Chapter 9
Mechanism of Molybdenum Adsorption on Soils and Soil Minerals Evaluated Using Vibrational Spectroscopy and Surface Complexation Modeling

Sabine Goldberg1,*, Cliff T. Johnston2, Donald L. Suarez2 and Scott M. Leach3

1USDA-ARS, U.S. Salinity Laboratory, 320 W. Big Springs Road, Riverside, CA 92507, USA
2Crop, Soils, and Environmental Sciences, 925 W. State Street, Purdue University, West Lafayette, IN 47907, USA

ABSTRACT

Molybdenum adsorption on amorphous aluminum and iron oxides was investigated as a function of solution pH and solution ionic strength. In this study in situ Raman and Fourier transform infrared (FTIR) spectroscopic methods were combined with sorption techniques, electrochemical mobility measurements, and surface complexation modeling to study the interaction of Mo with amorphous oxide surfaces. The speciation of Mo in aqueous solution was examined using Raman and attenuated total reflectance (ATR)-FTIR methods as a function of solution pH. Good agreement was found between the vibrational spectra of Mo in aqueous solution and those of Mo sorbed to amorphous Al oxide. The mechanism of Mo sorption to these surfaces based on the spectroscopic, sorption, and electrochemical mobility measurements as follows: Mo forms predominantly inner-sphere surface complexes at low pH and predominantly outer-sphere surface complexes at high pH. These surface configurations were used to constraint the input parameters of the triple layer surface complexation model to describe Mo adsorption on soils. After applying the triple layer model to Mo adsorption on 36 soils, a general regression model was developed for predicting Mo surface complexation constants from 3 independently measured soil chemical characteristics: cation exchange capacity, organic carbon content, inorganic carbon

*Corresponding author. Tel.: 951-596-4020; Fax: 951-342-4962; E-mail: SGOIDR@ars.usda.gov (S. Goldberg)
9.1. Introduction

Molybdenum is an essential trace element for both plant and animal nutrition. Molybdenum deficiencies have been reported for many agronomic crops, especially on alkaline soils (Murphy and Walsh, 1972). Molybdenum occurs in anionic form in soil solution, is readily taken up by forage plants, and can accumulate in levels detrimental to grazing ruminant animals (Reisenauer et al., 1973). Molybdenum exerts its toxic effect on ruminants by inducing a copper deficiency that is especially pronounced in the presence of sulfur; this adverse effect can be mitigated by Ca supplementation (O'Connor et al., 2001). At present, our understanding of the biogeochemical factors that influence the bioavailability of Mo is limited. Therefore, careful quantification of soil solution Mo concentration and characterization of Mo adsorption reactions by soil minerals and soils is needed.

Availability of Mo to plants is affected by a variety of soil factors including pH, temperature, texture, clay mineralogy, oxides, and organic matter content (Reisenauer et al., 1973). The active sites that bind Mo are pH dependent sites found on aluminum and iron oxides, clay minerals, and organic matter (Goldberg et al., 1996). Although Mo sorption has been investigated on a wide range of crystalline aluminum (e.g., Ferreiro et al., 1985; Spanos et al., 1990a,b; Vordons et al., 1990; Spanos and Lycourghiotis, 1995; Goldberg et al., 1996, 1998; El Shafei et al., 2000; Vissenberg et al., 2000) and iron (Kyracou, 1967; Reyes and Justink, 1967; McKenzie, 1983; Ferreiro et al., 1985; Zhang and Sprak, 1989; Goldberg et al., 1996, 1998; Goldberg and Feller, 1998; Lang et al., 2000; Lang and Kaupenjohann, 2003; Xu et al., 2006b) oxide minerals, only a few studies have dealt with Mo sorption on amorphous oxides (Jones, 1957; Reisenauer et al., 1962; Ribak and Borggaard, 1994; Goldberg et al., 1996, 1998; Gustafsson, 2003). The features of Mo sorption are consistent with a negatively charged oxygen ion in solution where the protonation status of the Mo(VI) and Mo(V) species changes, along with the pH dependent behavior of variable charge sites. Maximum Mo sorption on soils and soil minerals is generally found in the pH range 4-5, and sorption decreases with increasing pH above pH 5 (Gonzalez et al., 1974; Mikkonen and Tuutastavuori, 1995; Goldberg et al., 1996, 1998).
Descriptions of Mo sorption behavior in natural systems require knowledge of the mode of bonding of the Mo anions on mineral surfaces. Insight into anion adsorption mechanisms can be provided by both macroscopic and microscopic experimental methods. Electrokinetic mobility, for example, measures the movement of charged particles in response to an applied electric field. When anions such as molybdate and phosphate form inner-sphere surface complexes through ligand exchange, the point of zero charge is lowered. The inner-sphere adsorption mechanism was suggested for molybdenum adsorption on crystalline Al and Fe oxides (Ferreiro et al., 1985). Molybdenum adsorption lowered the point of zero charge of crystalline Al and Fe oxides indicating specific adsorption (Goldberg et al., 1996). These shifts in PZC can be used as evidence of strong specific ion adsorption and inner-sphere surface complexation.

Evaluation of the effect of changes in solution ionic strength on the extent of adsorption is another macroscopic method of inferring adsorption mechanisms (Hayes et al., 1988; McBride, 1997). Ions adsorbing in inner-sphere surface complexes show little ionic strength dependence in adsorption behavior. Such was the case for Mo adsorption on goethite (Zhang and Sparks, 1989; Goldberg et al., 1998), gibbsite, and amorphous Fe and Al oxides (Goldberg et al., 1998) suggesting formation of inner-sphere surface complexes.

Investigations of anion desorption reactions have also been used to infer adsorption mechanisms. It was suggested that Mo desorption from goethite was limited due to Mo diffusion into micropores following adsorption (Lang and Kaupenjohann, 2003). Molybdenum desorption from soils was biphasic: the fast reaction was attributed to desorption from Fe oxides and the slow reaction to diffusion out of crystalline oxides (Lang and Kaupenjohann, 1999). Molybdenum adsorption on soils and soil minerals has been described using various surface complexation modeling approaches: constant capacitance model (Motta and Miranda, 1989; Goldberg et al., 1998, 1998, 2002; Sarapalli et al., 2002), diffuse layer model (Dzombak and Mow, 1990; Stoënenwerk, 1995; Gustafsson, 2003), triple layer model (Zhang and Sparks, 1989; Goldberg et al., 1998; Wu et al., 2901), and CD-MUSIC model (Bourikas et al., 2001; Gustafsson, 2003; Xu et al., 2006b). The advantage of surface complexation models over empirical adsorption models is that they define specific surface species, chemical reactions, mass balances, and charge balances and contain molecular features that can be given thermodynamic significance (Sposito, 1983).

In a prior study (Goldberg et al., 2001), a general regression model was developed to obtain soil Mo surface complexation constants for use in the
constant capacitance model to predict Mo adsorption. The constant capacitance model parameters were obtained from easily measured soil chemical properties: cation exchange capacity (CEC), organic carbon content (OC), inorganic carbon content (ICC), and free Fe oxide content. The prediction equations, when utilized in the constant capacitance model, provided good predictions of Mo adsorption behavior or 36 soils primarily from California. This comparison of prediction and observation resulted in a completely independent evaluation of the ability of the constant capacitance model to describe Mo adsorption. This approach avoids the necessity of performing time-consuming detailed adsorption studies for each specific soil. Predictions of adsorption were obtained using both monodentate and bidentate surface configurations for molybdate and were of similar quality. This is fortunate since no spectroscopic observations have been carried out to date for molybdate adsorption on oxide minerals. Constant capacitance model results underpredicted the experimental Mo adsorption above pH 7.5, thus limiting the use of the model in and over soils. It is possible that molybdate forms both inner- and outer-sphere surface complexes on aluminum and iron oxides, as has been observed spectroscopically for the anions, sulfate, and selenate (Pask et al., 1999; Wijninga and Schnitzler, 2000). Monodentate inner-sphere surface complexes were observed to dominate at pH values below 6 and outer-sphere surface complexes dominated above pH 6-7 for sulfate and selenate adsorption on goethite and aluminum oxide. Simultaneous adsorption at both inner- and outer-sphere surface complexes cannot be described using the constant capacitance model. A three-phase model, such as the triple layer model or the CD-MUSIC model, is required.

Our study focuses on molybdate adsorption on amorphous Fe and Al oxides that, unlike crystalline oxides, such as goethite, have not been thoroughly characterized yet, especially with spectroscopic techniques. These materials constitute a major risk for ion adsorption in soils. A combination of macroscopic and microscopic experiments is appropriate to delineate the adsorption mechanisms of molybdate. Our study contains the following objectives: (1) to determine Mo adsorption behavior on amorphous Al and Fe oxide as a function of solution pH and ionic strength; and PCZs of amorphous Al and Fe oxide with and without molybdate; (2) to evaluate the ability of the triple layer model to describe molybdate adsorption on these oxides and on the soils studied by Goldberg et al. (2001); (3) to develop a set of regression model equations to predict triple layer model parameters and to subsequently predict Mo adsorption on the soils of Goldberg et al. (2002).

Our goal was to establish a clear link between the known phase diagram of Mo and the aqueous speciation using Raman and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) methods. In this context,
we were constrained to work at the higher concentrations to make a clear, unambiguous link between the speciation and the spectroscopy.

9.2. Experimental

9.2.1. Macroscopic Experiments

Molybdenum adsorption behavior as a function of solution pH and ionic strength was studied on amorphous Al and Fe oxides synthesized using the method of Sims and Bingham (1968). Iron oxide was synthesized by neutralizing 100 mL of 1.5 M FeCl₃ with 225 mL of 2.0 M NaOH. The sample preparation scheme for amorphous Fe oxide used in this paper was that used in Goldberg et al. (1996) and Goldberg (2002). In the Al oxide synthesis, 0.41 M NaCl was neutralized with an equal part of 1.1 M NaOH. The sample preparation scheme for amorphous Al oxide used in this paper and Goldberg (2002) was that of Sims and Bingham (1968), while the sample preparation scheme used in Goldberg et al. (1996) was that of McLaughlin et al. (1981). We changed procedures because the Sims and Bingham (1968) method gave much greater yield of solid. X-ray diffraction (XRD) analyses verified that the oxides were amorphous and contained no crystalline impurities detected by XRD. Surface area (SA) was determined from a single-point BET N₂ adsorption isotherm. The SA was 65.6 m²/g for the Al oxide and 169 m²/g for the Fe oxide.

9.2.1.1. Electrophoretic Mobility

Points of zero charge for the oxides were determined by microelectrophoresis. Electrophoretic mobility measurements of suspensions containing 0.02% oxide in 0.01 M NaCl were determined at various pH values in the presence of 0.01, or 0.1 mM Mo from Na₂MoO₄, 2H₂O. Points of zero charge were obtained by linearly interpolating the data to zero mobility.

9.2.1.2. Adsorption Envelopes

Molybdenum adsorption envelopes (amount of Mo adsorbed as a function of solution pH per fixed total Mo concentration) were determined in batch systems. Samples of 0.1 g of oxide were added to 50 mL polypropylene
cestrifuge tubes and equilibrated with 25 mL of a 0.01, 0.1, or 1.0 M NaCl solution by shaking for 20 h on a reciprocating shaker at 23 ± 0.1°C. Particle concentration of oxide was 4.0 g L⁻¹. The equilibrating solutions contained 1.0 mM Mo from Na₂MoO₄·2H₂O and were adjusted to the desired pH values using 1.0 M HCl or NaOH. The samples were centrifuged and the decantates analyzed for pH, filtered through a 0.45 µm membrane filter, and analyzed for Mo concentration using inductively coupled plasma (ICP) emission spectrometry. Molybdenum adsorption envelopes on 36 soil samples were determined previously (Goldberg et al., 2002). Physical and chemical characteristics and experimental methods are provided in Goldberg et al. (2002). The soils had the following range of chemical characteristics: pH, 4.1–10.2; CEC, 27–467 mmol kg⁻¹; SA, 21.2–286 m² g⁻¹; IOC, 0.001–1.9%; OC, 0.11–3.2%; free Fe oxide (Fe), 0.17–4.9%; and free Al oxide (Al), 0.018–0.37%. Free oxides were determined using the method of Coffin (1963). Free oxides are defined as the oxides and other forms of Fe and Al found in soils but not as a part of the crystal lattice of other minerals present (Coffin, 1963). Molybdenum adsorption envelopes were determined on 5 g of soil equilibrated with 25 mL of a solution containing 0.292 mM Mo from Na₂MoO₄·2H₂O for 20 h. All other steps in the adsorption procedure were as listed above for the amorphous oxides.

9.2.2. Vibrational Spectroscopy

9.2.2.1. ATR-FTIR Spectroscopy

FTIR spectra were obtained with a Perkin-Elmer Model 2000/GX spectrometer and a horizontal ATR attachment (Pike Technology®) fitted with a ZnSe internal reflection element with a 45° angle corresponding to nine reflections in contact with the sample. The measured pathlength was 15 µm at 1,630 cm⁻¹ based on the molar absorptivity of water. The ZnSe internal reflection element did not permit observation of infrared (IR) bands below 700 cm⁻¹. Spectra were obtained at a resolution of 4 cm⁻¹ with each spectrum corresponding to the co-addition of 64 scans using a medium-band liquid N₂ cooled MCT detector. In situ ATR-FTIR spectra were obtained by placing 1 mL of an aqueous suspension containing 2 mg of amorphous Al oxide into the ATR cell. The suspension was allowed to dry at room temperature and this resulted in a uniform dry deposit of the oxide on the ZnSe crystal. An aqueous solution of 0.01 M NaCl at pH 8 was then slowly passed over the oxide deposit using the ATR flow through system and a MasterFlex
computerized pump (Cole-Parmer®) and FTIR spectra were recorded. Flow rate of the pump was maintained at 16 mL min⁻¹. Very little oxide was lost during the washing step with NaCl that took a few hours for equilibration. Then Mo was introduced to the flow at a concentration of 0.01 M in a 0.01 M NaCl background electrolyte at pH 8. ATR-FTIR spectra were recorded. The pH of the Mo solution was changed from pH 8 to 3.5 at 0.5 decrements using HCl after recording the spectra at each pH value. Spectra were analyzed using the GRAMS/32 A1³ (Version 6.00) program from Galactic software.

9.2.2. Raman Spectroscopy

Raman spectra were obtained on an Acton Research Corporation Spectro-Pro500³³ spectrophotograph. A Spectra-Physics Model 127 helium-neon laser with 632.8 nm wavelength and power output of 35 mW measured at the laser head was used as the excitation source. Raman-scattered radiation was collected in a 90° scattering configuration. A 1/4 wave plate and polarization analyzer were used to measure Raman depolarization ratios. A calcite-wedge polarization scrambler was placed after the analyzer to minimize unwanted polarization effects in the spectrograph. The polarization discrimination of the instrument was checked by measuring the depolarization ratio for the 459 cm⁻¹ band of CCl₄. The experimental value was 0.023 compared to a theoretical value of 0.01. The entrance slit to the spectrograph were set to 100 µm that corresponds to a resolution of 3 cm⁻¹. The spectrograph used a holographic grating with 600 grooves per mm with a blaze wavelength of 532 nm. The detector was a Princeton Instruments liquid N₂ cooled CCD detector with an active array of 1,100 (b) × 330 (v) pixels. The spectrograph was calibrated daily using a Ne-Ar calibration lamp based upon known spectral lines. Spectra were typically collected using 300s of acquisition on the CCD array. Spectra were analyzed using the GRAMS/32 A1³³ (Version 6.00) program from Galactic software. Raman spectra of MoCl₅ were collected from 0.1 M solutions in 1 cm quartz cuvettes using a 90° back-scattering geometry.

9.2.3. Surface Complexation Modeling

A detailed discussion of the theory and assumptions of the triple layer surface complexation model is provided elsewhere (Goldberg, 1995). In the present application of the model to Mo adsorption, the following surface
complexation constants were considered:

$$\text{SOH}_{(o)} + H^+_{(aq)} \rightleftharpoons \text{SOH}^+_{(o)}$$ \hspace{1cm} (9.1)

$$\text{SOH}_{(o)} + \text{SO}^-_{(o)} \rightleftharpoons \text{Na}^+_{(o)} + H^+_{(aq)}$$ \hspace{1cm} (9.2)

$$\text{SOH}_{(o)} + \text{Na}^+_{(aq)} \rightleftharpoons \text{SO}^-_{(o)} + \text{Na}^+_{(aq)} + H^+_{(aq)}$$ \hspace{1cm} (9.3)

$$\text{SOH}_{(o)} + \text{H}_{(aq)}^+ + \text{Cl}^-_{(aq)} \rightleftharpoons \text{SOH}^+_{(o)} + \text{Cl}^-_{(o)}$$ \hspace{1cm} (9.4)

$$\text{SOH}_{(o)} + \text{H}_2\text{MoO}_4_{(aq)} \rightleftharpoons \text{SHMoO}_4_{(o)} + \text{H}_2\text{O}$$ \hspace{1cm} (9.5)

$$\text{SOH}_{(o)} + \text{H}_2\text{MoO}_4_{(aq)} \rightleftharpoons \text{SOH}^+_{(o)} + \text{HMoO}_4_{(o)}$$ \hspace{1cm} (9.6)

or

$$\text{SOH}_{(o)} + \text{H}_2\text{MoO}_4_{(aq)} \rightleftharpoons \text{SOH}^+_{(o)} + \text{MoO}_4^{2-}_{(aq)} + H^+_{(aq)}$$ \hspace{1cm} (9.7)

where $\text{SOH}_{(o)}$ represents reactive surface hydroxyl groups on oxides and alumino groups on clay minerals in the soils. Even though the surface complexation reactions are written starting with the completely undissociated acids, the model application contains the aqueous speciation reactions for Mo. Since the quality of model fit to experimental Mo adsorption data on soils was similar for monodentate and bidentate inner-sphere species (Goldberg et al., 2002), a monodentate Mo surface configuration was used. A predominantly monodentate surface configuration was found for sulfate adsorption by hematite (Lefebvre and Fedoroff, 2006). An outer-sphere complex, Eq. (9.6) or Eq. (9.7), was added in an effort to improve the model fit at pH values above 7 and is consistent with spectroscopic observations for sulfate and selenate adsorption by Al and Fe oxides (Peak et al., 1999; Wijnsa and Schulthess, 2000).

Equilibrium constants for the surface complexation reactions are:

$$K_s(\text{int}) = \frac{[\text{SOH}^+_{(o)}]}{[\text{SOH}]_{(o)}} \exp \left(\frac{\Phi_s}{RT} \right)$$ \hspace{1cm} (9.8)

$$K_s(\text{int}) = \frac{[\text{SO}^+_{(o)}][H^+]_{(aq)}}{[\text{SOH}]_{(o)}} \exp \left(-\frac{\Phi_s}{RT} \right)$$ \hspace{1cm} (9.9)

$$K_{\text{Na}+}(\text{int}) = \frac{[\text{SO}^-_{(o)}][\text{Na}^+]_{(aq)}}{[\text{SOH}][\text{Na}^+]_{(aq)}} \exp \left(\frac{\Phi_s - \Phi_d}{RT} \right)$$ \hspace{1cm} (9.10)
Mechanism of Molybdenum Adsorption on Soils and Soil Minerals 243

\[
K_{\text{CT}}(\text{int}) = \frac{[\text{SOH}_2^+ - \text{Cl}^-]}{[\text{SOH}]^+ [\text{Cl}^-]} \exp \left(\frac{F(\psi_a - \psi_b)}{RT} \right) \tag{9.11}
\]

\[
K_{\text{Mo}^5}(\text{int}) = \frac{[\text{SHM} \text{MoO}_4]}{[\text{SOH}][\text{H}_2 \text{MoO}_4]} \tag{9.12}
\]

\[
K_{\text{Mo}^6}(\text{int}) = \frac{[\text{SOH}_2^+ - \text{HMoO}_4^-]}{[\text{SOH}]^+ [\text{H}_2 \text{MoO}_4]} \exp \left(\frac{F(\psi_a - 2\psi_b)}{RT} \right) \tag{9.13}
\]

\[
K_{\text{Mo}^7}(\text{int}) = \frac{[\text{SOH}_2^+ - \text{MoO}_4^2-]}{[\text{SOH}]^+ [\text{H}_2 \text{MoO}_4]} \exp \left(\frac{F(\psi_a - 2\psi_b)}{RT} \right) \tag{9.14}
\]

where \(F \) is the Faraday constant (C/mol\(^+\)), \(\psi \) the surface potential (V), \(R \) the molar gas constant (J/mol\(^-\)K\(^-\)), \(T \) the absolute temperature (K), and square brackets indicate concentrations (mol L\(^-\)\(^1\)). The exponential terms can be considered as solid-phase activity coefficients correcting for charge on the surface complexes.

Mass balance of the surface functional group is:

\[
[\text{SOH}] = [\text{SOH}_2^+] + [\text{SOH}_2^-] + [\text{SO}^-] + [\text{SO}^- - \text{Na}^+] + [\text{SOH}_2^- - \text{Cl}^-] + [\text{SHM} \text{MoO}_4] + [\text{SOH}_2^- - \text{HMoO}_4^-] \text{ or } + [\text{SOH}_2^- - \text{MoO}_4^{2-}] \tag{9.15}
\]

and the charge balances are:

\[
\sigma_0 + \sigma_1 + \sigma_2 = 0 \tag{9.16}
\]

\[
\sigma_a = [\text{SOH}_2^+] + [\text{SOH}_2^- - \text{Cl}^-] - [\text{SO}^-] - [\text{SO}^- - \text{Na}^+] + [\text{SOH}_2^- - \text{HMoO}_4^-] \text{ or } + [\text{SOH}_2^- - \text{MoO}_4^{2-}] \tag{9.17}
\]

\[
\sigma_0 = [\text{SO}^- - \text{Na}^+] + [\text{SOH}_2^- - \text{Cl}^-] - [\text{SOH}_2^- - \text{HMoO}_4^-] \text{ or } - 2[\text{SOH}_2^- - \text{MoO}_4^{2-}] \tag{9.18}
\]

where \(\sigma_0 \) has units of (mol L\(^-\)\(^1\)).

The computer code FITEQL 3.2 (Herbelin and Westall, 1996) was used to fit the Mo surface complexation constants to the experimental Mo adsorption data. The FITEQL program uses a nonlinear least squares optimization routine to fit equilibrium constants to experimental data and contains the triple-layer model of adsorption. It can also be used as a chemical speciation program to evaluate predictions of Mo adsorption, such as those obtained using the regression model of Goldberg et al. (2002) to predict values of the Mo surface complexation constant from soil chemical properties.
In our application of the triple layer model, the surface site density was fixed at a value of 2.31 sites nm\(^{-2}\), as recommended by Davis and Kent (1980) for natural materials. Numerical values for the protonation constant, the dissociation constant, and the surface complexation constants for the background electrolyte were obtained from the literature. For the amorphous Al oxide and the soils we used \(\log K_{\text{Al}} \) (int) = 5.0, \(\log K_{\text{Fe}} \) (int) = −11.2, \(\log K_{\text{NO}_3} \) (int) = −8.8, and \(\log K_{\text{Cl}} \) (int) = 7.5 obtained by Spycha (1980a,b) for \(\gamma-Al_2O_3 \). For the amorphous Fe oxide we used \(\log K_{\text{Fe}} \) (int) = 4.3, \(\log K_{\text{NO}_3} \) (int) = −9.8, \(\log K_{\text{Na}} \) (int) = −9.3, and \(\log K_{\text{Cl}} \) (int) = 5.4 obtained by Zhang and Sparks (1990) for goethite. We used parameter values for crystalline oxides since values for amorphous oxides were not available. Molybdate surface complexation constants were fit simultaneously to the oxide adsorption data at three different ionic strengths using the inner-sphere, Eq. (9.5), and an outer-sphere, Eq. (9.6) or Eq. (9.7), adsorption mechanism. The capacitance values were fixed at \(C_1 = 1.2 \text{ F m}^{-2} \) and \(C_2 = 0.25 \text{ m}^{-2} \) considered optimal for goethite by Zhang and Sparks (1990). When developing data bases of surface complexation constants, it is critically important to use consistent values of surface site density, capacitances, protonation-dissociation constants, and background electrolyte surface complexation constants. Constant values of these parameters are necessary to allow application of predictive equations to new soils.

9.3. Results and Discussion

9.3.1. Macroscopic Experiments

9.3.1.1. Electrophoretic Mobility

Points of zero charge occurred at pH 7.8 for amorphous Fe oxide and at pH 9.4 for amorphous Al oxide. These PZCs are in excellent agreement with numerous literature values. Figure 9.1 presents electrophoretic mobility versus pH obtained upon adsorption of Mo onto amorphous Fe oxide (Fig. 9.1a) and amorphous Al oxide (Fig. 9.1b). The PZC1 were shifted to lower pH value with increasing Mo concentration, characteristic of inner-sphere adsorption. This is clearly seen for the amorphous Fe oxide in the presence of Mo (Fig. 9.1a). The PZC of amorphous Al oxide decreased only slightly in the presence of increasing Mo concentrations (Fig. 9.1b) indicating the predominance of either an outer-sphere Mo surface complex, an inner-sphere Mo surface complex that did not change the surface charge, or a
combination of both of these surface complexes. It is possible that the strange local maxima and minima in the Al oxide system are due to the predominance of inner-sphere Mo surface complexes at low pH and the predominance of outer-sphere Mo surface complexes at higher pH.

9.3.1.2. Adsorption Envelopes

The effect of ionic strength on Mo adsorption on amorphous Al and Fe oxides is indicated in Fig. 9.2. Solution ionic strength varied by two orders of magnitude, from 0.01 to 1.0 M NaCl. Molybdate adsorption on amorphous oxides decreased with increasing solution pH. On amorphous Fe oxide, Mo adsorption exhibited no ionic strength dependence with increasing solution ionic strength (Fig. 9.2a). This behavior is indicative of an inner-sphere adsorption mechanism, in agreement with the mechanism inferred from PZC shift results for this material. On amorphous Al oxide, Mo adsorption exhibited decreasing adsorption with increasing ionic strength (Fig. 9.2b), indicative of an outer-sphere adsorption mechanism. This result is in agreement with the PZC shift results, which suggest that the majority of Mo adsorption may be outer-sphere. Our results indicate that Mo is more tightly
Figure 9.2: Fit of the Triple Layer Model to Mo Adsorption on Amorphous Oxides as a Function of Solution pH and Ionic Strength: (a) Fe Oxide; (b) Al Oxide. Particle Concentration = 4.0 g L\(^{-1}\). Solid Symbols Represent Experimental Data Points. Open Symbols Represent Model Fits using an Inner-Sphere and an Outer-Sphere Mo Surface Complex. Log\(K_{\text{Mo}^{5+}}\) (int) = 12.43, log\(K_{\text{Mo}^{6+}}\) (int) = 3.76 for Fe Oxide. Log\(K_{\text{Mo}^{5+}}\) (int) = 10.55, log\(K_{\text{Mo}^{6+}}\) (int) = 12.58 for Al Oxide.
9.3.2. Vibrational Spectroscopy

The ATR-FTIR spectra of a 2mg deposit of amorphous Al oxide deposit on a ZnSe internal reflection element in the presence of 10mM NaCl at pH 8 are shown in Fig. 9.7 (represented by a dashed line). The predominant band is found at 973 cm\(^{-1}\) and weaker bands at 1,419 and 1,497 cm\(^{-1}\). The 973 cm\(^{-1}\) band corresponds to the Al-O-H bending vibration (Farmer, 1974, Wang and Johnston, 2000). The bands at 1,419 and 1,497 cm\(^{-1}\) correspond to the \(v_1\) asymmetric stretch of sorbed carbonate (Su and Suarez, 1997). Since the PZC of this amorphous Al oxide is 9.4, it will have a net positive surface charge and attract aqueous carbonate species in solution at all pH values.

Figure 9.7: ATR-FTIR Spectra of a 2mg Deposit of Amorphous Al Oxide in a 10mM NaCl Solution on a ZnSe Internal Reflection Element: (A) 10mM NaCl Solution at pH 8; (B) 10mM NaCl Solution and 10mM Mo Solution at pH 8; (C) 10mM NaCl and 10mM Mo Solution at pH 6; (D) 10mM NaCl and 10mM Mo Solution at pH 4.
used in this study. Molybdate was introduced into the ATR-FTIR cell as a 10 mM Na4H2Mo7O24 solution with a background electrolyte concentration of 0.01 M NaCl adjusted to pH 8 using a peristaltic pump at a flow rate of 16 mL min⁻¹. Based on prior work, aqueous molybdate species are known to interact with amorphous Al oxide to a greater extent at low pH (Goldberg et al., 1996). Thus, the experiment was started at pH 8 and the pH was lowered in 0.5 pH unit decrements until a pH value of 3.5 was reached. The ATR-FTIR spectrum of the Mo-Al oxide complex at pH 8 is shown as Spectrum B in Fig. 9.3. The presence of sorbed MoO₄ is revealed by the shoulder at 836 cm⁻¹. The carbonate bands at 1,419 and 1,497 cm⁻¹ are more distinct at this high pH value indicating the presence of sorbed carbonate. The spectra of sorbed Mo did not change significantly until the pH of the aqueous solution was decreased to <6 where a new band at 903 and 540 cm⁻¹ appeared (Spectra C and D in Fig. 9.3 were obtained at pH values of 6 and 4, respectively).

To observe the spectral changes induced by Mo sorption, difference spectra were obtained by subtracting the ATR-FTIR spectrum of the amorphous Al oxide deposit from the spectra of the Mo-Al oxide complexes (Fig. 9.4). In this case, Spectrum A (Fig. 9.3) was subtracted from the Mo-Al oxide complexes. For example, the difference spectrum at pH 8 was obtained by subtracting Spectrum A from Spectrum B (Fig. 9.3). At pH 8, the difference spectrum clearly shows the presence of the sorbed Mo species by the bands at 836 and 1,020 cm⁻¹. Upon lowering the pH, two new bands appear at 903 and 540 cm⁻¹, with a consequent decrease in the intensities of the bands at 836 and 1,000 cm⁻¹. The spectrum of the amorphous Al oxide did not change shape upon lowering the pH. The ATR-FTIR spectrum of the amorphous Al oxide deposited on the ATR cell at pH 8 (prior to the addition of Mo) was used as the reference for all spectral subtractions. The observed Mo bands are not due to changes in bandshape of the Al oxide itself. Confirmation of this is found in the agreement of the Mo bands sorbed to the Al oxide surface with the spectra of Mo in aqueous solution.

To better understand the solution speciation of Mo, ATR-FTIR and Raman spectra of aqueous Mo species were obtained as a function of pH and ionic strength and are shown in Fig. 9.5. The ATR-FTIR spectra of a 100 mM aqueous Mo solution in 10 mM NaCl are shown in Fig. 9.5a. The solution ATR-FTIR spectra show similar trends to the spectra of sorbed Mo: a strong feature at 837 cm⁻¹ along with a weak, broad band at 1,015 cm⁻¹ at pH 8-9 that “transitions” into bands at 904 and 941 cm⁻¹ at pH values <6 (Wistocki et al., 1973; Leonov and Knozinger, 1979; Tossell, 2005). Raman spectra provide complementary speciation information because the selection rules that govern Raman and IR-allowed
vibrational transitions are different (Herzberg, 1945; Long, 1977; Johnston and Aochi, 1996; Johnston and Wang, 2002). In the Raman spectra of the aqueous Mo species, the high pH (pH 8-9) spectra are dominated by a medium intensity band at 837 cm⁻¹ and a sharp, well-resolved band at 897 cm⁻¹ (Fig. 9.5b). The Raman spectra are strongly influenced by pH with the 837 and 897 cm⁻¹ bands diminishing in intensity with “new” bands appearing at 946 and 961 cm⁻¹.

The aqueous speciation of Mo is shown in the inset of Fig. 9.5. At a concentration of 100 mM and at pH value ~5.8, the dominant species in solution is MoO₄²⁻. Upon lowering the pH below 5.8, the polymer Mo₇O₁₄ becomes the predominant species in the narrow pH range of ~5.8 to 5.5. The singly-protonated H₆Mo₇O₁₄⁺ species dominates from pH 5.5 to 4.2, with the doubly-protonated H₂Mo₇O₁₄²⁺ species present at pH values <4.2.

Figure 9.6 shows the comparison of the ATR-FTIR spectrum of Mo sorbed to Al oxide at pH 8 (Spectrum C) to the Raman (Spectrum A) and ATR-FTIR (Spectrum B) spectra of a 100 mM Mo solution at pH 8. There is
Figure 9.5: (a) ATR-FTIR Spectra of 100 mM Mo in Aqueous Solution as a Function of pH between pH 3 and 9 Plotted in the Region from 700 to 1,200 cm$^{-1}$. (b) Raman Spectra of 100 mM Mo in Aqueous Solution as a Function of pH between pH 3 and 9 in the Region from 700 to 1,200 cm$^{-1}$. Inset is from Bourikas et al. (2001).

A good agreement between the ATR-FTIR spectra of Mo sorbed to Al oxide (Spectrum C) with that of the ATR-FTIR spectrum of Mo in aqueous solution at pH 8 (Spectrum B). According to the speciation diagram (Fig. 9.5, inset), the dominant solution species is MoO$_4^{2-}$, consistent with the observed spectra. It is interesting to note that the 1,015 cm$^{-1}$ band is stronger when Mo is sorbed to the Al oxide surface. The corresponding spectra of Mo sorbed to Al oxide at pH 4 and the solution Raman and ATR-FTIR spectra of aqueous Mo at pH 4 are shown in Fig. 9.7. The ATR-FTIR spectrum of Mo sorbed to Al oxide at pH 4 (Spectrum C, Fig. 9.7) is characterized by three bands at 845, 903, and 940 cm$^{-1}$. The solution Raman (Spectrum A) and ATR-FTIR (Spectrum B) spectra of Mo in aqueous solution have essentially no intensity at 845 cm$^{-1}$ and are characterized by bands at 903 and 940–952 cm$^{-1}$.
Figure 9.6: Spectrum A corresponds to the Raman spectrum of a 100 mM Mo solution at pH 8 in the 700-1,200 cm⁻¹ region. Spectrum B was obtained from the same solution as for Spectrum A using a 9-bounce ATR-FTIR solution cell with a ZnSe IRE. Spectrum C corresponds to the difference ATR-FTIR spectrum of a 10 mM Mo solution sorbed to Al oxide at pH 8.

To the best of our knowledge, a detailed spectroscopic understanding of Mo speciation in aqueous media is not currently known. Based on recent experimental and theoretical work, however, the following conclusions can be drawn from the literature. At pH values >6, the dominant Mo species in aqueous solution is MoO₄²⁻ (Bourikas et al., 2001). This species is characterized by Raman-active bands at 904, 837, and 318 cm⁻¹ (Weinstock et al., 1973). The band at 894 cm⁻¹ has been assigned to the ν₁ (α₁) symmetric stretch, the band at 837 cm⁻¹ to the ν₃ (ε₂) asymmetric stretch, and the 318 cm⁻¹ band to the ν₄ (ε₃) bend. This is consistent with the bands we observed in the Raman spectrum of Mo at pH 9 (Fig. 9.5b). The symmetric Mo-O stretch has very high intensity in the Raman spectrum, whereas the asymmetric stretch has greater intensity in the FTIR spectrum, consistent
Figure 9.7: Spectrum A corresponds to the Raman Spectrum of a 10 mM Mo Solution at pH 4 in the 700–1,200 cm⁻¹ region. Spectrum B was obtained from the same solution as for Spectrum A using a 9-bounce ATR-FTIR solution cell with a ZnSe IRE. Spectrum C corresponds to the difference ATR-FTIR Spectrum of a 10 mM Mo Solution Sorbed to Al Oxide at pH 4.

with the selection rules. We also observed the depolarization ratio of the 897 cm⁻¹ band to be very low (~0.02, not shown), confirming the assignment of the 897 cm⁻¹ band to the symmetric Mo–O stretch (Løveng, 1977). Only highly symmetric vibrations, such as the symmetric stretch of an XY₄ molecule, have very low depolarization ratios. In a related study (Goldberg and Johnston, 2001), we found similar results for the symmetric As–O stretch of the As(III) species. Jeniowski and Knozinger (1979) reported Raman spectra of MoO₃⁺ (pH 11) and Mo₂O₅⁻ (pH 6), but did not indicate the concentration of the Mo species in solution. According to a more recent speciation study (Bourikas et al., 2001), the distribution of MoO₃⁺ and Mo₂O₅⁻ would be present at approximately the same concentrations, so that
the Raman spectra collected at pH 6 would most likely contain contributions from both species.

Upon decreasing the pH of the aqueous Mo solution to pH values < 6, the 837 and 897 cm⁻¹ bands diminish in intensity and "new" bands appear at 903 (R = IR active), 840 (IR active), and 952 (R active) cm⁻¹ (see Fig. 9,7). These bands have been assigned to the formation of a polymeric Mo₆O₁₈⁵⁺ species in aqueous solution. At pH values > 6, the speciation is dominated by the MoO₃⁺²² species where Mo is in tetrahedral coordination. In contrast, the MoO₅³⁻ complex is made up of MoO₅ octahedra (Knozinger and Jegliowski, 1978, Jegliowski and Knozinger, 1979). Thus, the spectral changes that occur upon lowering the pH are due to: (i) the formation of a polymeric species and (ii) the transition of Mo from a tetrahedrally coordinated species to an octahedrally coordinated species. More recently, there have been several matrix-isolation FTIR studies where Mo species were deposited on a cold window (10 K) in an inert gas matrix (e.g., Ar) (Jare et al., 1998, Wang and Andrews, 2006). This technique provides a very powerful tool for examining species under very carefully controlled conditions. In our case, however, it is difficult to make a direct comparison between our observed Raman and ATR-FTIR spectra and matrix-isolated FTIR spectra of Mo species because our spectra, obtained in aqueous media/suspensions, are often dominated by intermolecular interactions with water.

Although the MoO₅³⁻ species is the dominant form of Mo in aqueous solution at pH values < 6, Jegliowski and Knozinger (1979) attributed sorption of Mo by alumina to the formation of an inner-sphere complex with MoO₅²⁻. Possible surface complexes of Mo sorbed to alumina catalysts included a bidentate surface complex and a two-dimensional polymeric surface species (Jegliowski and Knozinger, 1979). It is important to note that all of the Mo surface species considered involve the formation of inner-sphere surface complexes.

Based on the literature and our spectroscopic observations, we draw the following conclusions. At high pH, we have excellent agreement between the observed solution ATR-FTIR spectra and those of Mo sorbed to the amorphous Al oxide in aqueous suspension. We assign the 838 cm⁻¹ band of sorbed Mo to Al oxide as an outer-sphere surface complex of the MoO₅²⁻ species. Assignment of the 838 cm⁻¹ band to MoO₅²⁻ was based on agreement with literature values and speciation studies, as well as the dependence of our ATR-FTIR and Raman spectra of aqueous Mo solutions as a function of pH and Mo concentration. At low pH, we observe the formation of a polymeric species in aqueous solution that is most likely MoO₅³⁻²² (or protonated version of this complex). Following the rationale of Jegliowski and Knozinger (1979), we attribute the spectra of Mo sorbed to Al oxide at low
pH to the formation of an inner-sphere surface complex that is characterized by the ATR-FTIR bands at 903 and 940 cm$^{-1}$. The specific identity of the surface complex (monodentate, bidentate, or "two-dimensional" polymeric surface species) is not known at this time.

Based on the assignment of the 838 cm$^{-1}$ band to the outer-sphere MoO$_5^{2-}$ species and the 903 and 940 cm$^{-1}$ bands to some form of an inner-sphere surface complex, a spectroscopically derived surface complexation diagram is shown in Fig. 9.8. Although the spectra of Mo sorbed to Al oxide are similar to the spectra in solution, some important differences are apparent. Upon increasing the solution pH, the 837 and 897 cm$^{-1}$ bands have essentially no intensity at low pH. In contrast, the spectra of Mo sorbed to Al oxide reveal that the 838 cm$^{-1}$ band still has significant intensity at pH 4. We attribute this to the presence of some outer-sphere coordinated MoO$_4^{2-}$.

Figure 9.8: The Relative Contribution of the Outer- and Inner-Sphere Surface Complexes Sorbed to Al Oxide as a Function of pH between pH 3.5 and 8. The 837–845 cm$^{-1}$ Band was used to Estimate the Proportion of Outer-Sphere Mo Complexed by the Surface and the Combined Intensity of the 904 and 940–947 cm$^{-1}$ Bands were used to Estimate the Proportion of Inner-Sphere Surface Complexed Mo.
In addition, the transformation of the octahedrally coordinated Mo species to the tetrahedrally coordinated complex occurs near pH 6. This pH value is shifted to ~5 for Mo sorbed on the surface of the Al oxide. This result is most likely due to the fact that Al oxide has a positive surface charge at these pH values (~8). Thus, the local concentration of hydrogen ions [H+] at the interface is lower than in the bulk solution, due to the accumulation of hydroxide ions that serve to compensate for the surface charge.

To the best of our knowledge, ATR-FITR spectra of Mo sorbed to a hydroxide oxide in aqueous suspension have not been reported previously. We have shown that, in general, good agreement exists between the spectra of Mo in aqueous solution and those of Mo sorbed to Al oxide. Although a significant amount of effort has been extended to the study of Mo-based catalysts, relatively little is known about the sorption of Mo to environmentally relevant hydroxides oxides in aqueous suspension.

9.3.3. Surface Complexation Modeling

The ability of the triple layer model to describe Mo adsorption on amorphous Fe oxide is depicted in Fig. 9.2a. The model described the data quantitatively below pH 6.5 and above pH 9, with deviations in the intermediate pH range. In accordance with the experimental data, the model fits do not show ionic strength dependence, despite the consideration of the outer-sphere surface complex \(\text{SO}_{3}^{2-} - \text{MoO}_{4}^{2-} \). Figure 9.2b shows triple layer model fits to Mo adsorption on amorphous Al oxide. While the model was able to fit the majority of the experimental data points, it did not show ionic strength dependence to provide a quantitative description, especially in the intermediate pH range and for the 1.0 M data. The decrease in quality of fit at 1.0 M may be due to the fact that this ionic strength is outside the applicable range of the Davies equation. The FITEQ model was unable to fit the amorphous Al oxide data using the \(\text{SO}_{3}^{2-} - \text{MoO}_{4}^{2-} \) surface complex. Model convergence was obtained only after replacing this species with the outer-sphere surface complex, \(\text{SO}_{3}^{2-} - \text{HMoO}_{4}^{2-} \).

The Mo surface speciation predicted by the triple layer model is presented in Fig. 9.9. The inner-sphere surface complex dominates at low pH and the outer-sphere surface complex predominates at high pH. This is in agreement with our Raman and ATR-FITR spectroscopic observations and those for sulfate and selenium adsorption (Pask et al., 1999; Wijnga and Schulthess, 2000). For amorphous Al oxide, the outer-sphere surface complex dominates above pH 8, while for amorphous Fe oxide, the outer-sphere surface complex does not become predominant until pH 9.5. These results are in agreement.
Figure 9.9: Surface Speciation Predicted by the Triple Layer Model for Mo Adsorption on: (a) Amorphous Fe Oxide; (b) Amorphous Al Oxide.

with our PZC shift observations. The crossover in dominance between inner- and outer-sphere species for the IR (pH 5) and TLM (pH 7) occur within two pH units of each other. Considering that the IR experiments were done at 100 times the Mo concentration as the adsorption experiments, the agreement is quite reasonable.
Figure 9.10: Surface Complexation Modeling of Mo Adsorption on Wyo Soil: (a) Constant Capacitance Model Monodentate Fit; (b) Triple Layer Model Inner- and Outer-Sphere Monodentate Fit; (c) Constant Capacitance Model Monodentate Prediction; (d) Triple Layer Model Inner- and Outer-Sphere Monodentate Prediction. Circles Represent Experimental Data. Model Fits are Represented by Solid Lines. Constant Capacitance Model Results from Goldberg et al. (2002).

Molybdenum adsorption as a function of solution pH had been determined previously for 36 different soil samples (Goldberg et al., 2002). Molybdenum adsorption was found to be maximal in the pH range 2–5 and to decrease rapidly with increasing pH above 5. The constant capacitance model was able to fit the Mo adsorption envelopes well on all of the soil samples, but increasing deviations occurred above pH 7.5 (see Fig. 9.10a). In an effort to improve the fit at high pH, the data were reanalyzed using the triple layer model containing one inner-sphere, SHMoO_4^-, and one outer-sphere, $\text{SOH}_2^+ - \text{MoO}_2^{2-}$ Mo surface complexation constant. The improvement in the ability of the triple layer model approach to describe Mo adsorption on the Wyo soil is indicated in Fig. 9.10b. For reference, the original fit of the constant capacitance model to the experimental data is
presented in Fig. 9.10a. The triple layer model was able to quantitatively describe the Mo adsorption data at all pH values.

As in our previous investigation (Goldberg et al., 2002), the initial regression model was defined to be:

\[y = \beta_0 + \beta_1 (\text{CEC}) + \beta_2 (\text{SA}) + \beta_3 (\ln \text{OC}) \]
\[+ \beta_4 (\ln \text{IC}) + \beta_5 (\text{Fe}) + \beta_6 (\ln \text{Al}) + \epsilon \]

(9.19)

where \(\gamma \) represents the surface complexation constant, \(\log K_{f}^{\text{init}} \), \(\beta \) the empirical derived regression coefficients, and \(\epsilon \) the residual error component, assumed to follow the usual regression modeling assumptions of normal errors. The optimization criterion used in each model building process was that the final selected prediction equation should exhibit the smallest possible jack-knifed prediction errors (Myers, 1986), on average.

Jack-knifed prediction errors (also commonly referred to as PRESS residuals) can be conveniently computed in most standard regression software packages using the relationship:

\[\hat{e}_{i,\text{jack}} = \frac{\hat{e}_i}{(1 - h_{ii})} \]

(9.20)

where \(\hat{e}_i \) represents the ordinary prediction error, \(h_{ii} \) the ith diagonal element of the regression model projection matrix, and \(\hat{e}_{i,\text{jack}} \) the prediction error one obtains if the ith observation is not included in the model estimation process. Jack-knifing essentially represents a "one-at-a-time" deletion and re-estimation technique and is commonly used to develop robust, regression-based prediction models (Myers, 1986). The PRESS statistic is defined to be the sum of the squared \(\hat{e}_{i,\text{jack}} \) components and the jack-knifed mean square error (MSE) is simply defined to be the value of the PRESS statistic divided by the sample size.

Model optimization was carried out using a backwards elimination, BWE, procedure, where the critical cut-off value used for parameter removal was set to \(x = 0.15 \) (Myers, 1986). Based on the results from this BWE procedure, a reduced prediction equation was specified for each surface complexation constant. During the BWE procedure, the PRESS statistic was calculated after each parameter elimination step to verify that this statistic was consistently reduced. Upon termination of the BWE procedure, the remaining parameters left in the reduced prediction equations where then individually deleted and the PRESS statistic was recalculated. This last step was performed in order to verify that the BWE procedure had indeed also minimized the jack-knifed prediction variance. All regression model analyses were performed using the SAS REG procedure (SAS, 1999).
For the inner-sphere surface complexation constant, the initial estimate of Eq. (9.19) produced an R^2 value of 0.486 and a jack-knifed MSE estimate of 0.519. An application of the BWE procedure removed all variables except lnIOC and lnAl; the corresponding R^2 and jack-knifed MSE for this reduced model were 0.472 and 0.382, respectively. The PRESS statistic increased when either of these two remaining regression variables was removed. Hence, the final estimated prediction equation for $\log K_{oc}^{\text{int}}$ was defined to be:

$$\log K_{oc}^{\text{int}} = \beta_0 + \beta_1 (\ln \text{IOC}) + \beta_2 (\ln \text{Al}) + \epsilon \quad (9.21)$$

The corresponding parameter estimates for this model are shown in Table 9.1. The specific predicted and jack-knife predicted $\log K_{oc}^{\text{int}}$ constants for the soil samples are shown in Table 9.2.

For the outer-sphere surface complexation constant, the initial estimate of Eq. (9.19) produced a slightly higher R^2 value of 0.524 and a jack-knifed MSE estimate of 0.098. An application of the BWE procedure removed the lnIOC, lnAl, and lnSA regression variables; the corresponding R^2 and jack-knifed MSE for this reduced model were 0.487 and 0.080, respectively. Once again, the PRESS statistic increased when each of the three remaining regression variables were removed. Therefore, the final estimated prediction equation for $\log K_{oc}^{\text{ext}}$ (int) was defined to be:

$$\log K_{oc}^{\text{ext}}(\text{int}) = \beta_0 + \beta_1 (\ln \text{CEC}) + \beta_2 (\ln \text{OC}) + \beta_3 (\ln \text{Fe}) + \epsilon \quad (9.22)$$

The corresponding parameter estimates for this model are shown in Table 9.1, and the specific predicted and jack-knife predicted $\log K_{oc}^{\text{ext}}(\text{int})$ constants for the soil samples are shown in Table 9.2.

Table 9.1. Regression Model Parameter Estimates and Standard Errors for the Triple Layer Model Surface Complexation Model Prediction Equations

| Parameter | Estimate | Standard error | t-score | Prob>|t| |
|-----------|----------|----------------|---------|--------|
| $\log K_{oc}^{\text{int}}$ (parametric estimates) | | | | |
| Intercept | 5.565 | 0.503 | 11.07 | <0.0001 |
| ln(IOC) | 0.171 | 0.039 | 4.36 | 0.0002 |
| ln(Fe) | 0.373 | 0.172 | 2.17 | 0.0390 |
| $\log K_{oc}^{\text{ext}}$ (int) parameter estimates | | | | |
| Intercept | 1.672 | 0.448 | 3.74 | 0.0009 |
| ln(CEC) | -0.412 | 0.088 | -4.70 | <0.0001 |
| ln(OC) | 0.131 | 0.068 | 1.92 | 0.0654 |
| ln(Fe) | 0.178 | 0.079 | 2.26 | 0.0326 |
Table 9.2: Triple Layer Model Surface Complexation Constants Obtained by Optimization and from the Prediction Equations.

<table>
<thead>
<tr>
<th>Soil</th>
<th>Fitted $\text{Log } K_{d,\text{fit}}$</th>
<th>Fitted $\text{Log } K_{d,\text{fit}}$</th>
<th>Predicted $\text{Log } K_{d,\text{fit}}$</th>
<th>Predicted $\text{Log } K_{d,\text{fit}}$</th>
<th>Jack-knife predicted $\text{Log } K_{d,\text{fit}}$</th>
<th>Jack-knife predicted $\text{Log } K_{d,\text{fit}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altamont</td>
<td>4.61</td>
<td>-0.318</td>
<td>3.90</td>
<td>-0.332</td>
<td>3.90</td>
<td>-0.309</td>
</tr>
<tr>
<td></td>
<td>2.81</td>
<td>-0.496</td>
<td>3.32</td>
<td>-0.449</td>
<td>3.37</td>
<td>-0.447</td>
</tr>
<tr>
<td></td>
<td>2.70</td>
<td>-0.553</td>
<td>3.37</td>
<td>-0.506</td>
<td>3.44</td>
<td>-0.503</td>
</tr>
<tr>
<td>Arlington</td>
<td>3.95</td>
<td>-0.456</td>
<td>3.83</td>
<td>-0.386</td>
<td>3.83</td>
<td>-0.383</td>
</tr>
<tr>
<td>Avon</td>
<td>4.09</td>
<td>-0.158</td>
<td>3.79</td>
<td>-0.477</td>
<td>3.78</td>
<td>-0.528</td>
</tr>
<tr>
<td>Bonsall</td>
<td>3.19</td>
<td>-0.166</td>
<td>3.66</td>
<td>-0.077</td>
<td>3.69</td>
<td>-0.065</td>
</tr>
<tr>
<td>Chino</td>
<td>4.30</td>
<td>-1.126</td>
<td>4.81</td>
<td>-0.881</td>
<td>4.91</td>
<td>-0.825</td>
</tr>
<tr>
<td>Diablo</td>
<td>3.56</td>
<td>-0.903</td>
<td>4.09</td>
<td>-0.650</td>
<td>4.12</td>
<td>-0.626</td>
</tr>
<tr>
<td></td>
<td>3.54</td>
<td>-0.805</td>
<td>4.38</td>
<td>-0.536</td>
<td>4.43</td>
<td>-0.504</td>
</tr>
<tr>
<td>Fallbrook</td>
<td>3.10</td>
<td>-0.159</td>
<td>3.48</td>
<td>-0.402</td>
<td>3.55</td>
<td>-0.421</td>
</tr>
<tr>
<td>Fiendr</td>
<td>4.31</td>
<td>-0.718</td>
<td>4.66</td>
<td>-0.733</td>
<td>4.70</td>
<td>-0.736</td>
</tr>
<tr>
<td>Haines</td>
<td>4.70</td>
<td>-0.411</td>
<td>4.14</td>
<td>-0.996</td>
<td>3.95</td>
<td>-0.392</td>
</tr>
<tr>
<td>Hanford</td>
<td>5.14</td>
<td>0.087</td>
<td>4.31</td>
<td>-0.024</td>
<td>4.20</td>
<td>-0.265</td>
</tr>
<tr>
<td>Hesperia</td>
<td>3.07</td>
<td>-0.391</td>
<td>3.22</td>
<td>-0.192</td>
<td>3.24</td>
<td>-0.164</td>
</tr>
<tr>
<td>Holtville</td>
<td>4.29</td>
<td>-0.669</td>
<td>4.30</td>
<td>-0.331</td>
<td>4.30</td>
<td>-0.338</td>
</tr>
<tr>
<td>Imperial</td>
<td>4.38</td>
<td>-0.539</td>
<td>4.57</td>
<td>-0.674</td>
<td>4.59</td>
<td>-0.689</td>
</tr>
<tr>
<td>Lost Hills</td>
<td>5.07</td>
<td>-0.064</td>
<td>4.20</td>
<td>-0.777</td>
<td>4.15</td>
<td>-0.933</td>
</tr>
<tr>
<td>Nohill</td>
<td>5.73</td>
<td>-0.251</td>
<td>4.97</td>
<td>-0.478</td>
<td>4.59</td>
<td>-0.645</td>
</tr>
<tr>
<td>Pachappa</td>
<td>4.73</td>
<td>-0.978</td>
<td>4.23</td>
<td>-0.545</td>
<td>4.21</td>
<td>-0.508</td>
</tr>
<tr>
<td></td>
<td>3.16</td>
<td>0.319</td>
<td>3.54</td>
<td>-0.012</td>
<td>3.56</td>
<td>-0.067</td>
</tr>
<tr>
<td></td>
<td>3.14</td>
<td>0.107</td>
<td>3.54</td>
<td>-0.012</td>
<td>3.56</td>
<td>-0.031</td>
</tr>
<tr>
<td></td>
<td>3.95</td>
<td>-0.166</td>
<td>3.19</td>
<td>-0.302</td>
<td>3.10</td>
<td>-0.335</td>
</tr>
<tr>
<td>Porterville</td>
<td>3.27</td>
<td>-0.314</td>
<td>3.72</td>
<td>-0.513</td>
<td>3.75</td>
<td>-0.513</td>
</tr>
<tr>
<td></td>
<td>4.67</td>
<td>-0.750</td>
<td>3.72</td>
<td>-0.513</td>
<td>3.69</td>
<td>-0.496</td>
</tr>
<tr>
<td></td>
<td>3.84</td>
<td>-0.241</td>
<td>4.31</td>
<td>-0.353</td>
<td>4.81</td>
<td>-0.360</td>
</tr>
<tr>
<td>Reyepatch</td>
<td>4.29</td>
<td>-0.905</td>
<td>4.44</td>
<td>-0.866</td>
<td>4.45</td>
<td>-0.853</td>
</tr>
<tr>
<td>Sebree</td>
<td>3.99</td>
<td>-0.354</td>
<td>3.16</td>
<td>0.026</td>
<td>3.08</td>
<td>0.115</td>
</tr>
<tr>
<td>Wasco</td>
<td>2.79</td>
<td>-0.641</td>
<td>3.18</td>
<td>-0.437</td>
<td>3.23</td>
<td>-0.408</td>
</tr>
<tr>
<td>Wyo</td>
<td>4.72</td>
<td>-0.274</td>
<td>3.54</td>
<td>-0.324</td>
<td>3.42</td>
<td>-0.330</td>
</tr>
<tr>
<td>Yolo</td>
<td>4.25</td>
<td>-0.388</td>
<td>4.16</td>
<td>-0.362</td>
<td>4.15</td>
<td>-0.359</td>
</tr>
</tbody>
</table>

Equations (9.21) and (5.22) were each derived independently, using the same initial set of optimized surface complexation constants. The jack-knife prediction columns show the ability of the model to predict each individual soil surface complexation constant, without using this constant in the fitting process. The general excellent agreement between the predicted surface
complexation constants and the jack-knife estimates suggests that the regression prediction equations for both surface complexation constants should have good predictive capability.

Figure 9.10d presents the ability of the triple layer model to predict Mo adsorption from chemical properties for one of the soils predicted previously using the constant capacitance model (Goldberg et al., 2002). While the prediction (Fig. 9.10d) is, of course, less good than the result of the model optimization (Fig. 9.10b), it is at least semi-quantitative at all pH values. The tremendous improvement in the quality of the triple layer model prediction at pH values above 7 (Fig. 9.10d) over the constant capacitance model prediction (Fig. 9.10c) is especially significant for prediction of Mo adsorption in and zone soils where Mo can accumulate in forage plants to levels detrimental to the health of grazing ruminant animals. The surface speciation predicted for the Wyo soil is presented in Fig. 9.11. The outer-sphere Mo surface complex is predicted to dominate above pH 6. This is in agreement with the surface speciation predicted from spectroscopy for Mo adsorption on amorphous Al oxide.

9.4. Conclusions

The results of all experimental methods, both macroscopic (PZC shifts and ionic strength effects) and microscopic (Raman and ATR-FTIR
spectroscopically, provide self-consistent mechanisms for Mo adsorption on amorphous oxides. Molybdate forms predomnantly inner-sphere surface complexes on both oxides at low pH and outer-sphere surface complexes dominate at high pH. The inner-sphere surface complex predomnates to a greater extent for Mo adsorption on amorphous Fe oxide while the outer-sphere surface complex is more significant for Mo adsorption on amorphous Al oxide. The triple layer model containing both an inner-sphere and an outer-sphere surface complex was able to describe and predict Mo adsorption on a large group of soils at all pH values investigated. The predomnance diagram for the Mo surface species in soil was in complete agreement with that obtained spectroscopically for Mo adsorption on amorphous Al oxide.

ACKNOWLEDGMENTS

Gratitude is expressed to Mr. H.S. Forster and Mr. G.S. Premachandra for technical assistance.

REFERENCES

Weinstock, N., Schulze, H., & Muller, A. (1973). Assignment of \(v_1 \) (E) and \(v_4 \) (F) of tetrahedral species by calculation of the relative Raman intensities: The vibrational spectra of VO\(_4\)\(^-\), CrO\(_4\)\(^-\), MoO\(_4\)\(^-\), WO\(_4\)\(^-\), MnO\(_2\), TeO\(_2\), ReO\(_2\), RuO\(_2\), and OsO\(_2\). *J. Chem. Phys.*, 59, 5067–5067.

