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ABSTRACT

Van Genuchten, M.Th. and Dalton, F.N., 1986. Models for simulating salt movement in
aggregated field soils. Geoderma, 38: 165—183.

This paper reviews several ‘“‘two-region’’ type models for simulating salt movement in
aggregated soils. A common feature of these models is the assumption that solutes are
transported by convection and dispersion through well-defined pores or cracks, while
diffusion-type equations are used to describe solute transfer inside the soil micropores.
Analytical solutions are currently available for several aggregate shapes (spherical, cylin-
drical and line-sheet type aggregates). A recently developed transformation extends
the two-region modeling approach to more general conditions involving aggregates of
arbitrary geometry. The method is based on the replacement of a given aggregated soil
by a reference soil made up of uniformly-sized spherical aggregates with the same average
diffusion properties as the original soil. The method can also be used to quantify the
mass transfer coefficient in a first-order rate model for solute exchange between mohile
and immobile liquid zones. An advantage of the first-order approach is that it can be
included easily in relatively simple management-oriented models using parameters that
can be given a physical interpretation. This paper also presents several previously un-
published expressions that lump the effects of intra-aggregate diffusion into an effective
dispersion coefficient for use in the classical two-parameter equilibrium transport equa-
tion.

INTRODUCTION

The efficiency of applied fertilizers and pesticides in the field, the leach-
ing efficiency of salt-affected soils, and concern for soil and groundwater
pollution in general have motivated numerous theoretical and experimental
studies on solute transport. Most theoretical studies in the past have focused
on transport processes in repacked laboratory soil columns or in relatively
uniform field soils. Transport in such soils during steady-state flow is general-
ly predicted well with the classical convection—dispersion solute transport
equation:
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where ¢ = solution concentration, v = average pore water velocity, D =
dispersion coefficient, R = retardation factor (for linear equilibrium ad-
sorption/exchange), ¢ = time, and z = distance.

It is now generally recognized that information based on eq. 1 is of
limited value when dealing with aggregated soils, especially during but not
necessarily limited to saturated flow conditions. Field soils usually are
structured in some way by containing large continuous macropores, such as
drying cracks, earthworm channels, gopher holes, decayed root channels,
or interpedal voids in naturally aggregated soils (fig. 1). The presence of
macropores causes surface-applied chemicals to move rapidly through the
soil profile, thus by-passing interactions with much of the soil matrix. The
result is a lower application efficiency for fertilizers and pesticides and/or
an increased potential for pollution of underlying groundwater systems.
Because of the bypassing process, desalination of initially saline soils will
similarly require much more water than would be predicted on the basis
of eq. 1. Much information has been gathered over the last few years that
clearly demonstrates this bypassing process, alternatively termed incomplete
or partial mixing, short-circuiting, and non-Fickian transport. Recent reviews
of experimental evidence are given by Thomas and Philips (1979), Bouma
(1981), Wierenga (1982) and White (1985).

7 Macropores

———Aggregates

4

Micropores

Fig. 1. Schematic picture of an aggregated soil.

Attempts to improve solute transport predictions in aggregated soils have
resulted in two-region or bicontinuum transport models that consider a
bimodal pore-water velocity distribution: water inside the aggregates is
assumed to be stagnant (non-flowing or immobile) while water in the larger
interaggregate pores is considered to be highly mobile. Solute transfer
between the two liquid phases is assumed to be a diffusion controlled
process and described by either a semi-empirical first-order rate expression
{Coats and Smith, 1964; van Genuchten and Wierenga, 1976), or by Fick’s
diffusion law if the geometry of the aggregates can be specified explicitly
{Rasmuson and Neretnieks, 1980; Tang et al., 1981).

This paper reviews several of these two-region type transport models,
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notably those for which analytical solutions exist. Briefly discussed is a
recently proposed scaling method (van Genuchten, 1985) for transform-
ing soil aggregates of known geometry into uniformly-sized spherical ag-
gregates with approximately the same diffusion properties as the original
aggregates. A similar transformation is also used to obtain a physical basis
for the mass transfer coefficient that appears in a first-order rate model
describing solute exchange between mobile (interaggregate) and immobile
(intra-aggregate) regions (van Genuchten and Wierenga, 1976). Follow-
ing a method previously used by Raats (1981), expressions are derived that
lump the effects of intra-aggregate diffusion into an equivalent dispersion
coefficient for use in eq. 1. Results are consistent with equations obtained
earlier by Passioura (1971), Bolt (1979) and Valocchi (1985) using alterna-
tive methods.

FIRST-ORDER TYPE TWO-REGION TRANSPORT MODELS

A relatively simple two-region model results when a first-order rate ex-
pression is used to describe solute transfer between the mobile (inter-ag-
gregate) and iramobile (intra-aggregate) liquid phases. Using the notation
of van Genuchten and Wierenga (1976), the following coupled set of equa-
tions can be shown to apply:

dem 9Cim 9%Cm 9Cm
O Ron —— + 0imBRin —— =0 Dm —— — 0 Um —— 2
m-tm 3t im<tim 3t m+/m 522 mv¥m 3z ( )
oc;
0imRim —— = &(Cm — Cim) (8)

where the subscripts m and im refer to the mobile and immobile regions
of the soil respectively, and where a is a first-order mass transfer coefficient
describing diffusional exchange between the inter- and intra-aggregate
liquid phases. The model assumes that this exchange occurs at a rate pro-
portional to the concentration difference between the two liquid phases.
Volumetric water contents 0, and 0y, are defined such that 8§ =0y, +0iy
is the total water content of the system. We will refer to egs. 2 and 3 as
the first-order rate (FO) model.

Mathematically it is convenient to put the FO model, and all other models
discussed in this paper, in dimensionless form. Table I summarizes the dif-
ferent modeis in terms of the dimensionless variables listed in Table IIL
In the latter table, T represents the number of pore volumes leached through
a soil profile or column of arbitrary length L, q is the volumetric fluid flux
density (¢ = 0v = Omuvm), whereas P and Pp, represent Peclet numbers.
The dimensionless coefficient § accounts not only for the partitioning of
the liquid phase into mobile and immobile parts, but also considers the
uneven distribution of adsorption sites between the intra- and inter-ag-
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gregate regions:

9 m R _OmRpy
emRm +6imRim R

(4)

where as before R is the total retardation factor of the soil system. More
detailed discussions of the dimensionless models and their parameters
are given elsewhere (van Genuchten et al., 1984; van Genuchten, 1985).
Table I also contains the dimensionless form of eq. 1, hereafter referred to
as the linear equilibrium (LE) model. All concentrations ¢ in this study
are made dimensionless by using transformations of the form:

-G
Co—Ci

Cc =

(5)

where C = dimensioned concentration, C; = initial concentration, and C, =
applied input concentration at z = 0.

The following initial and boundary conditions are applied to all models
(for the LE model, ¢y, and Py, must be replaced by ¢ and P, respectively):

cm(Z,0)=0 Cim{Z,0)=0 (6a, b)

1 depy d0Cm _

Cm (0,T) Y 0,7)=1 az( ,T)=0 (6c, d)

Using a variety of tracers (iritiated water, chloride, pesticides, heavy
metals), the FO model has been quite successful in describing many asym-
metrical laboratory-scale displacement processes (Coats and Smith, 1964;
Gaudet et al.,, 1979; Nkedi-Kizza et al., 1983; among others). However,
its use as a predictive tool for fieldscale studies has been limited. The
main reason for its limited use is the obscure dependency of the mass trans-
fer coefficient « on the diffusion properties of aggregates (notably aggregate
geometry and the diffusion coefficient). In general, values for «, and to
some extent the immobile water content fim, must be fitted to observed
data before the model can be used. This is especially true for soils that
contain small, poorly defined aggregates, and ironically also for seemingly
homogeneous and repacked soils. Because of the diffuse spatial location
and configuration of immobile water pockets and associated sorption sites,
« and 0y, for such soils are difficult to quantify by other than curve-fitting
techniques (van Genuchten, 1981; Parker and van Genuchten, 1984).

TRANSPORT IN GEOMETRICALLY WELL-DEFINED SYSTEMS
Geometry is somewhat less of a problem when simulating transport in

soils made up of uniformly-sized and -shaped aggregates. Transport models
for such systems are briefly discussed below. Again, the dimensionless
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forms of the models and their main parameters are summarized in Tables
I and II. All models in Table I have been solved analytically; the solutions
are given elsewhere (van Genuchten, 1985; Parker and Valocchi, 1986).
Calculated concentrations in this study are understood to represent flux-
averaged values.

Spherical aggregates (SD)

Transport equation 2 for the mobile liquid phase holds for all tworegion
models irrespective of aggregate geometry, provided that c¢;,, is taken to
be the average concentration of the immobile liquid phase. For a soil made
up of uniformly-sized spherical aggregates, Cim is simply the average con-
centration of a sphere:

g
Cim(z,t) = S rzca(Z,r,t) dr (7)
0

| w

where r = radial coordinate, a5 = radius of sphere, and ¢a = local fluid con-
centration of spherical aggregate.
Solute transfer in the aggregate is governed by the spherical diffusion
equation:
0cg Dy @

Rijpp— =— —(r? — 0<r< ’ 8
im Iy ERP (r ar) ( as) (8)

where D, = effective diffusion coefficient of the aggregate.

The transport equations are augmented with auxiliary conditions requir-
ing concentration continuity at the macropore walls (eq. 9a) and a zero
concentration gradient at r = 0 (eq. 9b):

0Cy
cm(,t) = ca(2,a5,1) o (,0,6) =0 (9a, b)
r

Rectangular aggregates (RD)

The average immobile liquid phase concentration ¢;,, for line-sheet type
aggregates separated by parallel rectangular voids is:

- o (10)
cim(z,t) = — [ Cal@&xt)
a o

where a; = half the width of the rectangular aggregate, and x = coordinate
perpendicular to the aggregate wall.
Solute transfer inside the aggregates is governed by the linear diffusion
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equation:

¥ Oca D 0% (0<x< 11
im —— = - <x<a
im a2 1) (11)

Boundary conditions for the aggregate are in this case:

d0cy
(Z>07t) =0 (128., b)
ox

cm (2,1) = ca(z,a1,t)

Solid cylindrical aggregates (SCD)

The average immobile phase concentration at any depth z is:

| ro

Cim@nt) =— °realznt)dr (13)
0

0w

a

where r = radial coordinate, and ¢, = radius of the solid cylinder.
The local concentration ¢, in the aggregates is determined by the cylin-
drical diffusion equation:

R dc, Dy 0 Bca) (0<r<ag) (14)
i —— =—— —(r <r<a
St r or or ¢

The internal boundary conditions are:

ac
em (2,8) = ca(2,ac,t) —a——~ (2.0,)=0 (152, b)
r

Hollow eylindrical macropores (HCD)

The average micropore concentration for this model is:

2 b
— rcg(z,nt)dr (16)

Cim (2,1) =
1m bz _ap ap

where ap, is the radius of the macropore, b is the radius of the finite cylinder
of soil surrounding the macropore, while r again represents the radial coor-
dinate. Solute transfer in the soil matrix is described by:

dca D; 3 0Cq
. = . r — an <r<bd 17
Rim YR ( ar) (ap ) 17)

with the boundary conditions:

0Cy
(2,0,t) =0 (18a, b)
or

Cm (27 t) = ca(z7ap7t) =0
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EXTENSION TO OTHER GEOMETRIES

Analytical solutions are currently only available for the five two-region
models listed in Table I. Exact solutions have not been derived for other
systems, notably for finite prismatic or columnar aggregates. To make the
limited set of solutions applicable to other aggregate geometries, an ap-
proach using shape factors was formulated by van Genuchten (1985). The
main objective of the procedure is to convert a soil made up of aggregates
of any arbitrary geometry into a reference soil for which an analytical two-
region type transport model is available. An obvious candidate for such a
reference soil is a soil made up of uniformly-sized spherical aggregates,
although in reality any geometry can be used for which an analytical two-
region model exists (Table I). The conversion method uses a geometry-
dependent shape factor [ that converts an aggregate of arbitrary geometry
into an “equivalent’ sphere with the same average diffusion characteristics
as the original aggregate. The conversion procedure is briefly discussed
below.

Inspection of Table I shows that the mobile phase transport eq. A2
applies to all two-region models irrespective of aggregate geometry. The
five two-region models differ only with respect to the rate by which material
diffuses from the macropore fluid into the soil matrix (and vice versa).
This is reflected by different equations for the average immobile concen-
tration cijm as a function of time. Thus, if for a given model we can closely
approximate c¢j, with some simplified expression, then the approximate
result should be close to the correct prediction.

As an example, let us compare the cj, expressions for the spherical
(SD) and rectangular (RD) two-region transport models. Applying Laplace
transforms to eq. A4 of Table I, using boundary conditions 9a, b and a
zero initial condition for ¢, leads to

- sinh(p¢) _
(Z = 7 Cml4, = $ 1
calZ,5,8) ¢ sinh(p) cm(Z,s) (P =+vs/vs) (19)

where ¢ = Laplace transform of ¢ with respecto to T, and s = Laplace trans-
form parameter.

Substituting eq. 19 into the Laplace transform of eq. A5 in Table I
and integrating gives:

— 3 37 =
Gim = [~ coth(p) = | @m (20)
D b

Substituting the first three terms of the series:

1
coth(p) =—+————+-—— + ... (21)
P .
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into eq. 20 leads to the following approximation for ¢jy (note that p? =
$/s):

— S —
Gim = (1 S ) om 22)
157,

A similar equation can also be derived for the RD model:

Cim =Vp tanh(v/p) c;m (P =+vs/m) (23)
or with the approximation tanh(p)=p —p3/3 +. ..

i = (1——5’—) em (24)

Equating egs. 22 and 24 gives the following relation between the dimen-
sionless parameters yg and v1:

Ys = 71/5 (25)

or with the definitions of v¢ and v; (Table II):

Y2

ag = (ZL) a =vba =224 q (26)
Ts

The constant 2.24 is called the shape factor fj s for conversion from a
line-sheet type aggregate (subscript 1) into a spherical aggregate {subscript s)
with similar diffusion properties. In other words, the time-dependent average
concentration of a rectangular aggregate having a width of 1 cm should be
very similar to the average concentration of a sphere having a diameter
of 2.24 cm, as long as both aggregates are subjected to the same initial
and boundary conditions. Note that in this approach the rectangular and
spherical aggregates do not necessarily have the same volumes. Aggregate
volumes have already been taken into account implicitly through the proper
definition of the mobile and immobile water contents (8, and 8;,,) in the
transport equations.

Because of several approximations in the derivation, eq. 26 will not be
exact. Moreover, the expressions for ¢jy, are nonlinear in s, and hence in 1,
which should make the shape factor f} s time-dependent. A slightly dif-
ferent value for the shape factor was derived earlier (van Genuchten, 1985)
by directly matching average concentrations of various aggregates in non-
flowing system. In that paper we obtained a value of 2.54 for f s, which
leads to:

vs = 71/6.4. (27)

Fig. 2a compares calculated breakthrough curves, ce(T) = ¢ (1,7), for
transport through a soil containing rectangular aggregates using both the
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Fig. 2. Breakthrough curves calculated with the equivalent spherical (SD) model and
the exact curves for (a) rectangular aggregates (RD) and (b) solid cylindrical aggregates
(SCD) (after van Genuchten, 1985).

exact RD model and the approximate spherical SD model. While not perfect,
the SD model certainly gives a reasonable approximation of the RD model.
The same procedure using Laplace transforms can also be used for the
solid cylindrical diffusion (SCD) transport model. The Laplace transform
of ¢iyn in this case is:
oo = 21, (p)

o pl,(p)

(P =vs/rc) (28)

Using expansions for the Bessel functions I, and I; for small values of p,
eq. 28 can be approximated by:

S -

) em (29)

Eim = (1 - 8"/,:
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Equating eqs. 22 and 29 now gives:

8

- 30
¥s 15 Ye (30)

which leads to a shape factor f¢ ¢ of 1.37. This is again close to the value
of 1.44 obtained by directly matching average concentrations of spherical
and solid cylindrical aggregates (van Genuchten, 1985). The latter value of
1.44 for the shape factor gives v = v¢/2.06, which results in the approxima-
tion as shown in Fig. 2b. Clearly, the approximation using equivalent spheres
works better for solid cylindrical than for rectangular aggregates. This
should be no surprise since the surface-area/voluine ratio of a sphere is much
closer to the surface/volume ratio of a solid cylinder (of unit height) than
that of a rectangular slab.

Success of the transformation into equivalent spherical aggregates can
be judged from Fig. 3, which shows plots of the relative shape factor (f/fso)
as a function of the average aggregate concentration. The relative shape
factor is defined as the value of the shape factor at any concentration
relative to its value at <c,> = cim = 0.5. The closer the curves in Fig. 3
remain to one, the better the approximation into equivalent spheres. From
Figs. 2 and 3 we may conclude that most finite rectangular and cylindrical
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Pig. 3. Effect of the average concentration on the relative shape factor for conversion
of several aggregate geometries into equivalent spherical aggregates (after van Genuchten,
1985).
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aggregates can be approximated accurately with spherical equivalents,
while the conversion from plane sheets to spheres will be somewhat less
accurate, but perhaps still acceptable for most applications. Not plotted
in Fig. 3 is the relative shape factor for the conversion of hollow cylin-
drical macropore systems into equivalent spherical systems. The relative
shape factor for this conversion is considerably more concentration-depend-
ent than those shown in Fig. 3. Thus the HCD-model (Table II) cannot be -
approximated accurately with the SD model.

We note that Barker (1985) recently proposed a method using “block-
geometry functions” that somewhat resembles the above approach based
on shape factors. The block-geometry functions are essentially identical
to the Laplace transforms of the average immobile concentration, ¢,
as listed in this study. Barker combined the shape-dependent functions
with the Laplace transform for the mobile concentration, ¢y, and then
used numerical Laplace inversion techniques to obtain solutions for c,,.
By introducing empirical block-geometry functions for less well-defined
systems, his method could prove to be especially useful for modeling trans-
port in soils containing aggregate mixtures of different shapes and sizes.
An alternative way of dealing with aggregate mixtures was recently ex-
plored by Neretnieks and Rasmuson (1984).

COMPARISONS WITH THE FIRST-ORDER (FO) MODEL

The scaling method can also be used to obtain approximate equations
for the mass transfer coefficients o« and « that appear in the first-order
rate (FO) model. This is done by again comparing the Laplace transforms
of ¢jy, . The transform of eq. A3 (Table I) for the FO model gives:

(1 —B)Rs Cim = w(Cm —Cim) (31)
Solving for ciy, leads to:
w -

e C (32)
w +{1—p)As

Cim ~

or to a first approximation:

i = [1 — Q——B)RS} Con (33)

w

Comparison with eq. 22 for the SD-model gives:
w =15 (1 —B)Rvg (34)
which compares well with the relation:

w =227 (1 —B)Rys (35)
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that was derived by directly matching average concentrations at Cim = 0.5
(van Genuchten, 1985). Eq. 34 was also obtained by Parker and Valocchi
(1986) by comparing second moments of the two transport models.

Fig. 4a shows that the first-order model with eq. 35 does not provide a
good approximation for transport through a soil with spherical aggregates.
However, the same FO-model gives an excellent approximation for a hollow
cylindrical macropore (HCD) system. In this case, the Laplace transform
of ¢jpy is given by (van Genuchten et al., 1984):

P :11(950)[{1(1’)“11(1))1{1@?0) 2 z
LK, (%) + L (D8 0)Ke () pGo—1)F

With a considerable amount of algebra, eq. 36 for {o>> 1 can be shown
to reduce to:

(p=vs/ip)  (36)

2
- ¢ -
Cim = {1 o [In(§o) —1] s} cm (37)
7}3»
o 1O - . . : . . —
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Fig. 4. Exact and first-order approximate solutions for transport through soils contain-
ing (a) spherical aggregates and (b) hollow cylindrical macropores (after van Genuchten,
1985),
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Equating egs. 33 and 37 leads to:
- 2(1—8 )R'YE

w = — 38

(6 [In(§ o) — 1] (%)
For{,=100,8 =02 and R = Ry, =1, eq. 38 predicts:

w =7p/22530 (39)

which is again very close to the relation w = v,/24000 obtained by direct-
ly matching average concentrations in a non-flowing system (van Genuchten,
1985). The latter relation was used for the comparison of the HCD and FO
models in Fig. 4b.

From Figs. 2, 3 and 4, as well as from numerous other calculations (van
Genuchten, 1985), we conclude that the first-order model accurately
predicts transport through soils containing large continuous cylindrical
macropores, whereas the spherical model is more accurate for soils that
are structured in other ways.

EQUIVALENT DISFERSION COEFFICIENTS FOR THE LINEAR EQUILIBRIUM
MODEL

The Laplace transorms for cjy, given earlier can be used also to derive
expressions for an ‘“‘effective’” or equivalent dispersion coefficient D, for
use in the linear equilibrium (LE) model. The main purpose of the exercise
is to find a correction for the dispersion coefficient so that D. includes
to a first approximation the effects of intra-aggregate diffusion. The pro-
cedure below is very similar to the one used by Raats (1981).

As a first example, consider again the spherical diffusion (SD) model.
Taking the Laplace transform of eq. A2 yields:

1 9%6m  06m
Py 3Z° 07
Eq. 22 gives a first-order approximation of ¢jp, in terms of the mobile con-
centration ¢y, . Substituting that relation into eq. 40 lead to:

BRS ¢y + (1 —B)Rs Cim = (40)

- 1 2% ¢ de, 1 —8)Rs* _
Rsiy = O Cm_Ocm (ZBRS o (41)
Po 02° Y 157,

or after inversion:
9Cm 1 9%y dey, (1 —B)R d%cpy
T Py 027 0Z 15y, oT?

(42)

Comparison with eq. A2 of Table I shows that the factor § has been
removed from the time derivative of ¢ on the left hand side, which sug-
gests that ¢, now represents the average concentration ¢ of the mobile
and immobile liguid phases. The second time derivative (last term of eq.
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42) can be transformed into a second spatial derivative by noting that from
eq. 42 to a first approximation:

gc 1 dc 3
— T — e ——— 4:
oT R 227 (43)
or by repeating the same change of differentiation:

9%¢ 1 d%c 4
aT* RZ%8Z? (4d)

Substituting eq. 44 into eq. 42 and dropping the subscripts m gives finally:
A RN (45)
1 1 1—38

=t (46)
Pe Pn  15yR

and where E is the error introduced when the spherical diffusion model
is approximated by eq. 45. Note that eq. 45 is identical to the linear
equilibrium model, except that the equation contains a modified Peclet
number P, that includes the effects of intra-aggregate diffusion. Using the
dimensionless parameters of Table II, eq. 46 leads to the following equa-
tion for the effective dispersion coefficient:

(1 - ¢m) (ZEU2R2im

Do = Dmém +
e = Pmbm 15D,R?

(dm =0m/0), 4

which shows that the dispersion coefficient of an aggregated system in-
creases with increasing aggregate size and pore-water velocity and decreas-
ing soil matrix diffusion coefficient D,. By comparing the second moments
of the linear and spherical diffusion transport models, Parker and Valocchi
(1986) were also able to derive eq. 47. Similar equations were also obtained
by Passioura (1971) for a non-adsorbing system (R = 1), and more recently
by Bolt (1979). By using eq. 47 in the LE model, Parker and Vallocchi
(1986) obtained a surprisingly accurate approximation of the spherical
diffusion model for several sets of parameters. While we believe that the
accuracy of eq. 47 remains to be demonstrated for a wide range of param-
eters (especially for intermediate values of §), the results of Parker and
Valoechi (1985) clearly indicate that the linear equilibrium model can
provide at times an excellent approximation for the spherical diffusion
model. The error E of eq. 45 can be approximated by carrying in the above
derivation an addition term (2p?/945) of the coth series expansion given
by eq. 21. Without giving details of the derivation, we obtained the fol-



lowing result:

— 3
p-20sh) (1, 227 ot (1)
157, \Pn 105y.R/ 0323
which closely resembles the error derived by Parker and Valocchi (1985)
using moment analyses.

The same procedure as above can be applied also to the other two-region
models. For completeness, and without repeating the individual steps, the
final results are given below. The following equation was obtained for the
rectangular (RD) model:

(1 —9¢m) alzszizm
De =Dy + 49
e m®m 3D,R? (49)

Similar equations were also derived by Bolt (1979) and by Raats (1981),
the latter author using the same Laplace transform methodology. For the
solid cylindrical diffusion (SCD) model we obtained:

(1 - ¢m) 0(2:02 Rzim

Do =Dpom + 8DaR2 - (50)

which is again consistent with Bolt’s analysis (Bolt, 1979, p. 307), and for
the hollow cylindrical macropore (HCD) system:

[2In(b/ap) — 11 (1 —¢m) v*b*REy,

D)=D +
¢ = Diném T

(51)

Finally, a similar equation can also be derived for the first-order model.
The equivalent Peclet number and dispersion coefficients for this case are:

1 1 (1 —E_)i

) (52)
P, Py w
and
1— 2WIRE O
Do = Dy 6y +o2m) U Him (53)

aR?
SUMMARY AND CONCLUSIONS

Several two-region models for simulating salt movement in aggregated
soils are discussed. A common feature of these models is the assumption
that solutes are being transported through well-defined pores and cracks
of known geometry, while diffusion-type equations are used to describe
solute transfer inside the micropores of the soil matrix. Analytical two-
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region models are currently available for spherical, cylindrical and line-
sheet type aggregates. Another solution exists for transport through large
cylindrical macropores. A scaling method is discussed that extends the
analytical two-region modeling approach to other aggregate geometries.
The method uses a geometry-dependent shape factor to replace a given
aggregate by an “‘equivalent’ sphere with approximately the same average
diffusion properties as the original aggregate.

The transformations were found to work well for most structured sys-
tems, except for soils containing hollow cylindrical macropores. The same
scaling method is also used to relate the mass transfer coefficient in a first-
order rate model to measurable scil-physical parameters. The latter model
gives an excellent approximation for transport through hollow cylindrical
macropores, but is considerably less accurate for spherically aggregated
and related systems. Finally, Laplace transform techniques are used to
derive several equations that lump the effects of intra-aggregate diffusion
on transport into an effective dispersion coefficient for use in the classical
two-parameter transport equation.
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