasing-depth soil profiles
(i.e., 0-0.45, 0-0.80, and 0-1.2 m). The best model performances
were obtained with the averaged 0.8 m profile, suggesting that
0-0.8 m was the most representative of the maize root zone in
the study site. A sensitivity analysis was carried out by calculating
the yield variation by individually shifting up each soil property by
1 standard deviation from its mean value.

Multiple linear regressions were also used to test the suitability
of proximal-sensing data for characterizing the spatial distribution
of soil properties identified by the yield response model.

2.5.2. Site-specific management units: delineation and validation
Management units were delineated using a fuzzy c-means
unsupervised clustering algorithm (Odeh et al, 1992) imple-
mented in the Management Zone Analyst (MZA) software (Fridgen
et al., 2004). The c-means clustering aims to identify a continuous

group of ancillary data values, minimizing the sum of square dis-
tances of all the data points in the cluster domain from the cluster
centroid. The fuzzy element allows one location to belong to differ-
ent clusters at different degrees. This membership sharing is con-
trolled by a weighting exponent that is conventionally set to 1.35
(Odeh et al., 1992). Management Zone Analyst was used with the
same settings (e.g., iterations, etc.) as provided by Morari et al.
(2009), for a range of SSMUs between 4 and 7. The optimum num-
ber of SSMUs was identified according to the minimization of the
fuzziness performance index (FPI) and the normalized classifica-
tion entropy index (NCE) (Odeh et al., 1992). The FPI (0 < FPI < 1)
is a measure of the amount of membership-sharing that occurs
among management zones. The larger the FPI, the strongest is
the sharing of membership between the selected SSMUs. The NCE
(0 < NCE £ 1) models the degree of disorganization created by
dividing the data set into SSMUs. The lower the NCE, the higher
is the amount of organization between management zones.
Moreover within-unit variance of soil properties was calculated
to check if the SSMUs were characterized by a soil spatial variabil-
ity lower than the entire field. The variance at each unit was calcu-
lated as (Fraisse et al., 2001):
1 u ny

§2— % )% x
u ny - (:ui :u) nr

3)

where Slz, is the weighted variance for the management unit U, g;
the measured value of the soil property p at the position i, jt the
mean value of x in U, ny the number of soil samples in U, and nr
the total number of soil samples in the entire field. Total within-
unit variance of a SSMU configuration was defined as the sum of
weighted within-unit variances of each management unit.

The best SSMU delineation was validated by an analysis of var-
iance (ANOVA) between management units. The analysis was car-
ried out on the soil properties identified by the yield response
model and the 2010 and 2011 production maps. If observed, spatial
correlation among the ANOVA residuals was adjusted with gener-
alized least square method using the spdep library in R.

3. Results and discussion
3.1. Relationship between maize yield and soil properties

Maize yield in 2010 (2896 data points) and 2011 (2973 data
points) showed high variability across the study site (Fig. 3). Yield
data in 2010 was characterized by lower average (5.78 Mg ha™!)
and maximum (11.97 Mg ha™!) values than in the following year
(average: 8.76 Mg ha~!; maximum: 14.99 Mg ha~!). Maize produc-
tion in 2010 was severely compromised in some monitored points
by a heavy wind-hail storm occurred on the 13th of August (ca.
60 mm of rainfall). Consequently only the 2011 yield data at the
41 sampling location was used to fit the maize yield response mod-
el. Nevertheless, as the two yield maps showed a similar spatial
pattern, the 2010 yield data was retained for the SSMUs validation
at field scale.
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Fig. 3. Maize yield data points for (a) 2010 and (b) 2011.

The average ground elevation amounted to —2.58 m asl (Ta-
ble 1), with the northern portion of the field ranging between
—2.50 and —1.40 m asl, and a gradual southward decrease, where
a minimum —3.15 m asl was observed. Soil texture was very coarse
in the paleochannels (Fig. 1), except in the upper part of the eastern
paleochannel where finer texture (loam) was observed. Outside the
sandy morphological structures, texture was contrastingly differ-
ent with clay percentage that decreased gradually from high con-
tents in the North (silty-clay loam) to lower values in the very
South of the study area (sandy loam). On average, soil samples
were characterized by medium to high salinity (Abrol et al.,
1988). The lowest salinity values (<0.4 dS m~!) were recorded in
the coarser portions of the paleochannels, and the highest values
(>1.5dSm™") in the northern part of the study area, outside the
paleochannels. Soil pH varied drastically in the area, from a mini-
mum of 4.45 in the south to slightly-medium alkaline (>7.5) asso-
ciated with the well preserved paleochannels and the high clay
contents observed along the northern margin of the study site. Soil
organic carbon content, which strongly influenced several physical
properties, was generally very high (average: 9.8%). Although in
mineral soils the organic matter generally accumulates where tex-
ture is finer (Lugato et al., 2009), spatial variability of SOC and tex-
ture can be unrelated in organic soils (as those addressed by the
present study) (Shimada et al., 2001). The northern part of the
study site, where clay content was the highest, was generally char-

acterized by low SOC (<4%), the well preserved paleochannels also
showed low SOC, with a slightly wider range (2-9%). The saline
areas and most of the southern portion of the study site were char-
acterized by high SOC, generally in the 11-22% range. As a conse-
quence, higher bulk density (p, > 1.2 Mg m~>) were observed in
sandy soil with relatively low SOC content, whereas low p;, values
(pp < 0.7 Mg m~3) were observed in soils with high SOC.

No significant correlations were observed between soil proper-
ties and the 2010 crop production likely due to the unfavorable
meteorological conditions (Table 2). In contrast, the 2011 yield cor-
related positively with clay content and negatively with soil salin-
ity, TC, SOC, TN, and TS. Even though organic matter is generally
known to be beneficial for soil productivity (Baldock and Nelson,
2000), high contents of acidic peat can be an inhospitable environ-
ment for most crops (Andriesse, 1988). Moreover, being more
prone to land subsidence than mineral soils (Schothorst, 1977,
Gambolati et al., 2005), organic soils are characterized by a lower
elevation and, consequently, in coastal farmlands they generally
lay very close to the saline groundwater.

3.2. Maize yield response model
Eq. (4) shows the backward stepwise OLS MLR that provided the

best maize response model according to the spatial variability of
the soil properties in the 41 sampling locations:

Table 1

Soil topographic and physicochemical properties mean and range statistics of the average over the 0-0.8 m depth increment at the 41 sampling locations.
Soil properties® Mean Minimum Maximum Standard deviation Standard error Coefficient of variation Skewness
Z, m —2.58 -3.15 —1.40 0.39 0.06 -0.15 0.96"
ECy., dSm™! 1.14 0.21 3.30 0.72 0.11 0.63 1.05°
0g, kg kg™ 0.27 0.08 0.44 0.09 0.01 0.31 —-0.06
Sand, % 44.09 14.77 73.09 14.87 2.32 0.34 0.42
Silt, % 39.74 19.86 56.32 9.09 1.42 0.23 -0.72
Clay, % 16.17 6.03 31.38 6.43 1.00 0.40 0.22
pp Mg m—> 0.90 0.51 1.44 0.21 0.03 0.24 0.30
pH 7.04 4.45 7.99 0.85 0.13 0.12 -1.54
TC, % 11.03 3.97 22.22 4.70 0.73 0.43 0.89"
CaC0s, % 9.99 0.29 27.07 7.27 1.14 0.73 0.49
SOC, % 9.83 1.92 22.19 5.14 0.80 0.52 0.88"
N, % 0.75 0.22 1.54 0.33 0.05 0.44 0.68
C:N 12.49 6.26 16.72 2.04 0.32 0.16 -0.72
TS, % 0.52 0.11 1.20 0.26 0.04 0.51 0.64

@ Z, elevation; EC; ., electrical conductivity of a soil extract with a soil to water ratio of 1:2; 6, gravimetric water content; py, bulk density; TC, total carbon; SOC, soil organic

carbon; TN, total nitrogen; C:N, SOC to TN ratio; TS, total sulfur.

b Significant. Skewness is significant if skewness divided by standard error of skewness (SES) > 2. SES was calculated according to Tabachnick et al. (2001).



E. Scudiero et al./Computers and Electronics in Agriculture 99 (2013) 54-64 59

Table 2
Correlation matrix for the soil properties® and maize yield in the study area. Bold numbers are significant at the P < 0.05 level.

“Soil properties z ECy.» Og Sand Silt Clay s pH TC socC CaCO3 TN C:N TS

VA -

ECi.o —0.09 -

0g -0.19 064 -

Sand -0.22 -0.23 -0.35 -

Silt 0.14 0.26 042 -0.97 -

Clay 0.32 0.16 0.21 -0.94 0.83 -

Pb 0.24 -0.36 -0.72 043 -0.50 -0.29 -

pH 0.57 —0.08 —-0.36 0.11 -0.16 —0.04 0.38 -

TC -0.34 0.20 0.31 0.04 —-0.04 —-0.05 -0.20 —-0.67 -

SOC -0.40 0.21 0.40 0.00 0.01 -0.02 -0.28 -0.73 0.98 -

CaCOs3 0.57 -0.17 -0.56 0.18 -0.22 -0.10 0.54 0.70 -0.49 -0.62 -

TN -0.39 0.23 0.39 -0.03 0.04 0.00 -0.29 -0.72 0.98 0.98 —0.61 -

C:N -0.53 0.13 0.28 0.37 -0.32 -042 -0.18 -0.51 0.56 0.62 -0.65 0.56 -

TS -0.29 0.20 0.29 —0.01 0.02 -0.01 -0.24 -0.61 0.95 0.93 -0.48 0.94 049 -

Yield 2010 -0.18 -0.19 -0.29 —0.01 0.03 —0.01 -0.19 -0.29 0.22 0.24 —0.28 0.24 0.20 0.22

Yield 2011 0.24 -0.34 -0.16 -0.28 0.19 0.36 -0.18 0.23 -0.38 -0.36 0.00 -0.33 -0.33 -0.35

@ Z, elevation; EC; ., electrical conductivity of a soil extract with a soil to water ratio of 1:2; 6, gravimetric water content; pp, bulk density; TC, total carbon; SOC, soil organic

carbon; TN, total nitrogen; C:N, SOC to TN ratio; TS, total sulfur.
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Fig. 4. Observed maize yield vs. predicted estimates using Eq. (4). Dashed line
represents a 1:1 relationship.

Y = 18.70 — 048 x EC?, — 3.62 x p2 — 0.18 x SOC — 0.71

x clay +0.02 x clay* + ¢ (4)

where Yis the estimated 2011 yield and ¢ is the random error compo-
nent, which was confirmed to be normally distributed and spatially
independent. This latter implies that the OLS fitting technique pro-
vided optimal and unbiased estimates of the regression parameters.
The regression was characterized by R? = 0.530 (Fig. 4) and a root
mean square error RMSE = 2.22 Mg ha~'. All the soil parameters were
significant at P < 0.05 or below. The analysis of variance indicated
that the F = 7.88 was significant (P > F at <0.001).

According to Eq. (4), a higher soil salinity, bulk density, and or-
ganic carbon content would decrease maize production; on the
other hand, yield would increase with increasing clay content.
The one-at-a-time sensitivity analysis reported in Table 3 indicates
that clay and bulk density are the most significant soil properties
influencing yield in 2011. Ostensibly, the significance and correla-
tion of yield to clay content and bulk density is a consequence of

Table 3

Degree of predicted yield sensitivity to 1 standard deviation (SD) change in each soil
property (highlighted in bold) of Eq. (4).

Parameter ECin  po SoC Clay Calculated  Percentage
sensitivity® yield change
ds kg % % Mg ha™! %
m' m3
Baseline (Eq. 1.14 09 9.83 16.17 8.43 -
(4)
EC;2+1SD 186 09 9.83 16.17 7.4 12.16
pp+1SD 1.14 111 9383 16.17 6.87 18.5
SOC+1 SD 1.14 09 1497 16.17 7.51 10.93
Clay +1 SD 1.14 09 9.83 22.6 10.03 19.05

2 Average over the root zone (0-0.8 m). EC;.,, electrical conductivity of a soil
extract with a soil to water ratio of 1:2; pj, soil bulk density; SOC, soil organic
carbon.

smaller available water associated with soils with little clay and/
or SOC contents (hence with high p,) because available water di-
rectly influences crop yield.

The model described about 53% of the total yield variability, sug-
gesting that other factors (e.g., biological, meteorological, and
anthropogenic factors) influenced the crop productionin 2011 aside
from the investigated soil properties. Moreover, the robustness of
this type of yield response model is limited because of the noise in
the yield data, which is commonly biased by within-cell variability
and combine dynamics (Corwin et al., 2003; Simbahan et al., 2004).

3.3. Soil spatial characterization driven by proximal-sensing

Apparent soil electrical conductivity and bare-soil NDVI spatial
data displayed high variability across the study site, described by
the experimental semivariograms showed in Fig. 5. The a posteriori
cross-validation provided very low RMSEs for the three datasets:
0.01dSm™! for EC, Low, 0.03 dS m™! for EC, High, and 0.004 for
bare-soil NDVI.

The EC, Low and EC, High maps showed nearly identical spatial
patterns (see Fig. 6a; EC, High map is not shown), yet they differed
in values and ranges. The EC, Low map (Fig. 6a) was characterized
by an average (0.65 dS m~!) lower than that of EC, High (1.07 dS
m~'). The lowest EC, values were observed in the paleochannels,
with minimum values equal to 0.12 and 0.31 dS m~! for EC, Low
and EC, High, respectively, recorded in the western paleochannel
(low clay and SOC, high p). Conversely, the maximum EC, values
(1.75 and 2.78 dS m~! for EC, Low and EC, High, respectively) were
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Fig. 6. Kriged maps for (a) EC, Low and (b) bare soil NDVL. The dots in the maps represent the EC, survey grids. EC,, apparent soil electrical conductivity (dS m~"); NDVI,

normalized difference vegetation index.

associated with saline loamy soils in the northern part of the study
site.

Bare-soil NDVI (Fig. 6b) also varied greatly across the area, with
a north-south gradient: in the northern part of the study site,
where texture was finer, NDVI ranged between 0.148 and 0.242.
The NDVI increased gradually southward reaching a maximum va-
lue of 0.418.

The EC, Low and EC, High measurements showed similar corre-
lations with soil properties (Table 4). The EC, was significantly cor-
related with salinity and bulk density, as commonly observed in
similar studies (Corwin and Lesch, 2005a). As sometimes can occur
(Corwin et al., 2003), EC, was not correlated with maize yield. High
EC, values were observed in the salt-affected portions of the field,
whereas low EC, readings were found within the paleochannels
characterized by high p, (hence low clay and SOC contents). Con-
sequently, as suggested by Eq. (4), both high and low EG,, i.e. high

Table 4

Correlation coefficients for the soil proximal- and remote-sensing data with selected
soil properties and the 2010 and 2011 maize yield data. Bold numbers are significant
at the P < 0.05 level.

Soil properties® EC;.» Clay Db SOC  Yield 2010 Yield 2011
EC, Low 0.52 024 -046 0.15 0.05 0.01
EC, High 049 027 -053 0.12 0.13 0.11
Bare-soil NDVI -0.06 -0.51 -0.12 0.52 -0.23 0.45

2 ECy.,, electrical conductivity of a soil extract with a soil to water ratio of 1:2; p,
bulk density; SOC, soil organic carbon.

EC;.; and high p,, respectively, were associated to low crop produc-
tion. This evidence indicated that EC, should be considered a
parameter to characterize soil spatial variability rather than a
mean to predict yield dynamics (Corwin and Lesch, 2010).

Significant correlations were observed between texture, organic
content, and maize yield in 2011 with bare-soil reflectance, con-
firming the results from other Authors (Torrent and Barron,
1993; Chang et al., 2001; Singh et al., 2004; Viscarra Rossel et al.,
2006; Gomez et al., 2008). A SOC increase reduced both VIS and
NIR reflectance (Uno et al., 2005). However, VIS, which was always
smaller than NIR (Lillesand et al., 2004; Uno et al., 2005), decreased
with a higher slope than NIR, yielding larger values of NDVI.

These outcomes were also confirmed by spatial linear model
analyses. The EC,, both in Low or High configuration, was not suffi-
cient to characterize the spatial variability of the four soil proper-
ties, describing variability in EC;.; and pj only.

The EC, Low and EC, High measurements were normalized to
their natural logarithm, as commonly done with EC, data calibra-
tion (Lesch et al.,, 1992). Both regressions leaded to very similar
regression models. The first for EC, Low was

In(EC, Low) = —0.38 + 0.21 x EC;, — 0.61 x p, + & (5)

and was characterized by a R?>=0.415 (adjusted R?>=0.385) and
RSME = 0.22 dS m~". Soil salinity and bulk density were both signif-
icant to the <0.01, whereas the intercept resulted non-significantly
different from zero.

The latter read
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Fig. 8. Portion of within-unit variance remaining for soil salinity (EC;.,), bulk
density (pp), and soil organic carbon (SOC) and clay contents after dividing the
study site into site-specific management units (SSMUs).

In(EC, High) = 0.29 + 0.18 x ECy5 — 0.74 x p, + & (6)

with R? = 0.438 (adjusted R? = 0.408) and RMSE = 0.34 dSm™'. The
intercept term was non-significant, whereas EC;., and p, were both
significant to the <0.01. An adjustment for the spatial autocorrelat-
ed error structure was employed to obtain optimal regressions for
both Egs. (5) and (6).

According to Egs. (5) and (6), high soil salinity and low bulk
density led to high EC,. It is well known that bulk density is corre-
lated with EC, (Rhoades et al., 1999; Corwin, 2008). As already ob-
served for the Ca’ Bianca soils by Scudiero et al. (2012), low pp
values were observed in areas rich in peat and/or clay, which are
known to facilitate the conduction of electricity in the soil (Ander-
son-Cook et al., 2002; Corwin and Lesch, 2005a).

Conversely, the backward stepwise OLS MLR for bare-soil NDVI
was significantly described by the spatial variability of SOC and clay:

NDVI = 0.251 + 0.003 x SOC — 0.003 x clay + & (7)

with R? =0.511 (adjusted R?=0.485) and RMSE = 0.049. The inter-
cept, SOC, and clay terms were significant to the <0.001, <0.01,
and <0.001, respectively. High SOC and low clay increased bare-soil

Site Specific
Management Units
(SSMUs)

% Sampling Locations

[ Issmul

[ Issmull

N I ssmu il
A 0 50 100  200Meters MM SSmulv
T T Y T T | - SSMUV

Fig. 9. Delineation of site-specific management units (SSMUs) using the fuzzy c-
means unsupervised clustering algorithm on EC, Low and NDVI; with sampling
locations. EC,, apparent soil electrical conductivity (dS m~!); NDVI, normalized
difference vegetation index.

NDVI. An adjustment for the spatial autocorrelated error structure
was used in Eq. (7).

3.4. Site-specific management units delineation and validation

Soil apparent electrical conductivity and reflectance are known
to provide good ancillary information for SSMU delineation (Ortiz
et al.,, 2007; Ortiz et al., 2010; Roberts et al., 2012). Indeed, in our
experiment the complementary use of EC, and bare-soil NDVI
was the only feasible option to delineate SSMUs according to the
spatial variability of the investigated soil properties. In particular,
two couples of ancillary data were tested for the SSMU delineation:
EC, Low with NDVI and EC, High with NDVI. The use of EC, Low
with NDVI provided better NCE and FPI values than EC, High with
NDVI (Fig. 7a and b). According to both indices, the goodness of the
fuzzy c-means clustering was maximized with the study site di-
vided into five management units. The concordance of the two
indices is an indication of the goodness of the classification (Frid-
gen et al., 2004; Morari et al., 2009). The NCE and FPI were in the
same range of other published data (Li et al., 2007) and remarkably
lower than those provided by Brock et al. (2005) and Morari et al.



62

Table 5

E. Scudiero et al./Computers and Electronics in Agriculture 99 (2013) 54-64

Number of soil-sampling locations and yield data points included within each site-
specific management unit (SSMU).

SSMU  Number of Soil

Number of yield data

Number of yield data

Samples points in 2010 points in 2011
I 7 555 595
1l 9 659 690
11 7 510 506
v 9 588 564
\Y 9 584 618

(2009). These very small values suggested that the clustering iden-
tified areas characterized by contrasting properties.

The analysis of within-unit soil variance confirmed that the best
SSMU delineation was obtained with five units (Fig. 8). Using the
variance of the entire site (i.e., one management unit) as reference
(i.e. 100% level) (Fraisse et al., 2001), within-unit variance of EC;.,
(—35.8%), pp (—55.2%), and clay content (—52.8%) showed the max-
imum reduction when five units were delineated, whereas the
lowest SOC within-unit variance (—40.2%) was observed with se-
ven SSMUs.

On the basis of these outcomes, the EC, Low and bare-soil NDVI
maps where used to delineate five SSMUs, hereafter named I, II, III,
IV, and V (Fig. 9). Each management unit included from 7 to 9 soil-
sampling locations (Table 5).

SSMU 1 was characterized by fairly small EC, Low (<0.6 dSm™')
and high NDVI (>0.30). The highest EC, Low (>0.8 dSm~!) charac-
terized SSMU I1. SSMU 11l identified most part of the well-preserved
paleochannels, where clay content was very low, with soil showing
very small EC, Low (<0.4 dS m~') and NDVI in the 0.19-0.26 range.
SSMU IV was representative of areas with low NDVI (<0.1.9) and
EC, Low (<0.6 dS m™"). Finally, fairly high EC, Low (>0.6) and NDVI
(>0.24) values were typically found in SSMU V.

According to the analysis of variance, all soil properties showed
significant differences within the five management units (Fig. 10).
In particular, the proposed methodology for SSMU delineation
helped to identify a very saline area (SSMU II), where the average
EC;.»=1.90 dS m~! was almost twice as high as the average salinity
observed in the other units (1.05, 0.64, 0.99, and 0.98 dSm™! in
SSMUs 1, 111, 1V, and V, respectively). SSMU III was characterized
by the highest pj, values (average = 1.22 Mg m3), the lowest clay
content (average = 8.86%), and low to mid-low soil salinity. SSMU
IV was characterized by low average salinity and the lowest SOC
(5.80%) and highest clay (22.53%) average contents. It is worth not-
ing that the northern part of the eastern paleochannel, where tex-
ture was finer, was mainly confined within SSMU IV. SSMUs 1, 1I,
and V were the units with the highest SOC average contents
(~12%), with very high maximum SOC (SOC > 20%) in SSMUs 1
and V, and were associated with the lowest observed pH values
(Table 2).

The yield data in 2010 and 2011 were classified according to the
five management units (Table 5). In the year 2010, SSMUs 11l and IV
were identified as the most productive zones, suggesting that the
low salinity and SOC contents observed in the paleochannels were
favorable for maize (Fig. 10e). SSMUs |, 11, and V were characterized
by a lower average yield. The medium-high average salinity and
SOC, which are associated with pH values generally in the 4.5-
5.5 range in the southern portion of the study site, were most likely
responsible for the yield reduction. In 2011 the yield in SSMU III
was significantly smaller than in SSMU IV (Fig. 10f), suggesting that
the low rainfall occurring in that year significantly reduced the
yield in the paleochannels with low clay and high p,. The effect
of high salinity (SSMU II) seemed to be confirmed in 2011. More-
over, SSMU Il showed an average yield as low as that observed in
units I and V, which were confirmed as the areas with the lowest
maize production also in 2011.
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4. Summary and conclusions

Yield is affected by the combined influence of a range of factors
including edaphic, meteorological, biological, topographic, and
anthropogenic factors. Unfortunately, many of these factors are
impractical to control and mitigate. As edaphic factors are gener-
ally consistent in time, long-term site-specific soil management
can be a reliable solution in areas characterized by high soil spatial
variability. Understanding which soil properties play a major role
influencing within-field spatial variability of crop yield is the first
step in SSMU delineation (Corwin et al., 2003; Corwin and Lesch,
2005b; Corwin and Lesch, 2010).

Once a group of relevant soil properties is identified, soil prox-
imal- and remote-sensing can be used to describe their distribu-
tion over a large area from a limited number of ground-truth soil
samples. Often, a single class of proximal-sensing data is insuffi-
cient to characterize the variability of all the soil properties influ-
encing yield. In agreement with Corwin and Lesch (2010), this
paper suggests that multiple sensors should be selected to provide
complementary information to represent the spatial variability of
all the properties of interest. Multiple sensors can be used regard-
less of the fact that their readings correlate with crop yield or not.
As a matter of fact, proximal-sensing data, such as soil apparent
electrical conductivity (EC,), have often been misinterpreted as a
tool to understand yield spatial variability. Often times EC, corre-
lates inconsistently with crop yield. In those cases where EC, does
not correlate with yield then it is known that either EC, is not mea-
suring a soil property that is affecting crop yield (Corwin et al.,
2003) or that the combined influence of soil properties affecting
yield, but that are not measured by EC,, are diminishing EC,’s sta-
tistical correlation with yield.

In this paper soil salinity (EC;.»), bulk density (pp), and organic
carbon (SOC) and clay contents were identified as the soil properties
significantly influencing the spatial variability of maize yield in a
farmland affected by saltwater intrusion at the southern edge of
the Venice Lagoon, Italy. Apparent electrical conductivity and
bare-soil NDVI in combination were shown to describe the spatial
variability of these soil properties. Due to the soil nature in the area,
EC, was used to represent the spatial distribution of EC;., and pj
only. On the other hand, bare-soil NDVI was significantly related
to SOC and clay contents. The combined use of both proximal-sens-
ing spatial datasets culminated in the delineation of SSMUs, whereas
individually the two proximal sensors were of limited success. A fuz-
zy c-means clustering of the EC, and bare-soil reflectance data
proved to be a useful statistical tool for SSMU delineation, identify-
ing: one homogeneous unit with optimal maize yield, one unit af-
fected by very high soil salinity, one unit characterized by very
coarse texture (i.e. sandy paleochannels), and two units with both
medium-high soil salinity and high organic carbon content.

From a practical point of view, this research strongly supports the
potentiality of using multiple-sensor platforms to delineate SSMUs.
The use of multiple sensors indeed increases the likelihood of cap-
turing the spatial variation of all soil properties influencing the with-
in-field variation of crop yield. Once the proximal-sensing data is
appropriately selected, the SSMU delineation can be carried out with
a good probability that each selected management unit would differ
from the others in terms of the soil properties influencing yield. The
approach proposed could be easily adopted by agriculture consul-
tants who can now rely on cheap proximal sensors, easily accessible
satellite data, and user friendly software suites.
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