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The structure of macroporous or aggregated soils and fractured rocks is generally
so complex that it is impractical to measure the geometry at the microscale (i.e., the
size and the shape of soil aggregates or rock matrix blocks, and the myriad of
fissures or fractures), and use such data in geometry-dependent macroscale flow
and transport models. This paper analyzes a first-order type dual-porosity model
which contains a geometry-dependent coefficient, p, in the mass transfer term to
macroscopically represent the size and shape of soil or rock matrix blocks. As a
reference, one- and two-dimensional geometry-based diffusion models were used to
simulate mass transport into and out of porous blocks of defined shapes. Estimates
for ,0 were obtained analytically for four different matrix block geometries. Values
for ,0 were also calculated by directly matching analytical solutions of the diffusion
models for a number of selected matrix block geometries to results obtained with
the first-order model assuming standard boundary conditions. Direct matching
improved previous results for cylindrical macropore geometries, especially when
relatively small  ratios between the outer soil mantle and the radius of the inner
cylinder were used. Results of our analysis show that /3 is closely related to the ratio
of the effective surface area available for mass transfer, and the soil matrix volume
normalized by the effective characteristic length of the matrix system. Using values
of /3 obtained by direct matching, an empirical function is derived to estimate
macroscopic geometry coefficients from medium properties which in principle are
measurable. The method permits independent estimates of p, thus allowing the
dual-porosity approach eventually to be applied to media with complex and mixed
types of structural geometry. Copyright 0 1996 Published by Elsevier Science Ltd

Key words: preferential flow, variably-saturated structured media, dual-porosity
model, mass transfer coefficient, geometry coefficient.

INTRODUCTION

Structured soils and fractured rock formations often
contain macropores or fractures through which water and
solutes can move at considerably larger velocities than in
the porous matrix. The resulting microscopic or pore
scale heterogeneities in flow velocities may eventually
manifest themselves at the macroscopic scale in terms of
preferential flow involving transient nonequilibrium

conditions in the pressure head or solute concentration
perpendicular to the flow direction. Preferential flow
phenomena have been extensively studied8”7*49  because of
their implications on the hydrologic and contaminant
transport properties of soil/rock systems. Dual- (or
double-) porosity approaches’15’  have been applied to
various problems of water flow in fissured reservoirs,
solute transport in aggregated soils, and transient flow
and transport in variably-saturated structured media (for
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an extensive review, see Gerke and van Genuchten15).
Conceptually, a dual-porosity medium is generally
assumed to involve two overlapping but interacting
pore domains having different hydraulic and transport
properties. Water and solute movement in dual-porosity
models (e.g., Dykhuizen’j and Jarvis et a1.24)  is simulated
separately for the fracture and matrix pore systems, while
coupling terms are used to describe the transfer of water
and solutes between the two pore systems.

A commonality of dual-porosity approaches is that
they require information about the geometry of the soil
or rock system being simulated, i.e., the size and shape
of matrix blocks or soil aggregates, including the
geometry of the interface area through which water and
solutes are exchanged between the two pore systems.
The interface area may be associated with the surface
structure of either the fracture pore system (e.g., planar
cracks or cylindrical macropores), or of the matrix pore
system itself (e.g., rock matrix blocks or soil aggregates).
Naturally structured media often consist of a mixture of
matrix blocks having different shapes and sizes, thereby
leading to potentially very complex interfacial geome-
tries as has been demonstrated recently by means of
computed tomography.20925’50

Mass transfer in dual-porosity models is frequently
approximated using a first-order differential equa-
tion.‘0*‘695’  More sophisticated formulations that con-
sider a nalytical solutions of flow and transport into or
out of porous matrix blocks of known size and shape
are generally limited to relatively simple situations, such
as for well-defined macropore systems or idealized
matrix block geometries,34  steady-state water fl~w,~~
and for single pulses of water or solutes moving along
a fracture.14y52l53  Microstructure-type mode1s22s23135@
describing transport at both scales of the porous
medium,      i.e.,, macroscopic transport in the fracture
pore s yst e m1 and local-scale transport inside the aggre-
gates or matrix blocks, mostly assume a single equiva-
lent matrix block geometry (e.g., a sphere) for which
local-scale solutions of diffusion-type flow and transport
models are available. Equivalent geometries may be
obtained by deriving a volume-weighted average sphere
radiu:-,32  using surface-to-volume ratios and distance
probability functions for matrix diffusion obtained
from fractured rocks or aggregated soi1s,29’33  invoking
scaling methods involving shape factors,41,44 using
scaling methods based on ratios between the volume
and surface area of matrix blocks,54  or by means of
‘block -geometry functions’ associated with planar, cylin-
drical, or spherical block shapes,2 among other methods.

Although conceptually of considerable interest, the
approaches above are still difficult to apply to field
problems since the microscopic model parameters are
not easily measured. A related issue, mostly still
unresolved, is the question of how to obtain adequate
microstructural information required to extend such
models from simple or artificial media like glass beads to

field problems.’ Consequently, the first-order mass
transfer coefficient is at present still treated mostly as
an empirical parameter which must be calibrated by
fitting to observed field data, or to solute breakthrough
curves obtained in displacement experiments.45  One of
the challenges of dual-porosity models is to identify
those local-scale processes that have the most impact at
the macroscale and to incorporate those processes in a
macroscopic model in such a way that the model can be
applied to realistic field problems. With respect to a
structured dual-porosity medium, this means that the
geometric effects somehow must be represented by a
limited few lumped parameters related to the bulk
volume of the medium. The aim of this paper is to derive
expressions that appropriately describe the structural
geometry of a dual-porosity medium using parameters
that can be related to measurable properties.

DUAL-POROSITY MODEL AND FIRST-ORDER
MASS TRANSFER

The dual-porosity model used in this study to simulate
one-dimensional vertical water flow and solute transport
in a variably-saturated structured medium was described
in detail by Gerke and van Genuchten.”  The model
assumes that the properties of the bulk porous medium
can be characterized by two sets of local-scale proper-
ties: one set associated with the fracture pore system
(subscript f), and the other with the matrix pore system
(subscript m), as follows

E = It+& + (1 - Wf)& (la)

0 - M’& + (1 - wr)f& (lb)

4 = VIf + (1 - Qqn, (lc)

where E is the porosity (L3Lp3),  6’ is the water content
(L3L-3),  q is the fluid flux density (LT-‘),  and wf is the
relative volumetric proportion of the fracture pore
system (0 < wf < 1). Assuming applicability of Darcy’s
law,45  water flow in the fracture and matrix pore regions
are described by a coupled pair of Richard’s equations:

@I

I‘,+_-
1 - Wf (2b)

where h is the pressure head (L), C is the specific water
capacity df?/dh  (L-t), K is the hydraulic conductivity
(LT-I),  z is depth taken to be positive downward (L), t
is time (T), and Fw is the water transfer term (T-l) taken
as

rw = ‘Yw (hf  - h,) (3)

in which cr, is a first-order mass transfer coefficient
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(L-‘T-l)  for water flow. The following expression for
(Y, was derived by Gerke and van Genuchten”’ using a
scaling procedure:

P
ow = ;;z  %v&(~> (4)

where p is a dimensionless geometry-dependent coeffi-
cient, a is the characteristic length of the matrix
structure (L) (e.g., the radius of a spherical or solid
cylindrical aggregate, or half the fracture spacing in the
case of parallel rectangular voids), T,,,  is a dimensionless
scaling coefficient for which an average value of 0.4 was
obtained empirically assuming parallel rectangular slabs
(Fig. la), and K, is the effective  hydraulic conductivity
function of the fracture-matrix interface evaluated in
terms of both h, and hf as follows

K, = @5K.&)  + K,(&Jl (5)
Analogous to eqn (2), the transport of solutes in a

variably-saturated dual-porosity medium is described
using two coupled convection-dispersion equations:

(6a)

where D is the dispersion coefficient (L*T-‘),  R is a
dimensionless retardation factor accounting for linear
equilibrium so

‘p
tion, and Fs is the solute mass transfer

term (MLV3T-  ) formulated here in a slightly different
way as done previously in Gerke and van Genuchten.”

rs = %(l - Wfh%l(Cf - CnJ + 1 r&f rw L 0
r

wm r,<o
(7)c

in which Q, is the first-order solute mass transfer
coefficient (T-l) of the form

o.J = -$Da (8)

where Da is an effective diffusion coefficient (L*T-‘)
which represents the diffusion properties of the fracture-
matrix interface as well as other parameters and which,
however, has not yet been evaluated analogously to
yWKa  in eqn (4) for water transfer.

For steady-state water flow with qm = 0 (no flow in
the matrix pore system), the above variably-saturated
dual-porosity model reduces to the two-region mobile-
immobile solute transport model of van Genuchten and
Wierenga.43

4IJG ;tA= a:(cf-c,) (9b)

where the water contents, br and r9,, as well as the
retardation factors, RF and R& are expressed in terms of

the bulk soil volume, i.e.,

‘19f =  WBfi 6, = (1  -w,)& (lOa;  b)

The first-order mass transfer coefficient, (Y: (T-l), in (9b)
characterizing diffusive exchange of solutes between
the mobile and immobile liquid phases is of the general
form

P%D:,a: = --g- (11)
where 0: is the effective diffusion coefficient for solute
mass transfer into the immobile pore water region or the
matrix pore system. We refer to Gerke and van
Genuchten” and van Genuchten4* for additional
discussions of the dual-porosity models presented here,
including possible ways of how the different parameters,
other than p, may be measured or estimated.

GEOMETRY REPRESENTATION OF THE MASS
TRANSFER COEFFICIENT

Analytical evaluation

In order to relate the mass transfer coefficient, ai, to the
diffusion properties of soil aggregates or rock matrix
blocks, the first-order formulation given by eqns (9)
and (11) may be compared with more comprehensive
geometry-based microstructure-type models for diffusion
into porous blocks having spherical, cylindrical, or
rectangular slab-type geometries. A variety of techniques
have been used to derive expressions for CX: in eqn (1 l),
including Laplace transform comparisons,31~39~44  moment
analysis,30l40  and the use of algebraic expansions.4  The
Laplace transform method may also be used to derive
expressions for the first-order water transfer coefficient,
ow, in e n (4) by linearizing the horizontal flow
equation. 18 Such analyses lead to first-order mass transfer
coefficients in eqns (4),  (8),  and (11) which are of the
general form

cu,* P
Q,3(Y,~---_-

6, a*’ (12)
with P = D& in the two-region mobile-immobile type
transport model (9), D, in the dual-porosity solute
transport model (6), and -yWKa in the dual-porosity
water flow model (2). Thus, we hypothesize that values
of @ can be derived that are identical for these three
models, and hence a function only of the geometry.

Mass transfer coefficients obtained analytically using
Laplace transform comparisons differ only in the value
of the geometry-dependent coefficient, p. Most of the
studies mentioned above derived values for ,0 of 3 for
rectangular slabs, 8 for solid cylinders, and 15 for
spheres, although other studies obtained slightly differ-
ent values.“y3’ For a hollow cylindrical dual-porosity
medium involving macropores surrounded by cylindri-
cal soil or rock matrix mantles, van Genuchten and
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Dalton4  derived the following expression for 0:

2(Co - u2
(13)

where co = (a + b)/b, in which b is the radius of the
cylindrical macropore and a is the thickness of the soil
matrix mantle (Fig. lb).

For hollow cylindrical geometries the flux across the
fracture-matrix interface (the surface of the inner
cylinder) is very similar to the soil water flux into a
root located in the center of a cylindrical soil segment.

/

/

The latter process has been widely studied.28  Analogous
to the water transfer term, rw, root water uptake is
generally included as a sink term in the Richard’s
equation (2), and often formulated as an effective first-
order approach. Such an approach was actually used by
Moldrup et aL2’ who derived a soil resistance term by
integrating the flow equation for a cylindrical coordi-
nate system between the inner and outer radius of the
soil mantle and assuming dO/dt to be constant (>O).
This approach leads to another equivalent expression
for the geometry-dependent coefficient, p. Using the
notation of this paper, this alternative expression is

b a

/

(b)

a b

(4

Fig. 1. Schematic illustration of porous blocks having (a) rectangular slab-type, (b) hollow cylindrical, (c) solid cylindrical, and
(d) spherical geometries. Widths of 2a and 26 are associated with the matrix and fracture pore systems, respectively.
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given by

P =
[
lnK0)

d
-1

--c _ 1 0.5 ] ; b > 1 (14)

Analytically derived mass transfer coefficients
are limited to basically four geometries for which
solutions of the diffusion equations are available.
Additional limitations are due to simplifying assump-
tions made during mathematical derivation of the
coefficients, e.g., neglecting higher-order terms in the
series expansions.

Direct matching

Alternatively, estimates for the mass transfer coefficient,
crf, may also be obtained by directly matching solutions
of the first-order approach, i.e., of eqn (9b), with calcu-
lated average solute concentrations of soil aggregates or
rock matrix blocks of known geometry. For this purpose
one could use analytical solutions of the equations
governing diffusion into spherical, rectangular (slab-
type), or solid cylindrical aggregates, or those pertaining
to diffusion from hollow cylindrical macropores into the
surrounding soil matrix. The direct matching technique
was previously used by van Genuchten41 to compare
the diffusion properties of a soil aggregate with given
geometry and size with those having different shapes and
sizes in a nonflowing system. His method is employed
here to obtain geometry-dependent coefficients for
various matrix block sizes for use in the first-order
transfer terms. The direct matching technique is demon-
strated below for the case of a hollow cylindrical
macropore geometry.

Radial diffusion from the macropore through the
surface of the inner cylinder (Fig. lb) into the
surrounding mantle (assuming an infinite longitudinal
length) is described by

bLr<(a+b) (15)

where c,(r, t) is the local solute concentration inside the
cylindrical soil mantle, r is the local radial coordinate,
and the subscript m indicates that Rk and 0:
represent matrix pore system properties which are
consistent with the transport model in eqn (9) at the
macroscopic scale. We assume here that the solute
concentration of the matrix pore system, c,, defines the
average solute concentration, c,, of the liquid phase in
the hollow cylindrical (subscript h) porous matrix as
follows

2

s

atb
E,(f) = (a+b)2  -62 b rca(r’t)dr (16)

in which a is the characteristic length (the radial width of

the soil mantle surrounding the macropore). Solving
eqn (15) for a uniform initial solute concentration,
ca(r, 0), of zero, a constant concentration of unity at the
inner, ca(b, t) = 1, and a zero concentration gradient (no
flow) at the outer boundary (at r = a + b), and sub-
stituting that solution into eqn (16) leads to9

c,(Th)  = ’ - [; _ 1 n=,““-2

x exp(-k&-b) (17)
where Jo, J1, Y,, and Y1 are Bessel functions and p,, are
positive roots of

Jo(&) YI (&lCo)  - J1 MO) Yo(&) = 0 (18)
and where C~ is expressed in terms of dimensionless time,
Th, as follows

J&f
‘% = R$a;

and where the subscript h on T and a is used to indicate a
hollow cylindrical macropore.

Analogously, solutions for the average concentra-
tions, i;,, as a function of dimensionless time, T, are
available for spherical, solid cylindrical, and rectangular
geometries.9”’ Plots of the resulting curves of &(T)
versus r for different aggregate geometries exhibit
relatively similar, but not identical, sigmoidal shapes.41
In the original paper, van Genuchten41  introduced a
‘shape factor’, f, for conversion of one geometry into
an equivalent other geometry by matching the F,(T)

curves of two geometries through modification of the
characteristic length a in the dimensionless time (e.g.,
eqn (19)) pertaining to one of those geometries. The
shape factor was evaluated at an average value of T, =
0.5, thus ignoring any observed dependency off on &.

A similar approach can be used for estimating shape
factors in the first-order transfer term.4’ Integrating
eqn (9b) for c,(O) = 0 and cf( t) = 1 gives

I?~ E C,(To)  =  1 - eXp(-To) (20)

where

cY*t
7-O = $--& (21)

is the dimensionless time in the first-order model
(subscript 0). The shape factor fh,o  for converting a
hollow cylindrical into the equivalent first-order rate
model was defined by van Genuchten4’ as

fh$ = ($ “2/4=o.1 (22)

in which the dimensionless times Th and 7. were both
evaluated at C~ = c,,, = 0.5.  Substituting eqns (19) and
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(21) into eqn (22) shows that the shape factor,f, is related
to the geometry coefficient, /3, in the first-order transfer
term of the dual-porosity model by means of p = l/fz.

By using the direct matching method, we obtained
values for 0 of 3.5 for rectangular slabs, 11 for solid
cylinders, 22.7  for spheres (see also van Genuchten4’),
and the following empirical regression function
(2 = 0.996) for a hollow cylindrical geometry:

’ = 10.19lnil6Q]‘;
1 < <s < 100 (23)

Figure 2 compares the geometry coefficients for
hollow cylindrical matrix geometries as obtained by
means of analytical derivation (eqns (13) and (14)) with
those obtained using eqn (23) which is based on the
direct matching approach. Equation (13) closely agrees
with the direct matching results in the limit of relatively
thick cylindrical soil mantles (large b), whereas eqn (14)
approximates the direct matching results more closely in
the limit when <s -t 1. The results in Fig. 2 are a
consequence  of simplifying assumptions invoked in the
derivations of eqns (13) and (14),  i.e., by having systems
with relatively few macropores per unit area (& > lo),
or relatively dense root systems (<a < 5). The effect of
using different values of fl in eqn (4) on soil water flow

simulations will be shown later by directly comparing
the dual-porosity model with equivalent two-dimen-
sional models for different matrix geometries. We note
that the scaling procedure described by Gerke and van
Genuchten16  was employed to evaluate the hydraulic
conductivity of the fracture-matrix interface, K,(h), in
eqn (4) using the analytically-derived geometry coeffi-
cient for parallel rectangular slabs u = 3).

COMPARISONS USING EQUIVALENT
TWO-DIMENSIONAL MODELS

To study the geometry coefficients in the mass transfer
term (4) as evaluated by different methods, consider
transient unsaturated water flow in both the fracture
and matrix pore systems. For convenience, and to
facilitate a direct comparison, vertical movement in the
matrix pore system has been neglected. Results obtained
with the dual-porosity model using the first-order
transfer term will be compared with those generated
using the SWMS_2D  finite element code.” The flow
region was designed to imitate rectangular, hollow
cylindrical, and solid cylindrical geometries of the
matrix blocks (Fig. 1). Hydraulic properties of relatively

j ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,(,, I ,,,,,,,” “,““,

0 10  2 0  3 0  4 0  5 0  6 0  7 0  8 0  9 0  100

Outer-to-Inner-Radius Ratio, c0
Fig. 2. The geometry coefficient, @, as a function of the ratio, CO, between the outer and inner radius, assuming hollow cylindrical
geometry. Plotted are values and curves obtained by (a) analytical derivation using eqn (13),  (b) direct matching using eqn (23),  and

(c) analytical derivation using eqn (14).
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Table 1. Model parameters and initial conditions used in the twodimensional comparisons

(Y
(1/cm)

n 4 4 KS 4 (2) 4 (2)
(cm/day) (cm)

Matrix 0.005 1.5 0.11 0.5. 1.05 - 1000 0.277
Fracture 0.100 2.0 0.0 0.5 2000 -1000 0.005

coarse- and fine-textured soil materials (Table 1) were
assigned to the fracture and matrix pore systems,
respectively. Water flow for the parallel rectangular
fracture (slab) geometry was simulated by using a two-
dimensional cross-section (x-z plane) where x is the
horizontal and z is the vertical spatial direction. For
cylindrical geometries we assumed radial symmetry, and
simulated flow in a quasi three-dimensional region (r-z
plane) using the flow equation for a cylindrical
coordinate system. In order to compare the results of
the two-dimensional calculations with those obtained
with the dual-porosity model (2),  nodal water contents
at given simulation times were averaged over the
horizontal or radial distance and transformed into
equivalent pressure head values of the fracture and
matrix pore systems using the inverse of the water
retention function (e.g., van Genuchten et a1.47):

h = i (s;‘/” _ 1)“”

where Q and n are empirical parameters, m = 1 - l/n,
s, = (0 - &>l(& - 0,) is effective saturation, and 0, and
8, are the residual and saturated water contents,
respectively. The procedure used for comparing model-
ing results is described in detail by Gerke and van
Genuchten.16

For the idealized geometries (Fig. 1) used here, the
characteristic length, b (e.g., the half-width in the case
of a rectangular slab, or the radius in the case of a
cylinder or sphere) of the fracture pore system is related
to the relative proportion of the fracture system, wf, and
the characteristic length, a, of the matrix system by

Bt = al&
f

for rectangular slabs (subscript l), by

for hollow cylinders (subscript h), and by

bcir = a,;,[(1  - wf)-li2  - l] (27)

for solid cylinders (subscript c); for rectangular prisms
(subscript r) we assumed a square base area of (2a)2.
Flow systems containing a spherical geometry were
approximated by assuming that the spherical matrix
blocks or soil aggregates were surrounded by thin
spherical mantles imitating the fracture pore system.
In case the spheres are completely surrounded by the
fractures, the equivalent characteristic length of the
fracture system, b:, is

b: = a,[(1 - wf)-lj3  - l] (28)

Assuming that the spherical matrix blocks are in contact
with each other (Fig. Id), the volume, V,,, of the top and
bottom sphere-caps (subscript SC) of the fracture mantle

V, = : bi (3a, + 2b,) (29)

has to be distributed in the fracture pore system
resulting in a value of b, which is slightly larger than
bl as follows

b3 _ 3a
s s

‘a5 - wf 62 _  3a2 ’ - wf

Wf s
s -bb,+az  = 0

Wf
(30)

Equation (30) can either be solved exactly, using a
closed-form trigonometric solution for cubic equations,
or solved approximately in an iterative manner begin-
ning with 6: obtained from eqn (28) as the initial
estimate. For example, assuming a = 1 cm and wr = 0.05,
one obtains bf = 0.017245 cm and b, M 0.0174cm.  The
values of b for the other geometries (Table 2) were used to
design equivalent two-dimensional flow regions and
associated numerical finite element discretizations.

To illustrate physical nonequilibrium during transient
flow in an unsaturated dual-porosity-type structured
porous medium, the simulation example used pre-
viously’5~‘6 was selected. We assumed the application
of water at a constant rate of 50 cm/day to a 40-cm-deep
dual-porosity medium having an initial uniform pressure
head of h,i = h,,i = -1000 cm. Water was allowed to
infiltrate exclusively into the fracture pore system
(wr = 0.05), such that a local infiltration rate of
qf,o = l000 cm/day was imposed at the upper and a
free-drainage condition at the lower boundary of the

Table 2. Model parameters in first-order transfer term and two-dimensional representation

P P a xv KW
analytic matching (cm) (A) (cm/day)

Rectangular slab 3 3.5 1 0.02563 0.4 0.01 0.1
Solid cylinder 8 11.0 1 0.02598 0.4 0.01 0.1
Hollow cylinder 2.42 1.5 1 0.28800 0.4 0.01 0.1
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fracture pore system. Parameters of the soil water
retention function ((Y,  n, O,, O,),  the hydraulic conduc-
tivity at saturation, K,, the initial pressure head, hi, and
water content, ei, and the first-order mass transfer
coefficients can be found in Tables 1 and 2, respectively.

Figure 3 shows calculated two-dimensional pressure
head distributions at t = 0.04  days for (a) a parallel
rectangular slab, (b) a hollow cylindrical geometry, and
(c) a solid cylindrical geometry assuming relatively low
(K,,a = 0.01 cm/day) water transfer rates between the
fracture and matrix pore systems. Note that the
horizontal axis is enlarged 20 times. The simulation
examples in Fig. 3 illustrate significant preferential flow
and pressure head nonequilibrium between the fracture
and matrix pore domains for all three geometries. After
about 1 hour (t = 0.04  days) of constant infiltration,
water moved downward to a depth of 23cm in the
rectangular pore system (Fig. 3a), to z = 35 cm in the
hollow cylindrical pore system (Fig. 3b), and to
z = 15cm in the fracture pore system surrounding the
solid cylindrical soil matrix (Fig. 3c). Since all model
parameters, including the relative volume, wf, of the
fracture pore system and the initial and boundary
conditions were identical, differences in calculated
pressure distributions were caused only by the geometry-
dependent rates of water transfer from the fracture into

0

10

(a)

the matrix pore system. Two-dimensional model simula-
tions were also carried out for the case of relatively high
water transfer rates assuming K,+ = 0.1 cm/day (results
not shown here).

Horizontally averaged two-dimensional simulation
results are compared with results obtained from the
dual-porosity model for relatively small water transfer
rates (I& = 0.0 1 cm/day) assuming matrix structures
involving rectangular slabs (Fig. 4), hollow cylinders
(Fig. 5), and solid cylinders (Fig. 6). As was discussed
previously,‘6 the first-order term generally underesti-
mates the transfer rate at the infiltration front due to
failure of the linear first-order term to capture the highly
nonlinear transient flow process near the front (see also
Zimmerman et al.“).  However, except in areas close to
the infiltration front, the proposed linear term yielded
relatively good approximations for the transfer of water
(parts b of Figs 4-7), so that the calculated pressure
head (parts a) and water content profiles (parts c) still
closely matched the reference results. The match
generally improved when allowing higher water transfer
rates by using KS,, = 0.1 cm/day (cfX, Figs 5 and 7 for a
hollow cylindrical geometry and p = 1.5). The results in
Figs 4-6 reveal similar dependencies of the transfer rate
on p among the different geometries, i.e., the larger the
geometry-dependent mass transfer rates along the

Pressure Head, h (cm) Water Transfer Rate, I’, (l/day) Volumetric Water Content, 0

Fig. 5. Pressure head, h (a), water transfer rate, Pw (b), and total volumetric water content, 0 (c), versus depth, z, at t = 0.04  days as
calculated with the one-dimensional dual-porosity (Dual) and two-dimensional (2-D) models, assuming a hollow cylindrical
geometry and relatively small water transfer rates (K,+ = 0.01 cm/day); results are for geometry coefficients derived analytically

(p = 2.4) and by direct matching (p = 1.5).
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sequence: ‘hollow cylinders < rectangular slabs < solid
cylinders’, the closer the match with the reference
results. Thus, the closest correspondence was obtained
for the solid cylindrical geometry (Fig. 6) assuming
p=g

In t ontrast to the above, the analysis becomes more
complicated when, for a particular geometry, different
methods for evaluating the geometry coefficient, p, are
comp ared. Because of the approximate nature of the
first-order approach, and the nonlinear flow regimes
involved, the comparisons will differ for each particular
set o f  hydraulic parameters and at each particular
simul ation time. We again present results at t = 0.04 for
an infiltration event, and selected a situation with fairly
typical results. In case of a hollow cylindrical geometry
(Figs 5 and 7), the geometry coefficient obtained by
direct matching, i.e., p = 1.5 calculated using (23),
substantially improved the correspondence with the two-
dimen sional reference results, as compared to the
analy tically derived value (p = 2.42) using eqn (13).
These results confirm that eqn (13) is limited to dual-
porosity systems with relatively large values of Q., On
the other hand, results obtained with different values of
fl (as estimated analytically or using direct matching)
were quite similar for rectangular slabs (Fig. 4), whereas
for solid cylinders the results using the analytically derived

value turned out to be superior as compared to the
direct matching method (Fig. 6). The results in Figs 4-6
only in part reflect the different sensitivities of the mass
transfer rate on 0 for different matrix geometries. The
results also support the assumption that a single
constant value of 0.4 for the scaling coefficient, T,,,, in
eqn (4) in combination with an arithmetically averaged
K, (eqn (5)) can be reasonably well applied to all three
geometries.

EXTENSION TO MEDIA WITH COMPLEX
STRUCTURAL GEOMETRIES

To be able to extend the approach to porous media with
more complex structural geometries, we assume that
somehow a macroscopic geometry-dependent coefficient
may be defined which effectively captures the overall
diffusion properties of the structured system. So far, /3 in
eqn (4) was quantitatively related to the shape of a well-
defined matrix structure. Alternatively, /3 could be
related also to the ratio between the surface area of
the interface between the fracture and matrix pore
system and the volume of the matrix blocks. Both of
these quantities are, at least in principle, measurable.
The surface-to-volume ratio has been used in various

(b)
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Fig. 6. Pressure head, h (a), water transfer rate, I’, (b), and total volumetric water content, fI (c), versus depth, z, at t = 0.04 days as
calculated with the one-dimensional dual-porosity (Dual) and two-dimensional (2-D) models, assuming a solid cylindrical geometry
and relatively small water transfer rates (& = 0.01  cm/day); results are for geometry coefficients derived analytically (J = 8) and by

direct matching @ = 11).
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approaches to obtain geometric information of soil or
rock structures?9z3’” mostly from microscopic points of
view.

The ratio between the surface area, A, (L2),  of the
matrix-fracture interface (e.g., the soil aggregate surface)
and the volume, Vm (L3),  in the case of a matrix block
formed by parallel rectangular slabs (plates), is given by

A     1m,l_
v, -z (31)

which assumes that the contributions of the sides (top
and bottom ends) can be ignored. For solid cylinders
and rectangular prisms we obtain similarly

(32)

while for spheres the surface-area-to-volume ratio is

A 3m,s
v,=Q, (33)

For hollow cylinders, assuming that water and solute
mass transfer is restricted to the surface area of the inner
cylinder, one obtains

Am h 2 2A=
vm bh(&f - 1) = ah(cO  f 1) ’

co > 1 (34)

where ah = bh(CO  - 1) is the characteristic length of the
matrix structure.

For application to media with arbitrary geometries
and various characteristic diffusion lengths, we intro-
duce a dimensionless surface-area-to-volume ratio, c(-),
normalized per unit length of the matrix structure for
rectangular and solid cylindrical geometry

*
c=$a*

m
(35)

and for hollow cylindrical structures

<=&Ty co > 1

where Ah is the effective surface area and a* is the
effective length of the matrix pore system, both being
lumped macroscopic scale parameters which integrate
over all geometries of a defined volume of the structured
medium.

By assuming lumped parameters, we may plot the
geometry coefficient, p, versus the normalized surface-
area-to-matrix-volume ratio, r;, obtained from the
directly-matched shape factors for various sizes and
shapes for conversion into the equivalent first-order rate
model using eqn (22). Results are shown in Fig. 8 where,
for comparison, the analytically-derived coefficients for

15-
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Fig. 7. Pressure head, h (a), water transfer rate, lTW (b), and total volumetric water content, 8 (c), versus depth, z, at t = 0.04 days as
calculated with the one-dimensional dual-porosity (Dual) and two-dimensional (2-D) models, assuming a hollow cylindrical
geometry and relatively large water transfer rates (KS+ = 0.1 cm/day); results are for geometry coefficients derived analytically

(@ = 2.4) and by direct matching (p = 1.5).
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plane sheets, solid cylinders, and spheres have been
included. Figure 8 shows that the difference in the value
of p between structures that have the same reduced
surface-to-volume ratio, are much smaller than differ-
ences in 0 with respect to the method of evaluation
(e.g., ,0 = 22.7 for a sphere and 20.7 for a cube). This
fact permits one to describe the geometry coefficient
over a wide range of c-values by the fitted empirical
expression

which is simpler but also somewhat less accurate than
eqn (37).

The proposed functions in eqns (37) or (38) relate the
geometry-dependent coefficient, p, of the macroscopic
scale mass transfer terms in eqn (12) to macroscale
properties of an arbitrarily structured medium. The
functional interpretation of structure used here focuses
only on the size and shape of the fracture-matrix
interface area through which diffusive mass transfer
actually takes place. An important lumped parameter in
this context is the effective surface area, A;, which
integrates all ‘internal’ structural surfaces over the
volume of the porous medium; its value also contains
contributions from imperfectly developed (sub-) struc-
tures such as small fissures in spherical or cylindrical
matrix blocks. Values of the normalized surface-area-to-
volume ratio smaller than unity represent structured
soils or fractured rocks in which the ‘internal’ surface
area for diffusive mass transfer is primarily concave
(e.g., hollow cylinders). For porous media having values
of 5 > 1, the fracture-matrix interface areas are pre-
dominantly convex (e.g., spheres). The effective char-
acteristic length parameter, a*, may be interpreted to be
the smallest average distance for diffusion between the

[0191n{16(~-1)}]-z  0.0198<<<1  (37)

3.6~“’ lLc12
Ul + u2c + u3c2 2<s110

in which u, = 11.4275, u2 = -7.4438, and u3 = 3.5473
and where 2 = 1. For 1 < < < 2, the appropriate
geometry coefficients  may be obtained by using the
interp olation function suggested in eqn (37). Alterna-
tively. the dependency may be described also by

[0491n{16(f-1))1-2  0.0198<<< 1 (38)

0.65 -2[ 10.09 + <
I<r<lO

_ _ , . ( , ,. . . ,. 1 .’ .
_’ _‘_ _‘_ : ‘. : ‘. _’ ‘...,.. 7 Equation 37

1

Normalized Surface-to-Volume Ratio, s

Fig. 8. Plot of the geometry coefficient 0 as a function of the normalized effective surface-to-volume ratio, c = a*Ak/  If,,,, as given by
eqn (37),  as well as p-values obtained by analytical evaluation and direct matching.
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fracture-matrix interface and the center of the matrix
blocks perpendicular to the macroscopic scale flow
direction. The results in Fig. 8 suggest that the effect of p
on flow and transport calculations will be most apparent
when c is close to 1.0.  The effect of ,LI declines for c < 1
where /3 approaches a relatively constant value of 0.5
(i.e., the asymptotic behavior of fl for c < 0.1 is
demonstrated in Fig. 2) and total mass transfer rates
decrease because of a reduced effective surface area for
transfer, Ah. For c > 1, the effect of p may also decline
if, in the case of relatively large mass transfer rates, the
situation of a homogeneous (unstructured) medium is
approached which will not exhibit any preferential flow.
We emphasize that the coefficient /I as estimated with
eqn (37) or eqn (38) accounts for the shape dependency
of the mass transfer process, and indirectly still is a
function of the characteristic length, a*. The macroscale
parameters a*, b*, and wr, however, are no longer related
to each other in well-defined ways as for idealized
geometries using eqns (31)-(34);  they have to be
measured independently.

POSSIBLE PARAMETERIZATION  OF
STRUCTURAL GEOMETRY

Most approaches involving microstructure-type mobile-
immobile models assume prior knowledge of the type of
geometry, or rely on detailed micromorphological
measurements.29V32V33,54  In addition, an equivalent dia-
meter concept has been proposed for tubular macropores
in saturated media.12  However, we believe that realistic
simulations of preferential flow require the use of
macroscopic scale flow and transport parameters for
both pore systems.

The macroscopic approach presented in this paper
permits structural effects to be included without assum-
ing any type of geometry a priori, and hence follows a
more functional view as suggested previously by Bouma
et al7  The proposed macroscopic scale representation of
the structural geometry leading to diffusive mass
transfer relies on one of the most basic properties of a
structured medium, i.e., the fracture-matrix interface
area. The extent, size and shape of the interface, as well
as its physical, chemical, and biological properties (e.g.,
those of fracture coatings) are major factors determining
transport processes in aggregated soils or fractured
rocks. Of relevance here are, as discussed earlier,t6  not
only the interfacial permeability, K,, but also the
effective diffusion coefficient, D,, the chemical composi-
tion and sorption sites, biological activities along
fractures, as well as other properties occurring at or
near such interfaces.

Unfortunately, the effective fracture-matrix interface
area is not easily determined experimentally. Under
certain conditions the area and shape of the interface
may actually depend on the water content and flow rate,

while also partial wetting of aggregate surfaces or
swelling and shrinking of the matrix may occur.
Recently, methods have been suggested to calculate
the surface areas of structured soils using dyes that stain
macropore area&‘* or by using an image analyzer.6
Measurements of air permeability have also been
suggested36 to determine the effects of pore geometry
on transport processes in macroporous soils. Birgersson
et al.’ used two different tracers at the same time to
estimate the flow-wetted surface of fractured rocks into
which the dyes can diffuse and sorb. In another study,
McKay et a1.26 used nonreactive solute and colloid-sized
bacteriophage tracers to reveal large differences in trans-
port rates between the two tracers because of exclusion of
the large tracers from diffusing into the matrix.

The second macroscopic property, the effective
characteristic length of the matrix structure, a*, may
be determined using diffusion experiments. As a reason-
able initial estimate for a*, one-half of the volume-
surface mean diameter d (as defined by Gregg and
Sing”) may be used:

&,A 1 c(d)a* =2=2C(n&) (39)

where ni are the number of particles (cubes) of edge
length li of a specific volume. Often, the values of the
lengths li in eqn (39) have to be estimated, for example,
by using the mean projected diameter,” which is the
diameter of a circle having the same area as the
projected image of the particle when viewed in a
direction normal to the plane of greatest stability. One
could apply a similar approach to aggregate mixtures so
as to obtain a weighted average of the geometry and
length coefficient. Mass transfer rates could also be
obtained by multiple calculations using observed shape
and size distributions of the matrix pore system, and
applying a volumetric weighing procedure.

The above modeling concept offers also the possibility
to combine mass transfer with preferential flow in
situations involving partial wetting of matrix surfaces of
cracked clays or fractured rocks, for instance, by
assuming

A:, = A,$, OIS<l (40)

where s(t) is a dimensionless wetting parameter which
may be a function of time or certain soil properties.2’
The effects of swelling and shrinking in soils in this
approach could be described directly by means of the
parameter wf.

CONCLUSIONS

Preferential flow of water in a dual-porosity system of
various matrix geometries was simulated using a first-
order type water transfer term. Direct comparisons with
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reference two-dimensional model simulations demon-
strate (1) inherent limitations in the approach because of
simplification of highly nonlinear transfer processes into
an approximate first-order rate model, and (2) sensitivity
of the mass transfer coefficient in the dual-porosity
model to the exact geometry of the matrix pore system
(e.g., rectangular slabs, and hollow or solid cylinders).
The comparisons revealed similar tendencies for all
three geometries when using an appropriate value of the
coefficient, & describing the specific geometry of the
matrix pore system. By scaling the diffusion properties
and relating the geometry coefficient to the ratio
between effective surface area at the fracture-matrix
interface and matrix volume, the approach may be
extended to media with arbitrary and complex internal
geometries.
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