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Directed soil sampling based on geospatialmeasurements of apparent soil electrical conductivity (ECa) is a poten-
tial means of characterizing the spatial variability of any soil property that influences ECa including soil salinity,
water content, texture, bulk density, organic matter, and cation exchange capacity. Multi-field ECa survey data
often exhibit abrupt changes in magnitude across field boundaries that complicate the calibration of ECa to soil
salinity (i.e., ECe, electrical conductivity of the saturation extract) over large spatial extents. The primary objective
of this study is to evaluate three regression techniques for calibrating ECa to ECe over spatial scales ranging from a
few thousand to a hundred thousand hectares, where ECa wasmeasured using electromagnetic induction equip-
ment. The regression techniques include analysis of covariance (ANOCOVA), field specific regression (FSR), and
common coefficient regression (CCR). An evaluationwasmade by comparing jack-knifedmean square prediction
errors (MSPE) of ECe for two case studies: 2400 ha of the BroadviewWaterDistrict in California's San JoaquinVal-
ley and roughly 100,000 ha of thewest side of Kittson County in the Red River Valley ofMinnesota. The ANOCOVA
model outperformed the FSR and CCR regression models on a prediction accuracy basis with the smallest MSPE
estimates for depth predictions of soil salinity. The implication of this evaluation is that once ANOCOVA models
for each depth are established for a representative set of fields within a regional-scale study area, then the slope
coefficients can be used at all future fields, thereby significantly reducing the need for ground-truth soil samples
at future fields, which substantially reduces labor and cost. Land resource managers, producers, agriculture con-
sultants, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of
regional-scale maps of soil salinity.

Published by Elsevier B.V.
1. Introduction

The characterization of spatial variability is without question one
of the most significant areas of concern in soil science because of its
broad reaching influence on field- and landscape-scale processes re-
lated to agriculture and the environment, including solute transport,
within-field variation in crop yield, and soil salinity accumulation,
just to mention a few. Soil salinity accumulation is a major agricul-
tural concern in arid and semi-arid soils throughout the world be-
cause it reduces crop yields due to osmotic and specific-ion toxicity
common coefficient regression;
lectrical conductivity of the sat-
magnetic induction in the hor-
th electromagnetic induction in
agnetic induction; FSR, field
square prediction error.
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effects and impairs soil permeability and tilth. Of the 13.2 × 109 ha of
land surface on the earth, only 1.5 × 109 ha is cultivated and 23% of
the cultivated land is estimated to be salt-affected, which comprises
about 10% of the total arable land (Massoud, 1981). The influence
of soil salinity on crop yield is well known in the plant salt tolerance
literature (Maas, 1996). Maps of soil salinity assist producers in crop
selection, irrigation management, and reclamation. However, spatial
variation of dynamic soil properties, such as water content and salin-
ity, are especially challenging to characterize spatially due to their
temporal nature and their complex spatial nature.

The geospatial measurement of ECa is a sensor technology that
has played, and continues to play, a major role in addressing the
issue of field-scale spatial variability characterization, particularly
in mapping soil salinity (Corwin and Lesch, 2005a). Geospatial mea-
surements of ECa are spatially complex because they reflect the influ-
ence of several physical and chemical soil properties, including soil
salinity, texture, water content, bulk density, organic matter, and
cation exchange capacity. Subsequently, geospatial measurements
of ECa are used to direct soil sampling as a means of characterizing
spatial variability of those soil properties that correlate with ECa at

http://crossmark.crossref.org/dialog/?doi=10.1016/j.geoderma.2014.03.019&domain=pdf
http://dx.doi.org/10.1016/j.geoderma.2014.03.019
mailto:Dennis.Corwin@ars.usda.gov
mailto:SLesch@riversideca.gov
http://dx.doi.org/10.1016/j.geoderma.2014.03.019
http://www.sciencedirect.com/science/journal/00167061


289D.L. Corwin, S.M. Lesch / Geoderma 230–231 (2014) 288–295
that particular study site. Characterizing spatial variability with ECa-
directed soil sampling is based on the notion that when ECa corre-
lates with a soil property or properties, then spatial ECa information
can be used to identify sites that reflect the range and spatial vari-
ability of the property or properties (Corwin and Lesch, 2005b).

In instances where ECa correlates with a particular soil property,
an ECa-directed soil sampling approach will establish the spatial dis-
tribution of that property with an optimum number of site locations,
which significantly reduces labor costs compared to grid sampling
(Corwin et al., 2003a, 2003b). Details for conducting a field-scale
ECa survey for the purpose of characterizing the soil spatial variabil-
ity are in Corwin and Lesch (2005b). Protocols specifically for map-
ping soil salinity with ECa-directed soil sampling are in Corwin and
Lesch (2013). Corwin and Lesch (2005a) provide a compilation of lit-
erature pertaining to the soil physical and chemical properties that
either directly or indirectly influence ECa.

Regional-scale maps of soil salinity are needed by policy makers
to establish the extent of the soil salinity problem and to monitor
the impact of climate change and agriculture on soil salinization.
The Red River Valley in the Midwestern USA is a perfect example of
where this information is needed (Lobell et al., 2010). However,
regional-scale mapping of soil salinity poses new challenges beyond
those of field-scale salinity assessment due to the greater spatial
extent.

A review paper byMetternicht and Zinck (2003) and a recent special
collection of papers in the Journal of Environmental Quality (2010, vol-
ume 39, issue 1) focusing on remote sensing of soil degradation provide
several papers that present regional-scale salinity assessments using re-
mote sensing (Caccetta et al., 2010; Furby et al., 2010; Lobell et al., 2010;
Singh et al., 2010). In the study by Lobell et al. (2010) ECa-directed sam-
pling was used in combination with remote imagery (i.e., MODIS, Mod-
erate Resolution Imaging Spectroradiometer) to map salinity over
hundreds of thousands of hectares (Lobell et al., 2010). In essence, the
ECa-directed sampling provided ground-truth measurements of soil sa-
linity to calibrate multi-year MODIS enhanced vegetative index (EVI)
imagery, thereby providing a relationship between EVI and soil salinity.

An alternative and less complicated approach for assessing regional-
scale soil salinity is to develop a relationship between ECa measured
with electromagnetic induction (EMI) and soil salinity for an entire
region. We hypothesize that regression techniques can calibrate
ECa to soil salinity (where soil salinity is measured using the electri-
cal conductivity of the saturation extract, ECe, expressed in dS m−1)
for multiple fields extending over a regional scale, substantially re-
ducing the need for future ground-truth soil sampling. The objective
of this research is to evaluate three regression modeling techniques
for calibrating ECa to ECe for multiple fields extending over a range
of a few thousand to over a hundred thousand hectares and to estab-
lish the viability of using regression techniques for regional-scale sa-
linity assessment.

2. Rationale for regional calibration with regression models

Being spatial in nature (i.e., referenced across a spatial domain), it is
quite reasonable to consider some type of geostatistical modeling tech-
nique when attempting to calibrate ECa survey data to a specific soil
property such as salinity. Numerous examples exist in the literature
of geostatistical or spatial modeling approaches. The textbooks by
Schabenberger and Gotway (2005), Schabenberger and Pierce (2002),
Webster and Oliver (2001), Wackernagel (1998), and Isaaks and
Srivastava (1989) are particularly relevant to the calibration problem.

However, in addition to the commonly used geostatistical tech-
niques, ordinary linear regression models are often used when cal-
ibrating data. In the mainstream statistical literature, it is well
known that ordinary linear regression models represent a special
case of amuchmore general class ofmodels commonly known as linear
regression models with spatially correlated errors (Schabenberger and
Gotway, 2005), hierarchical spatial models (Banerjee et al., 2004), or
geostatistical mixed linear models (Haskard et al., 2007). This broader
class of models includes many of the geostatistical techniques familiar
to soil scientists, such as universal kriging, kriging with external drift
and/or regression-kriging, as well as standard statistical techniques
like ordinary linear regression and analysis of covariance (ANOCOVA)
models.

Lesch and Corwin (2008) review the use of these different model-
ing techniques for calibrating remotely sensed survey data to soil
properties. Lesch and Corwin (2008) also describe the necessary
set of statistical assumptions for reducing a geostatistical mixed lin-
ear model to an ordinary linear model. Historically, ordinary linear
models have often been used to calibrate ECa survey data to one or
more target soil properties, such as salinity, i.e., ECe (Corwin and
Lesch, 2005b). For example, field-scale soil salinity patterns are com-
monly mapped quite accurately using ECa survey data and ordinary
linear regression models, since the residual error distribution typi-
cally exhibits only short-range spatial correlation (Corwin and
Lesch, 2005b; Lesch and Corwin, 2008; Lesch et al., 2005). Therefore,
a simpler linear regression model can be used in place of the full
geostatistical model to generate a map with a high degree of predic-
tion precision, provided that an appropriate sampling strategy is
employed (Lesch, 2005).

Multi-field ECa survey data often exhibit an abrupt change in
magnitude across field boundaries, presenting a challenge to the
conversion of ECa to ECe at large spatial extents of thousands to
tens of thousands of hectares. The abrupt change is typically caused
by a variety of reasons: (i) between-field variation in field average
water content due to irrigation frequency and timing, (ii) between-
field variation in soil texture, (iii) condition of the soil surface (e.g., till
vs. no-till) due to management practices that effect soil compaction,
(iv) surface geometry (i.e., presence or absence of beds and furrows),
(v) temperature differences (i.e., ECa surveys conducted at different
times of the year), and (vi) between-field spatial variation in salinity.

Calibrationmodels are often used to adjust out an abrupt change. For
instance, temperature corrections to ECa data are typically done using a
multiplicative adjustment constant, i.e., ECa,25 °C = ft · ECa,t where t is
the soil temperature and ft is the temperature correction factor. Similar-
ly, changes in bed–furrow geometry, surface conditions, soil texture,
and water content are approximated in the same manner. Generally
speaking, many secondary effects that influence ECa–ECe calibration
models are modeled as multiplicative in nature, at least to a first-order
approximation (Corwin and Lesch, 2005b).

More specifically, consider the case of surface geometry, i.e., pres-
ence and absence of beds and furrows in a field, where an ECa survey
has been conducted. In the absence of any surface geometry, a simple
power model describes the deterministic component of the ECe–ECa

relationship, i.e., ECe,i ≈ β ⋅ ECa,iα where β is a coefficient and i = 1, 2,
3,…,n. To account for the surface geometry effect an additional
dummy variable (x) and associated scaling parameter (θ) are used,
i.e., ECe;i≈θxi � β � ECα

a;i where xi = 1 if there is a surface geometry ef-
fect and xi = 0 otherwise. Under a log transformation, this multipli-
cative parameter becomes additive as shown in Eq. (1):

ln ECe;i

� �
≈xi ln θð Þ þ ln βð Þ þ α ln ECa;i

� �
¼ β01 þ β02 xið Þ þ α ln ECa;i

� �

ð1Þ

On a log–log scale, a simple linear regression model with an addi-
tional blocking (shift) parameter can adjust an abrupt change in any
multiplicative ECa effect within a field. Note that Eq. (1) is a simple
type of ANOCOVA model. In principle, this type of ANOCOVA modeling
approach could be used to calibrate multiple-field ECa surveys to ECe,
provided that the assumptions in Eq. (1) are reasonable.

Consider a scenario where ECa survey data is acquired across mul-
tiple fields and assume that the number of soil sampling locations
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collected in any given field is minimal (i.e., n b 10). In the absence of
any useful spatial or geostatistical modeling approach under these
conditions, basic regression modeling techniques are used. The re-
gression techniques include field specific regression (FSR), common
coefficient regression (CCR), and ANOCOVA. A FSR model is defined
by Eq. (2):

ln ECe;ijk

� �
¼ β0;jk þ β1;jk ln EMv;ik

� �
þ β2;jk ln EMh;ik

� �
þ εijk: ð2Þ

Common coefficient regression model is defined by Eq. (3):

ln ECe;ijk

� �
¼ β0; j þ β1; j ln EMv;ik

� �
þ β2; j ln EMh;ik

� �
þ εijk: ð3Þ

Analysis of covariance model is defined by Eq. (4):

ln ECe;ijk

� �
¼ β0;jk þ β1;jk ln EMv;ik

� �
þ β2;jk ln EMh;ik

� �
þ εijk ð4Þ

where i refers to the soil sample site within a field (i=1, 2, 3,…, nk), j is
the sample depth (j=1, 2, 3,…, p), k is thefield (k=1, 2, 3,…,M), EMv is
the ECa measured with EMI in the vertical coil configuration (dS m−1),
and EMh is the ECa measured with EMI in the horizontal coil configura-
tion (dS m−1).

In the ANOCOVA model, the intercept parameter is uniquely esti-
mated for each sampling depth and field, but the slope coefficients are
only assumed to change across sampling depths (not across fields).
For a specific field, the FSR model requires 3p parameter estimates
(for p depths) and sufficient sample data must be acquired in each
field to estimate these parameters; thus, forM fields a total of 3pM esti-
mates are needed. In contrast, the CCRmodel requires just 3p estimates
for an entire region. A set of calibration fields can be used to develop the
CCRequations andno additional samples are needed. Unfortunately, the
accuracy of a CCRmodel tends to be rather poor.With respect to param-
eter estimate requirements the ANOCOVA approach represents a com-
promise between the FSR and CCR models. Once a suitable set of
calibration fields are identified to develop the ANOCOVA equations,
then additional samples collected in new fields are only used to esti-
mate the field-specific intercept values. The set of initial calibration
fields require pM + 2p initial parameter estimates. After developing
these calibration estimates a new survey field requires just p parameter
estimates (for p depths).

3. Materials and methods

Two study sites were selected to evaluate the three regression tech-
niques as potential regional-scale calibration models of ECa to ECe. The
chosen sites provided a challenging and rigorous evaluation of the re-
gression techniques by testing sites with wide ranging differences in
areal extent, soil properties, bed–furrow surface geometry, manage-
ment, and geographic location, each of which can influence the ECa to
ECe calibration. To evaluate the prediction accuracy of the three regres-
sion techniques the jack-knifed mean square prediction error (MSPE)
was calculated for each model at each study site.

3.1. Description of case study sites

Two study sites of disparate size and property characteristics were
selected to evaluate the regression techniques: (1) 2396 ha of the
Broadview Water District (latitude: 36°50′08″ N; longitude: 120°33′
55″ W) located on the west side of the San Joaquin Valley (WSJ) near
Firebaugh, CA, and (2) approximately 100,000 ha on the west side of
Kittson County, MN (latitude: 48°46′ N; longitude: 96°56′ W) in the
Red River Valley (RRV).
The 2396-ha study area within the Broadview Water District
consisted of 37 contiguous quarter sections, with each quarter sec-
tion encompassing approximately 64 ha of land. The dominant agri-
cultural crops within the survey area were alfalfa (Medicago sativa L.),
cotton (Gossypium hirsutum), and tomato (Lycopersicon Lycopersicum).
Additionally, about 15% of the total survey area was fallow. Thirty-
three of the 37 quarter-sections supported a single crop (or no crop).
The bed–furrow surface geometry consisted of 90, 100, 110, and
160 cm bed–furrow designs. All fields had been laser leveled. Four
quarter-sections contained multiple fields. The remaining 33 quarter-
sections were each single fields of 64 ha. Irrigation methods consisted
of flood irrigation down furrows and sprinkler irrigation. Irrigation ap-
plication rates varied between quarter sections. Soil textures ranged
from sandy loam to clay, with the clay content usually increasing with
depth.

Kittson County resides in the northwest corner of Minnesota,
consisting of dryland farms growing spring wheat (Triticum aestivum
L.), soybeans (Glycine max (L.) Merr.), sugar beets (Beta vulgaris L.),
and alfalfa (M. sativa L.). Kittson County is part of the Red River
Valley (RRV), which mostly consists of a glacial lake plain of nearly
level topography with occasional slight depressions bordered by
outwash plains and sloping slightly (about 10 cm for each km)
toward the Red River. Soils in the RRV represent some of themore sa-
line soils found in the USA, with negative economic impact of salinity
estimated at $50 million annually. Fields varied in size. Unlike
Broadview Water District, the soils in Kittson County are relatively
uniform, consisting of heavy textures soils with clay contents rang-
ing from 60–80%.

3.2. Electromagnetic induction (EMI) ECa surveys

Geospatial ECa measurements were obtained with the Geonics
EM38 electrical conductivity meter.2 The ECa surveys followed the sur-
vey procedures that ultimately led to the protocols and guidelines
outlined by Corwin and Lesch (2003, 2005b) and Corwin and Lesch
(2013). The ECa survey was conducted for BroadviewWater District in
May of 1991 and for Kittson County in the spring of 2007. The surveys
consisted of geospatial ECa measurements taken with mobile EMI
equipment. Electromagnetic induction measurements were taken in
the horizontal (EMh) and vertical coil configurations (EMv). The inclu-
sion of both EMh and EMv measurements provides a shallow (i.e.,
EMh) and deep (i.e., EMv) measurement of electrical conductance
(EC), which provides information regarding the salinity profile with
depth. The inclusion of both measurements in soil sample site selection
often enhances the characterization of the spatial variability of EC.

The EMI survey for Broadview Water District was one of the first
landscape-scale ECa surveys using first-generation mobile EMI equip-
ment (i.e., Geonics single-dipole EM38) that did not take a steady
stream of simultaneous EMh and EMv ECa measurements. Rather, the
mobile EMI equipment went from one point to the next, stopping at
each point to take an ECameasurement in the vertical coil configuration
and then in the horizontal coil configuration.Measurementswere taken
in a 10-by-10 gridwithin each quarter section (i.e., 64 ha), totaling 3800
locations for the entire BroadviewWater District.

For Kittson County, ECa surveys were conducted on 20 fields using
mobile EMI equipment that takes a continuous stream of ECa measure-
ments every 5 s (i.e., Geonics dual-dipole EM38 or EM38DD). The 20
fields were identified using a stratified random sampling of enhanced
vegetative index (EVI) data from 7 years of Moderate Resolution Imag-
ing Spectroradiometer (MODIS) imagery as described in Lobell et al.
(2010). Geospatial ECa readings were taken at 2000–5000 locations
within eachfield. Specific details describing the ECa survey and soil sam-
pling of Kittson County are in Lobell et al. (2010). The ECa-directed



Table 1
Comparison of FSR (field specific regression), ANOCOVA (analysis of covariance), and CCR
(common coefficient regression) model calibration statistics for 4 depth increments of 38
contiguous fields in the BroadviewWater District study site with 6–8 soil sample calibra-
tion sites per field.

Model Statistic Soil depth increment (cm)

0–30 30–60 60–90 90–120

FSR R2 0.666 0.742 0.805 0.814
MSE 0.104 0.154 0.148 0.142

ANOCOVA R2 0.491 0.580 0.645 0.704
MSE 0.112 0.177 0.191 0.160

CCR R2 0.022 0.215 0.408 0.525
MSE 0.188 0.289 0.278 0.224

R2 = coefficient of determination; MSE = mean square error.
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sampling survey followed the protocols outlined by Corwin and Lesch
(2005b).

3.3. Soil sampling

Apparent soil electrical conductivity serves as a surrogate to charac-
terize the spatial variation of those soil properties that are found to in-
fluence ECa within a field. In both studies, soil sample sites that reflect
the range and variation in ECa were selected. To achieve this, the
model-based sampling strategy in the ESAP software package was
used to select the calibration sampling locations (Lesch et al., 1995a,
1995b, 2000). The model-based sampling strategy is a response surface
sampling design, which in essence creates a 3-D surface of the ECamea-
surements and based on the range and variation selects locations that
characterize the ECa variation while maximizing the distances between
adjacent sampling locations. For Broadview Water District, 4–8 sample
site locations were identified in each field using response surface sam-
pling designs. However, only fields with six or more sample site loca-
tions were used to develop FSR, CCR, and ANOCOVA calibration
models. For Kittson County, six sample site locations were identified
in each field using response surface sampling designs. Soil samples
were collected at 30-cm depth increments for both Broadview Water
District and Kittson County. Samples were collected to a depth of 1.2
m in BroadviewWater District and 1.5m in Kittson County. A saturation
extract of each soil sample was prepared and the electrical conductivity
of the saturation extract (ECe, dSm−1) wasmeasured using themethod
presented in Rhoades (1996). Saturation percentage and water content
were determined gravimetrically.

Fig. 1 shows the 43 contiguous fields of BroadviewWater District,
with 315 sample site locations. Only the 38 fields with six or more
sample site locations were used for calibration. Kittson County
contained 120 sample site locations, i.e., six locations in each of 20
non-contiguous fields located throughout the county. Additional de-
tails concerning the ECa-directed soil sampling are presented in
Corwin et al. (1999) for Broadview Water District and Lobell et al.
(2010) for Kittson County.

3.4. Statistical evaluation of prediction error

The prediction accuracy of the three regression techniqueswas eval-
uated by a comparison of their jack-knifedmean square prediction error
(MSPE) shown in Eq. (5):

MSPE ¼ 1
Nijk

X
i; j;k

ðyijk−ŷijk; −ið ÞÞ2 ð5Þ
B
D

Fig. 1. Physical locations of all 315 soil sample sites for 37 quarter sections of BroadviewWater D
eight of the 43 fields contained six or more sample sites, which were used for calibration.
where yijk = ln(ECe,ijk) and ŷijk; −ið Þ represents the model predicted
ln(ECe,ijk) where the ith observed natural log salinity measurement has
not been used to calibrate the model. This ‘leave-one-out’ approach is
commonly used as a quantitative diagnostic tool to test the robustness
and accuracy of regression models used for prediction (Myers, 1986).

3.5. Validation of the ANOCOVA approach for Kittson County, MN

Once the ANOCOVA calibration models have been established for
each sampling depth from the form of the fitted equations defined by
Eq. (6),

ln ŷijk
� �

¼ μ̂ jk þ β1 j ln EMv;ik

� �h i
þ β2 j ln EMh;ik

� �h i
ð6Þ

where ŷijk represents the predicted ln(ECe,ijk) for the ith field site, jth

depth, and the kth field and μ̂ jk represents the estimated intercept for
the jth depth and the kth field, then the EMv and EMh slope coefficients,
β1j andβ2j respectively, can be extracted andused for all future field sur-
veys conducted across the region. In any new field surveyed in the re-
gion, these EMv and EMh slope coefficients can be used to estimate the
field specific intercepts and associated model mean square error
(MSE). This can be done using as few as two sampling locations in the
field by following the four steps below:

Step 1: For each ith sample location and jth depth at n total locations
in a field compute the shifted intercept residual ωji using Eq. (7),

ωji ¼ ln ECe;ji

� �
þ β1 j ln EMv;i

� �h i
þ β2 j ln EMh;i

� �h i
ð7Þ
ro
is

istr
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ict. Soil samples were taken inMay of 1991. Boundary lines delineate 43 fields. Thirty-



Table 2
Comparison of FSR (field specific regression), ANOCOVA (analysis of covariance), and CCR
(common coefficient regression) jack-knifed prediction statistic (i.e., mean square predic-
tion error) for 4 depth increments of 38 contiguous fields in the BroadviewWater District
study site with 6–8 soil sample calibration sites per field.

Model Mean square prediction error (MSPE)

Soil depth increment (cm)

0–30 30–60 60–90 90–120

FSR 0.202 0.294 0.264 0.278
ANOCOVA 0.131 0.207 0.221 0.187
CCR 0.191 0.292 0.280 0.227

Table 4
Comparison of FSR (field specific regression), ANOCOVA (analysis of covariance), and CCR
(common coefficient regression) jack-knifed prediction statistic (i.e., mean square predic-
tion error) for 5 depth increments of 20 non-contiguousfields in Kittson County,MN,with
6 calibration sites per field.

Model Mean square prediction error (MSPE)

Soil depth increment (cm)

0–30 30–60 60–90 90–120 120–150

FSR 0.232 0.663 0.506 0.400 0.364
ANOCOVA 0.208 0.352 0.327 0.210 0.182
CCR 0.408 0.644 0.623 0.468 0.327
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Step 2: Estimate the intercept at depth j, i.e., μ̂ j from Eq. (8),

μ̂ j ¼ 1=nð Þ
Xn

i¼1

ωji ð8Þ

Step 3: Estimate the associated depth-specific variance σ̂2
j from

Eq. (9),

σ̂2
j ¼ 1= n−1ð Þ½ �

X
ωji−μ̂ j

� �2 ð9Þ

Step 4: Repeat the above three steps for each sampling depth and
compute the model MSE estimate by averaging the Step 3 depth-
specific variance estimates.

In addition to jack-knifing analysis, in Kittson County the ANOCOVA
modeling approachwas further validated using an independent data set
composed of ECa survey data taken at five fields in Kittson County in
2006 using mobile EMI equipment. The 2006 ECa surveys were similar
to those conducted in 2007 except that soil samples were only acquired
at three or four locationswithin each field at 30-cmdepth increments to
a depth of 90 cm. Thus, there were eighteen sample locations across the
five fields.

4. Results and discussion

4.1. Broadview Water District

Table 1 displays a summary of the model statistics (i.e., R2 and
mean square error statistics, MSE) for the FSR, ANOCOVA, and CCR
calibration models of Broadview Water District at each 30-cm
depth increment down to 1.2 m. The data used was restricted to
the 38 contiguous fields having 6–8 soil sample calibration sites be-
cause the FSR models could not be accurately calibrated using less
than six sites. The R2 and MSE statistics essentially measure how
well each model “fits” the sample data. Without question, the CCR
models fit the sample data the worst. The FSR models for all four
depth increments produce the best-fit model statistics with the
Table 3
Comparison of FSR (field specific regression), ANOCOVA (analysis of covariance), and CCR
(common coefficient regression) model calibration statistics for 5 depth increments of 20
non-contiguous fields in Kittson County, MN, with 6 calibration sites per field.

Model Statistic Soil depth increment (cm)

0–30 30–60 60–90 90–120 120–150

FSR R2 0.952 0.927 0.938 0.950 0.940
MSE 0.075 0.225 0.178 0.115 0.118

ANOCOVA R2 0.830 0.851 0.854 0.885 0.882
MSE 0.162 0.280 0.256 0.161 0.139

CCR R2 0.534 0.616 0.595 0.613 0.680
MSE 0.372 0.601 0.592 0.451 0.316

R2 = coefficient of determination; MSE = mean square error.
highest R2 and lowest MSE. However, the ANOCOVA models outper-
form the FSR models on a prediction accuracy basis (i.e., MSPE) as
shown in Table 2, with the ANOCOVA models for each depth incre-
ment having the lowest MSPE. On a per field basis, the ANOCOVA
models produce smaller MSPE estimates in 30 out of 38 fields (79%).

In the Broadview Water District survey, the predictions can be im-
proved using advanced spatial modeling techniques because the fields
are spatially contiguous. However, the main point is that the simple
ANOCOVA approach works very well, particularly with respect to pre-
diction accuracy, even though there is significant between-field textural
variation, diverse irrigation management practices, and a wide range of
crops and surface geometry conditions.
4.2. Kittson County, MN

Table 3 shows the model statistics for the FSR, ANOCOVA, and CCR
calibration models of Kittson County, MN, at each 30-cm depth incre-
ment down to 1.5 m for the 20 non-contiguous fields analyzed in this
study. As was the case for Broadview Water District, that the FSR cali-
bration models have the best-fit statistics for all five depths with the
ANOCOVA model a close second and CCR model trailing. However,
Table 4 shows that the ANOCOVA calibration models produce the
smallest MSPE estimates for all five depths. Additionally, 15 of the 20
fields exhibit smaller MSPE estimates when compared to the FSR cali-
bration models.

Further data that clearly shows the viability of the ANOCOVA
approach as a means of calibrating ECa measurements to salinity
(i.e., ECe) is presented in Fig. 2, which shows the measured ECe ver-
sus jack-knifed predicted ECe averaged over 0–150 cm for the 20
fields in Kittson County. The correlation coefficient between mea-
sured and predicted ECe over 0–150 cm at 120 locations is 0.951.
Fig. 2.MeasuredECe versus jack-knifed predictedECe averaged over 0–150 cm for 20fields
in Kittson County, MN, using the ANCOVA calibration model. Solid line represents the 1:1
line.



Table 5
Distribution of ANOCOVA jack-knifed MSPE estimates for 0–1.5 m depth of 20 non-contiguous fields in Kittson County, MN.

MSPE Range Grade Prediction accuracy Number of fields
(Number of samples)

% of Total sample size Correlation of observed
and predicted salinity

b0.1 A Excellent 4 (24) 20 0.963
0.1 b MSPE b 0.2 B Good 4 (24) 20 0.912
0.2 b MSPE b 0.4 C Fair 7 (42) 35 0.884
MSPE N 0.4 U Unacceptable 5 (30) 25 0.727
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Another way to evaluate the prediction reliability of the
ANOCOVA approach is to look at the predictions on a field basis for
the MSPE range as shown in Table 5. Table 5 summarizes the distri-
bution of the ANOCOVA model jack-knifed MSPE estimates into
four classes; these classes “grade” the reliability of the salinity pre-
dictions. Overall, 75% (15 out of 20 fields) exhibit excellent to fair
(Grade A, B, or C) prediction reliability. Estimates of MSPE greater
than 0.4 suggest that the salinity levels in a particular field are not
well described, or more specifically are not strongly correlated with
associated ECa survey data measured with EMI equipment; only 5 of
the 20 fields fall into this “unacceptable” class (Grade U). Fig. 3a–d
shows the distribution of measured versus jack-knifed predicted salin-
ity (i.e., ECe) for the groups of fields exhibiting A, B C, and U prediction
accuracy grades, respectively, based on the criteria in Table 5. The scat-
ter of points around the 1:1 line in Fig. 3d shows the lack of one-to-one
correspondence between measured and predicted ECe in the five fields
graded as unacceptable. The Kittson County electromagnetic induction
ECa slope coefficients of EMh and EMv estimated for ANOCOVA calibra-
tion Eq. (6) are shown in Table 6 for the five depth increments.

4.3. Validation of the ANOCOVA approach for Kittson County, MN

Validation of the traditional FSR calibration technique was not
possible because of insufficient data in the Kittson County valida-
tion data set. In contrast, the previously developed ANOCOVA
models can be easily validated with the limited validation data set
(i.e., EMh and EMv measurements and soil samples taken at 30-cm
increments to a depth of 90 cm at only 3–4 locations). Using the
a) Grade A 

c) Grade C 

Fig. 3.Distribution ofmeasured versus jack-knifed predicted salinity (i.e., ECe) for the groups of
grades based on the criteria in Table 5. Solid line represents the 1:1 line.
ECa slope coefficients of EMh and EMv estimated for ANOCOVA cali-
bration Eq. (6) shown in Table 6 for the top three depth increments
(0–30, 30–60, and 60–90 cm) and estimating the intercepts for each of
these depth increments from Eqs. (7)–(9), ANOCOVA predicted salinity
levels (i.e., ECes) were estimated from the Kittson County validation
data set. The ANOCOVA predicted ECes are compared to observed ECes
from the validation data set for the three depth increments in Fig. 4.
The correlation coefficient for this data is 0.845, indicating high predic-
tion accuracywell within acceptable limits. On a field-by-field basis, the
distribution of MSE into the various grades based on the criteria shown
in Table 5 indicates that only Field 4 with three sample locations had an
unacceptable grade (Table 7).
5. Conclusion

A comparison of ANOCOVA versus FSR shows that one parameter
estimate for each field is needed for ANOCOVA, rather than three for
FSR, resulting in greater estimation precision and increased model
stability as long as the ANOCOVA assumption holds. In addition, the
ANOCOVA approach requires less sample data per field once the
basic ANOCOVAmodels have been developed. The ANOCOVAmodel-
ing approach completely outperformed the CCR equations. Admit-
tedly, the ANOCOVA approach requires at least two sampling
locations in each new field, but the ANOCOVA approach can be
used to assess prediction accuracy (i.e., model reliability) based on
a limited sample set. The field-specific intercept estimates in the
ANOCOVA modeling approach successfully adjust for the majority
b) Grade B 

d) Grade U 

fields exhibiting (a) Grade A, (b) Grade B, (c) Grade C, and (d) GradeU prediction accuracy

image of Fig.�3


Table 6
Apparent soil electrical conductivity (ECa) slope coefficients for EMh and EMv

(electromagnetic induction ECa measurements taken in the horizontal and vertical coil
configuration, respectively) extracted from the ANOCOVA models for each depth incre-
ment (i.e., 0–30, 30–60, 60–90, 90–120, and 120–150 cm) for Kittson County, MN.

Sample depth (j) in cm Kittson County electromagnetic
induction ECa slope coefficients for
ANOCOVA calibration Eq. (6)†

β1j (EMv) Β2j (EMh)

0–30 −0.747 1.282
30–60 1.296 −0.196
60–90 3.965 −1.740
90–120 3.238 −1.607
120–150 3.033 −1.414

† ANOCOVA calibration Eq. (6): ln ŷijk
� �

¼ μ̂ jk þ β1 j ln EMv;ik
� �� �þ β2 j ln EMh;ik

� �� �
where ŷijk ¼predicted ln(ECe,ijk) for the ith site, jthdepth, and thekthfield and μ̂ jk ¼estimated
intercept for the jth depth and the kth field.

Table 7
Kittson County ANOCOVA calibration model validation results for each of the five fields
based on the mean square error (MSE) classified by the criteria in Table 5.

Field # of Sample sites Computed MSE Grade

1 4 0.176 B
2 4 0.353 C
3 3 0.134 B
4 3 0.593 U
5 4 0.254 C
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of field specific effects that tend to shift ECa data patterns multiplica-
tively from one field to the next under a log transformation.

The ANOCOVA modeling approach performs well and represents
a viable regional-scale calibration technique. It represents a practical
compromise between individually calibrating a regression model to
each field and forcing a common (static) model across all fields in
the survey area. Its simplicity is particularly appealing. Once the
slope coefficients have been determined, a practitioner does not
need any advanced statistical concepts to implement the technique.
All calculations are easily performed in a spreadsheet.

Fields can be calibrated with as few as two sampling locations once
the ANOCOVA equations have been developed. The ramifications of
this finding are significant for irrigation districts in the southwestern
USA, the National Resource Conservation Service (NRCS), or any agency
or consulting firm that conducts regular field-scale ECa-directed sam-
pling surveys using EMI within a basin or region. By pooling the ECa

and ECe data over a region and using the ANOCOVA approach, the cali-
bration of ECa to ECe for any new field requires only two to three sam-
pling locations in the new field instead of the customary six or more
locations. For instance, NRCS has conducted numerous ECa surveys in
the Red River Valley of Minnesota and the Dakotas. Each survey re-
quired a minimum of six sample locations with samples collected at
30-cm increments to a depth of 150 cm. This data can be used to devel-
op ANOCOVA equations specific to the Red River Valley. Any future ECa
surveys in the Red River Valleywill only require samples at two to three
locations, reducing sample laboratory analysis loads by 50–66%.
Fig. 4.Measured ECe versus ANOCOVA predicted ECe for Kittson County validation data set
consisting of five fields and three depth increments of 0–30, 30–60, and 60–90 cm. Solid
line represents the 1:1 line.
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