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NON-EQUILIBRIUM SOLUTE TRANSPORT PARAMETERS

FROM MISCIBLE DISPLACEMENT EXPERIMENTSI/

M. Th. van Genuchtenz/

ABSTRACT

Traditionally, a two-parameter partial differential equation has been
used to describe the 6ne—dimensional convective-dispersive transport of chemi-
cals in field soils. The parameters in this equation include the dispersion
coefficient and a distribution coefficient, the latter accounting for
interactions between the chemical and the solid phase of the soil. For linear
equilibrium adsorption the resulting model is relatively easy to use.
Recently, however, some inadequacies in this transport model were observed
when comparing model predictions with experimental data. More complex
conceptual models have therefore been introduced in attempts to better charac-
terize the simulated system. These models are all based on the assumption
that, either for physical or chemical reasons, adsorption does not proceed at
an equal rate in all parts of the soil medium. The resulting transport
equations contain several parameters which must be quantified before actual
predictions can be made in the field. Estimates for these parameters can be
obtained by analyzing effluent curves from column displacement experiments.
Since several parameters have to be estimated simultaneoﬁsly, elaborate curve-

fitting techniques are often needed. This report describes an accurate and

1/ Research Report, U.S. Salinity Laboratory, USDA-SEA-AR, Riverside,
California, and Department of Soil and Environmental Sciences, Unlver81ty
2/ of California, Riverside.

Present address: U.S. Salinity Laboratory, 4500 Glenwood Drlve,
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easy to use least—-squares computer program which may be used for that
purpose. Depending upon the exact form of the transport model, the program
allows up to five different parameters to be estimated simultaneously. A

listing of the program is given in an appendix of this report.
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INTRODUCTION

Recent literature shows that much has been learned about the effects of
diffusion, dispersion, convection and adsorption on chemical transport in
soils. Numerous conceptual-mathematical models have been developed in
attempts to describe the one—dimensional transport of chemicals in laboratory
columns as well as in field soils. Many others will undoubtedly follow. Such
models are important because they continuously increase our understanding of
the basic transport mechanisms involved and, consequently, improve our
capability to predict the fate in field soils of such diverse chemicals aé
nitrates, fertilizers, pesticides, heavy metals and radio-active waste
materials.

The majority of studies focusing on solute transport in soils have used

as a conceptual model the one-dimensional convective-dispersive equation:

e p8e | ac (1]
at sz Ix
where
¢ = solution concentration (ML—3),
D = dispersion coefficient (LT 1),
t = time (T),
Vv = average pore-water velocity (LT-l), and
X = distance (L).

Equation [l] assumes steady-state water flow, a constant soil-water content,
and no interactions between the chemical and the solid phase. Its basic
properties will not be reviewed here as they have been discussed at length

elsewhere (e.g., see Perkins and Johnson, 1963; Biggar and Nielsen, 1967;



Fried and Combarnous, 1971; Kirkham and Powers, 1972; Bear, 1972; Bolt, 1979).
When chemical adsorption is considered, an additional term must be added
to Eq. [1] to account for the interaction between the chemical and the solid

phase. This is accomplished by redefining [1] as:

2
3¢ . p3S _ 87c _ 3¢ (2]
5t T 8%t P2 Vi
ax
where
-1y
S = adsorbed concentration (MM ’

8 = volumetric soil-water content (L3L_3), and

bulk density (ML_3).

©
]

The solution of Eq. [2] depends on knowledge of the relationship between
the adsorbed concentration, S, and the solution concentration, c. Both
eduilibrium and kinetic non-equilibrium equations are available for this
purpose (Boast, 1972; van Genuchten and Cleary, 1979). Most of the early
studies on solute transport, especially when applied to pesticide movement,
were based on linear equilibrium equations (Kay and Elrick, 1967; Green et
al., 1968; Davidson et al., 1968; Davidson and Chang, 1972; Davidson and
McDougal, 1973). 1In nearly all of these studies, serious deviations were
observed between calculated and experimental effluent curves. It was often
not possible to predict the early arrival of the applied chemical in the
effluent as well as the generally skewed or asymmetrical shape of the observed
curves. The introduction of experimentally determined nonlinear equilibrium
isotherms did, at least in some cases, lead to better predictions, especially
when observed hysteresis phemomena in the adsorption-desorption isotherms were

taken into account (Swanson and Dutt, 1973; van Genuchten et al., 1974). 1In



general, however, predictions based on equilibrium adsorption models were
found to be inadequate.

In attempts to improve the predictions, kinetip non—equilibrium models
were intruduced by lLindstrom and Boersma (1972), Hornsby and Davidson (1973)
and Mansell et al. (1977). Although this approach resulted in some
improvement in predictive capabilities, success with the kinetic non-
equilibrium model was generally limited to experiments conducted at relatively
low pore-water velocities (Davidson and McDougal, 1973; Hornsby and Davidson,
1973; van Genuchten_gi_gl., 1974),

In the last few years, several studies have focused on the description of
asymmetrical (skewed) and nonsigmoidal concentration distributions (van
Genuchten and Wierenga, 1976b! Rao et al, 1980). The term "tailing" will be
used here to indicate the presence of such skewed and nonsigmoidal
distributions. At least two groups of models have been proposed to explain
and predict tailing. In one group of models, tailing is explaiéed on the
basis of physical processes such as the presence of distinct mobile and
immobile soil-water regions. Convective solﬁte transport in these models is
assumed to occur only in the mobile soil-water phase, while adsorption in a
stagnant region of the soil is controlled by diffusion through the immobile
(non-moving) fraction of the soil~water phase (Skopp and Warrick, 1974; van
Genuchten and Wierenga, 1976b; leistra, 1977). This situation is primarily a
physical problem insofar as the physical make-up of the soil is responsible
for the presence of the relatively immobile water. A similar physical non-
equilibrium situation can also occur in systems where the chemical ié not
subject to adsorption, notable in highly aggregated soils or soils that
contain many liquid~filled macropores (Nielsen and Biggaf, 1961; McMahon and

Thomas, 1974; Rao et al., 1980).



In another group of models, tailing in effluent curves is explained on
the basis of chemical processes by assuming the presence of a two-site adsorp-
tion mechanism. In this approach adsorption on one fraction of the sorption
sites is assumed to be instantaneous, while adsorption on the remaining sites
is thought to be time-dependent (Selim et al., 1976; Cameron and Klute, 1977).

With the introduction of increasingly complex models, the problem remains
of how to measure the different parameters appearing in the governing
transport equations. For example, the more involved physical non-equilibrium
and two-site adsorption models each contain four independent parameters which
must be quantified before the transport equations can be used to simulate
solute movement. Unfortunately, presently available experimental techniques
are generally inadequate or too complex to measure all four parameters
independently (Davidson et al., 1980; Rao et al., 1980). An alternative
method is to estimate the different parameters directly from observed effluent
curves by fitting the model to the experimental data (van Genuchten and
Wierenga, 1976; Gaudet, 1978; De Smedt, 1979). It is the purpose of this
report to present a nonlinear least—squares curve-fitting program which may be
used for this purpose. The computer program assumes that analytical solutions
of the governing tramsport equations are available. Theoretically one could
possibly also use numerical solutions, but this approach is likely to result
in a more elaborate and less efficient curve-fitting program. If analytical

i
solutions are to be used, the governing equations must be properly
linearizéd. The transport models discussed in this report are therefore
formulated only in terms of linear adsorption. More specifically, the follow=-
ing conceptual models are considered:

Model A: Linear equilibrium adsorption.

Model B: Physical non-equilibrium (van Genuchten and Wierenga, 1976b).



Model C: Physical non-equilibrium in the presence of anion exclusion
(Krupp et al., 1972).

Model D: Two-site kinetic non-equilibium adsorption (Selim
et al., 1976).

Hodel E: One-site kinetic non-equilibium adsorption (Lindstrom and

Boersma, 1972).

The anion exclusion model of Krupp et al. (1972) is also included since this
model can be viewed as a particular application of the.physical non-
equilibrium model. It will be shown that models B, C, D and E all reduce to
the same general equations when properly expressed in dimensionless
variables. The advantage of this is that the curve-fitting program can be
kept very general, rather than being limited to one single conceptual
formilation. The computer program itself is discussed and listed in

Appendix B.



A. LINEAR EQUILIBRIUM ADSORPTION

The relation between adsorbed and solution concentrations is described by

a linear (or linearized) isotherm of the form
S=%ke (3]

where k is an empirical distribution coefficient (M71L3). Substitution of [3]
into [2] gives the transport equation

2

R3¢ - p 9 ¢ dc

C
3t 2 -V ax (4]
ax

where the retardation factor, R, is given by
R =1+ pk/® [5]

If there is no interaction between the chemical and the solid phase, k in
Eq. [5] becomes zero and R reduces to one. In some cases R may become less
than one, indicating that only a fraction of the liquid phase participates in
the transport process. This occurs when the chemical is subject to anion
exclusions (e.g., for chloride movement in many fine~textured soils), or when
immobile liquid regions are present which do not contribute to convective
solute transport (e.g., water inside dense aggregates or away from liquid-
filled macro-pores). In the case of anion exclusion (1-R) can be viewed as
the relative anion exclusion volume, and (-k) in Eq. [5] as the specific anion

3 vater per gram of soil).

exclusion volume (e.g., expressed in cm
Analytical solutions of Eq. [4] exist for several sets of initial and

boundary conditions. The initial condition for this study is



c(x,0) = C, (6]
Iwo different conditions can be applied to the upper boundary of the soil
column (x = 0): a first-type, constant concentration boundary condition of the

form
c(0,t) = ¢, [7]

or a third-type, constant flux boundary condition of the form

(-D %% + vc)‘x=0 = v'Co [8]

where C, is the concentration of the input solution. It should be mentioned
here the Eq. [8] does lead to conservation of‘mass inside the soil column,
while boundary condition [7] will lead to mass balance errors when used for
column displacement experiments in which the chemical is applied at a constant
rate. These errors can become quite significant for large values of (D/v).

For the lower boundary, the following condition can be applied
¢ (o -
55 (=,£) = 0. [9]

This condition assumes the presence of a semi-infinite soil column. When
analytical solutions based on this boundary condition are used to calculate
effluent curves from finite columns, some errors may be introduced. An alter—
native boundary condition, one that is frequently used for column displacement
studies, is that of a zero concentration gradient at the lower end of the

column:



(@) =0 ~ [10]

where L is the column length. This condition, which leads to a continuous
concentration distribution at x = L, has been discussed extensively in the
literature (Wehner and Wilhelm, 1956; Pearson, 1959; van Genuchten and
Wierenga, 1974; Bear, 1979). In our opinion no clear evidence exists that
Eq. [10] leads to a better description of the physical processes at and around
x = L. In fact, the upper boundary condition [8] does lead to a discontinuous
distribution at the inlet poéition and, as such, seems to contradict the
requirement for a continuous distribution at x = L. In this study we will
present analytical solutions for both lower boundary conditions (Eq. [9] and
[10]). However, only the solutions for a semi-infinite medium will be
included in the curve-fitting program. Because of the relatively small
influence of the imposed mathematical boundary conditions, the solutions for a
semi-infinite system should provide close approximations for those applicable
to a physically well~defined finite system, expecially fof not too short
laboratory soil columns.

For an analysis of effluent data it is convenient to introduce the dimen-

sionless variables

T = vt/L z = x/L » [11]

P = vL/D [12]
¢ - C,

1 =TT ' (13]



where T is the number of pore volumes and P the column Peclet number.

Introducing these variables into [4] gives

2
Bc1 1 ] ¢y ,acl

R3T “?P7 7 "5z [14]
oz

The dimensionless exit concentration, Ce» is now simply
ce(T) = ¢y (1,T). [15]

Table 1 gives analytical expressions for Ce for each of the four possible
combinations of upper and lower boundary conditions (Eq. [7] - [10]). DNote
that the solutions for a finite systém (Cases FN-1 and FN-2) are in the form
of infinite series. Both series solutions convérge slowly for relatively
large values of P and/or small values of T. For P > 5 + 40T/R or P > 100, the
following approximate solutions are recommended: for Case FN-1 (van Genuchten

and Alves, 1981),

1 P ¢ PTl/2 P 2

c, =% erfc[(zﬁf) (R-T)] -~ (;ﬁ) eXP["Zﬁf(R‘T) ]
>
+4% (3 +P +-g§) exp(P) erfc[(Z§T (R+T) ] [16]
and for Case FN-2 (Brenner, 1962),
y&
c, 5-% erfc[(zgf) (R-T)]
PTl/z P . PT P 2
+ G B+ g+ expl- gm (RFDT]
1 4pT . P2 2. p
— 5 (1 + 3P + ==+ —5 (R+T)"] exp(P) erfel() (RT)] [17]

2R
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The exit concentration given by [16] is exactly twice ¢, for Case SI-1 minus
c, for Case SI-2 (Table 1). Because of the approximate nature of [16], this

relation does not hold for relatively small values of P.
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B. PHYSICAL NON-EQUILIBRIUM

Equations [l] and [4] imply that all soil-water participates freely in
the convective transport of chemicals, and that all adsorption sites are
equally accessible for the solute if adsorption takes place. Both equations,
furthermore, predict effluent curves which are characteristically sigmoidal or
symmetrical in shape, at least for not too small values of P. Numerous
experiments, both in the laboratory and under field conditions, have shown
serious deviations from these type of symmetrical distributions. Experimental
curves frequently show a much earlier appearance of the chemical in the
effluent than can be accounted for with solutions based on [1] or [4], while
at the same time considerably more water is needed before the displacement is
complete. Several experimental conditions seem to favor this accelepated
transport followed by tailing, notable solute movement in unsaturated soils
(Nielsen and Biggar, 1961; Gupta et al., 1973 a, b; Gaudet et al., 1977; De
Smedt, 1979), and solute movement through aggregated and undisturbed soils
(Biggar and Nielsen, 1962; Greenrggﬂgi., 1972; McMahon and Thomas, 1974; van
Genuchten and Wierenga, 1977; Rao et al., 1979). Extreme tailing is also
expected when cracked soils, or soils containing macropores, are leached under
saturated conditions. Even in uniform, saturated soils, however, tailing may
occur, especially when there is a strong interaction between the chemical and
. the solid phase (van Genuchten and Cleary, 1979).

Recently, several attempts have been made to account for the observed
asymmetry and tailing. One such approach involves the concept of solute
transfer between mobile and immobile soil-water phases (Turner, 1958;
Gottschlich, 1963; Coats and Smith, 1964; Skopp and Warrick, 1974; van
Genuchten and Wierenga, 1976b). In this approach convective-dispersive solute

transport is assumed to be confined only to the mobile water phase. Solute
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transfer between mobile (dynamic) and iﬁmobile (stagnant) soil-water regions,
furthermore, is assumed to be diffusion controlled. The model discussed here
is essentially that of Coats and Smith, 1964), but using the notation of van
Genuchten and Wierenga (1976b) and Gaudet et al. (1977). The governing

transport equations for the mobile and immobile water phases, in the absence

of solute adsorption, are

acm dc, azcm , I

em ot eim at = em 8x2 N emvm ax (18]
acim

im 3c - oley Tegy) [19]

where the subscripts m and im refer to mobile and immobile liquid regions, and

where vy is the average pore-water velocity in the mobile liquid phase:

v, = a/e ' [20]

v/e

m

In Eq. [20], q is the volumetric flux and ¢m the fraction mobile water:

¢, =8./0 (6 =6 +6,) ' [21]

m
The mass transfer coefficient, a, in Eq. [19] determines the rate of exchange
between the two liquid phases. The transport model assumes that this rate is
proportional to the difference in concentration between mobile and immobile
soil-water phases.

Equations [18] and [19] assume that no adsorption occurs. van Genuchten
and Wierenga (1976) modified the equations to include the effects of chemical

adsorption. They suggested the following set of differential equations:
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e, 35 3e; 38, 3% acm .
em ot + fp ot + 6im ot + (1-f)e ot = 6mD aXZ - emvm X [22]
9¢in 95 in '
im 9t + (1-f)p ot = 0‘(cm - Cim) [23]

where S and S;  are the adsorbed concentrations in the dynamic and stagnant
regions of the soil, both expressed per unit mass of soil assigned to these
two soil regions, and where f defines the mass fraction of solid phase
assigned to the dynamic region. Equations [22] and [23] were derived with the
assumption that adsorption around the larger liquid-filled pores is not
necessarily the same as adsorption around the micropores in the stagnant
region of the soil. When a chemical moves through an unsaturated and/or
aggregated soil, only part of the sorption sites may be readily accessible for
the chemical in the moving liquid. These sites must be located around the
larger pores and in immediate contact with the mobile liquid. When an
immobile liquid phase is present, adsorptionvon the remaining part of the
sorption sites can only occur after the chemical has diffused into this
immobile liquid. The division of sorption sites into two fractions, one
fraction in close contact with the moving liquid, and one fraction away from
the larger pores and in contact only with immobile (non-moving) water is

characterized by the parameter f. Total adsorption, S, is now given by
S = £8) + (1-£) S . [24]
For equilibrium adsorption and assuming that the same linear equation [3]

holds for both the dynamic (S, ) and stagnant (8;,) soil regions, we obtain

from [22] and [23]:
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acm 8cim 32cm ch
(em + pfk) st— + [Gim'l' (1-f)pk] 5t = emD axz - emvm —a—}z— [25]
acim
[eim + (1=£f)pk] 5T = a(cm - cim)° [26]

Equations [25] and [26] will be solved for the same initial and boundary
conditions as before (Eq. [6] through [10] with ¢ replaced by cm), and the

additional initial condition

cn(x,0) = Cin(x,0) = e ‘ [27]

The following dimensionless variable are introduced

T =vt/L=v tp /L z=x/L (28]
m m,
P =vL/D w = ol/q = aLl/(8 v ) [29]
8 + fpk R
g = m e = ¢m m [30]
6 +pk R
R, =1+ fok/o_ R=1+0pk/6 [31]
cm i Ci cim " Ci
17T -c 2= -, 1321
o] 1 (o] 1

The variables T, z, R and P are the same as for the previous model A (see Eq.
[11] - [13]), except that P here is defined in terms of the average pore-water
velocity of the mobile liquid phase (vm = v/¢m). The variable R,
furthermore, is an equivalent retardation factor for the dynamic soil

region. With the above definitions, Eq. [25] and [26] reduce to
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2

3c Jac 3 ¢ ac
1 2 1 1 1
BRyp * UBR g =5 —5 ~ % 133]
ax
302
(l—B)R 'aT- = w(cl- C2) [34]

Analytical solutions of Eq. [33] and [34], or of mathematically similar
equations, have been derived for a variety of initial and boundary conditions
(Lapidus and Amudson, 1952; Coats and Smith, 1964; Villermaux and van Swaay,
1969; Bennet and Goodridge, 1970; Lindstrom and Marasimhan, 1973; Lindstrom
and Stone, 1974; van Genuchten, 1974; Lindstrom and Boersma, 1975; Lindstrom,
1976; Cameron and Klute, 1976; Popovic and Deckwer, 1979). As shown by De
Smedt and Wierenga (1979), these solutions can all be expressed in the same
general format. For the initial and boundary conditions of this study, the
general solution for the exit concentration, Cas is

T
ce(T) = G(T) exp(- %{—) +%f G(t) H(T,t) drt [35]
0

where

I,(E) EI,(8)

H(T,1) = exp(fa—b) £ 7 + 2b(1-6)] [36]
o wr _ w(T-1)

a-= B8R b -8R [37]

£ = 2(ab)1/? | [38]

and where G(1) depends on the imposed initial and boundary conditioms. Table
2 gives expressions for G(t) for an initial dimensionless concentration of

zero (see Eq. [27] and [32]) and for the same four sets of boundary conditions
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as in Table 1. Note that the expressions for G(t) in Table 2 follow from
those given in Table 1 by replacing T by T and R by (BR). This is due to the
fact that G(T) is the solution of [33] and [34] for the limiting case

when w is zero (see also Eq. [35]).

An alternative and computationally more convenient form of the general

solution is (De Smedt and Wierenga, 1979)

T
ce(T) = fF(T) J(a,b) dr [39]
0

where F(t) is the derivative of G(t) with respect to T, i.e.,

dG(t)

JOE (407
and where J(a,b) is Goldstein's J-function (Goldstein, 1953):
Jab) =1-ePf e A1()[2»/1)7)] dx. [41]
0]

Some useful properties and approximations of Goldstein's J-function are given
in Appendix A. Table 3 gives expressions for F(tr) in [39], again for the same
four sets of initial and boundary conditions as before. The series solutions
for Cases FN-1 and FN-2 in Tables 2 and 3 converge slowly for large values of
P and/or small values of T. The following approximations of G and F are

recommended for relatively large values of P (see also Eq. [16] and [17]):
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for Case FN-1,

1 P ¢ Pt 2 P 2
G(1) =5 erfc[(ABRT) (BR - 1)] - (m) exp|[- T@-;(BR - 1)7]
V
+-— (3 +p +-——) exp(P) erfc[(48R ) (BR+ 1)] [42]
%Q
F(t) = exp[-~ ZE%?(BR - T)Z]
P P ¢
+-§§§ exp(P) erfc[(aBRI) (BR f )] . ‘ [43]
and for Case FN-2,
U
G(1) = _'erfc[(4BR ) (BR )1
%Q
+ R Ot g +oen) expl- gre(8R - 1))
4PT P2 1/
_<- [1 + 3P +-—§§ + —— 232R (BR + 1) ] exp(P) erfc[(4BR ) (BR + 1)] [44]
s P 2
F(t) = (2 ——-) (e BRT) exp|-~ —ggﬁ(BR -1)7]
3 Pt P /2
—-igi (4 +P +-§§) exp(P) erfc[(zzi;) (BR + 1)1, [45]

Inspection of Eq. [33] and [34] or the analytical solutions shows that
the physical non-equilibrium adsorption model contains four independent
parameters: P, R, B and w. If no adsorption occurs, R equals one and

B reduces to ¢m. The number of independent parameters is then only three.
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C. PHYSICAL NON-EQUILIBRIUM AND ANION EXCLUSION

Instead of being adsorbed, certain anions may also interact with the
solid phase of the soil by being excluded from liquid zones adjacent to
negatively charged soil particle surfaces (anion exclusion orrnegative
adsorption). The anion exclusion model considered here differs from the
physical non-equilibrium model discussed in the previous section in that the
effects of anion exclusion rather than chemical adsorption are included in the
governing transport equations. The model is conceptually the same as the
anion exclusion model of Krupp et al. (1972), although the final transport
equations are formulated in a slightly different manner. |

The soil-water phase is again divided into mobile and immobile zones and
anion exclusion is assumed to be restricted to the immobile water phase only
i.e., to the smaller-sized pores inside dense aggregates, or to immobile water
along pore walls analogous to the situation described by Krupp et al.

(1972). Double layer theory suggests that the anion concentration within an
individual pore increase roughly exponentially with distance from the pore
wall, at least for a freely extended diffuse double layer (Babcock, 1963; Bolt
and de Haan, 1979). It is assumed here that such a nonlinear concentration
distribution can be replaced by an equivalent step function which has a value
of zero in the anion excluded part of the liquid phase adjacent to the pore
walls, and a value equal to that of the bulk solution near the center of the
pore. This assumption leads to an equivalent exclusion distance, d,,, near

the pore walls in which the concentration effectively remains zero (Krupp et

al., 1972; Bolt and de Haan, 1979). The specific exclusion volume, V. . (in
cmd water per g of soil), is then simply
V., =d_, A [46]
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where Ao is the specific surface area (cmz/g). The anion exclusion volume

can also be expressed in terms of an equivalent volumetric soil-water

content, eex, by multiplying Eq. [46] with the soil bulk density, i.e.:

eex = Vex De [47]

Assuming that eex< eim’ and that anion exclusion takes place only in the

immobile soil-water phase, then the following transport equations can be

applied
ch dc Bzcm 8cm
6 at ea ot = emD 2 emvm ax (48]
9x
Bca
Ga Pl a(cm - ca) [(49]

where the subscript a refers to that part of the immobile liquid phase that is

not affected by anion exclusion:

a im ex .

Equations [48] and [49] are very similar to Eq. [18] and [19] for the

physical non-equilibrium model without adsorption, except that the immobile

sink is reduced from 6, to 6 .
im a

The following dimensionless variables are now introduced:

T

vt/L

v_té /L z = x/L [51]



23

P =vL/D R=1-0¢_ o [52]
on
ex
6 =18_/8 box = Pox/® [54]
cm - Ci ca - Ci
‘17¢c -c C2 7T -, [55]
o i ) i

Of these variable, only R, B and ¢y are different from those given for Model B
(see Eq. [28] - [32]). 1In fact, the dimensionless variables of the previous

case reduce to those given here by making the substitution
k=-V £f=0 c, =c¢ [56]

Substitution of Eq. [51] -~ [55] into [48 and [49] leads therefor to the same
dimensionless transport equations as in the previous section (Eq. [33] and
{34]. Because the dimensionless initial and boundary condition for this and
the previous case are also the same, the analytical solutions of Model B
should also be applicable to the present model.

The anion exclusion model described above is slightly different from the
one given by Krupp et al. (19725. Using our notation, the model of Krupp et

al. can be formulated as follows

ac Bcim azcm 3cm
em at elm ot emD 2 vam at [57]
ax
acim
at = kr(cm - Ycim) : (58]
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where kr is a rate constant similar to & in Eq. [49], and where
Yy = eim/eé1 [59]

The difference between Eq. [48] and [49] and Eq. [57] and [58] is due to
the fact that in the latter equations the concentration Cim 1s applied to the
entire immobile liquid phase, although still corrected for anion exclusion

through the introduction of the parameter Y. By making the substitutions

kr = a/eim [60]
and

Cim = C /Y [61]
in Eq. [58] and [59], the equations of Krupp_giugi. (1972) reduce to Eq. [48]
and [49]. The same dimensionless transport equations and the same analytical
solutions as before hence apply also to the model of Krupp et al. (1972).

The anion exclusion models given in this section assume that eex is
always smaller than eim’ and that anion exclusion is restricted to the
immobile liquid phase. Because convective transport takes place only in the
mobile liquid phase which, at least in the present example, is not affected by

anion exclusion, it follows that the mobile concentration, ¢ in the soil

m?

will never exceed the input concentration, C This situation, however,

o.
becomes different when eex also includes part of the mobile liquid. 1In that
case the concentration of the non-excluded part of the liquid phase, whether
it is mobile or immobile water, is likely to exceed at times Co inside the

column, but not in the effluent. This situation, which is considerably more

complex than the one discussed above, will not be considered here.
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D. TWO-SITE KINETIC NON-EQUILIBRIUM ADSORPTION

The two-site kinetic adsorption model described below is the same model
as discussed by Selim et al. (1976) and by Cameron and Klute (1977). The
model was later also used by Rao et al. (¥979), De Camargo et al. (1979) and
by Hoffman and Rolston (1980). Basic to the two-site adsorption model is the
idea that the solid phase of the soil is made up of different constituents
(soil minerals, organic matter, aluminum and iron-oxides), and that a chemical
is likely to react with these different constituenfs at different rates and
with different intensities. The two-site model assumes that the sorption
sites can be divided into two fractions; adsorption on one fraction (“type-1"
sites) is assumed to be instantaneous, while adsorption on the other fraction
("type-2" sites) is thought to be time-dependent. At equilibrium, adsorption

on both types of sorption sites is described by linear equations:

Sl = le

= Fke [62]
Sz = k2C

= (1-F)kc [63]

where the subscripts 1l and 2 refer to type-l and type~2 sites, respectively,
and where F is the fraction of sites occupied by type-l sorption sites. Total
adsorption, S, is simply

S =5 + Sy | [64]

which at equilibrium reduces to
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S = kc. [65]

Because type-l sites are always at equilibrium, it follows from {62] that

aS

1 .9
3o = Fk

a .

[¢]

[66]

T

The adsoption rate for the kinetic non-equilibrium (type-2) sites is given by
a linear, reversible, first-order rate equation of the form

852

_at = a(kzc -8 (67]

2)

where o is a first-order rate coefficient. Combining Eq. [2] with the equa-

tions above leads to the following transport model

as 2
Foky 8c | p 2 _, 8 ¢c 3¢
(1 + AT D—s = v Sy [68]
ax
882
5= = ol-Fke - 8,] [69]

Equations [68] and [69] will again be solved for the same initial and
boundary conditions as before (Eq. [6] - [10]), but augmented by the addition-
al condition

The dimensionless variables for this case are

T = vt/L z = x/L [69]
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P = vL/D s=g—:—§§—k=%~ [70]

Rm = 1+ Fpk/8 R=1+pk/8 [71]

w = a(l-B)RL/v

o -T—d c2 - T 2
o i o 1

Substitution of these variables into [68] and [69] leads to the same
dimensionless transport equations as for the physical non-equilibrium model
(Eq. [33] and [34]). Because the dimensionless boundary conditions are also
the same, the analytical solutions of Model B are also applicable to the two-

site non-equilibrium adsorption model.
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E. ONE-SITE KINETIC NON-EQUILIBRIUM ADSOPTION

The one-site kinetic non-equilibrium adsorption model is a special case
of the two-site adsorption model in that now all sorption sites are assumed to
be time-dependent (type-2) sites. The parameter F in the previous section is

hence zero and the transport equations reduce to

2
3¢ . p 38 _ 3 ¢c _ _ 3dc
tTe 2T 3 7 Yk (73]
9x
S _ _
-a-E“ = a(kC S) [74]

The dimensionless variables are the same as for the previous case, with the

following exceptions

8 = 1/R w = a(R-1)L/v [75]
82 - kC.

¢ *k(C <=C) [76]
(o] 1

The dimensionless transport equations remain therefor the same as before,
and the same analytical solutions for the exit concenfration can again be
used. Note that these solutions could héve been simplified by using BR =1 in
the different expressions of Tables 2 and 3. This simplificaton is not
carried out here, so that the analytical expressions remain the same for

models B, C, D and E.
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DETERMINING THE PARAMETERS FROM AN EFFLUENT CURVE

The analytical expressions for the exit concentration, c given thus far

e’
are only applicable to column displacement experiments in which the chemical
is applied continuously at the inlet position (continuous tracer application).

For pulse-type applications, the different expressions (see Models A and B),

must be replaced by

ce(T) 0<TEXZ Tl

*
co(T) = e (T) = ¢ (T-T)) T>T [77]

*
where ce(T) is the effluent concentration for a pulse~type application, and

where
Tl = th/L [78]

with t; representing the length of time during which the tracer was present in
the feed solution. Equation [77] assumes thaf the input concentration for
times greater than t; is again the same as the initial concentration, Ci'

A computer program was written which may be used to fit any of the analy-
tical expressions for cg of c: to observed effluent data. The program is
actually a simplification of the nonlinear least-squares curve-fitting program
of Meeter (1964). The applied curve-fitting technique uses the maximum neigh-
borhood method of Marquardt (1963), which is based on an optimum interpolation
between the Taylor series expansion and the method of steepest descent. A
more detailed description of the method is given by Daniel and Wood (1973).

In the case of a continuous tracer application (i.e., for Ce)’ only two
parameters (P and R) need to be determined if Model A is used, four parameters
(P, R, B and w) if Models B, C or D are used, and three parameters (P, R

and w is Model E is used. For a pulse-type effluent curve, information is
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also needed about the dimensionless pulse time, Tl' Although Tl is usually
available from the experimental conditions, it may sometimes be necessary to
also estimate this parameter directly from the experimental curve. The curve=
fitting program is therefor written in such a way that also Ty can be estimat-
ed from the observed curve. This means that, at least for Models B, C and D,

up to five parameters have to be estimated simultaneously.
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APPLICATIONS

Several examples are given below to demonstrate the accuracy and flexibi-
lity of the curve-fitting program. The soil-physical data of each example are
given in Table 4. Of the six displacement experiments, only four are based on
actual column experiments. The two remaining examples (Exp. No. 1 and 6) are
based on hypothetical data, and were used to check the accuracy of the
computer program. Table 5 summarizes the curve-fitting results, listing for
each example the type of model used, the type of boundary conditions applied
(SI-1 or SI-2; see Table 1), the number of data points used in the curve-
fitting program, and the fitted values of the unknown coefficients. The
coefficient values>shown in parenthesis were obtained independently, and hence
were kept constant during the least-squares calculations.

The accuracy of the program was first tested by fitting the coefficients
P, R, B and w to an hypothetical effluent curve with known values of these
four coefficients. The analytical solution of Model B, Case SI-2 was used to
generate this curve. Figure l shows the location of the 20 "observed"” data
points used in the program. The data points were obtained with the following
parameter value: P = 40, R = 2,5, B8 = 0.5 and w = 0.5. As expected, the
correct parameter values were duplicated exactly when the analytical solution
of Case SI-2 was used in the curve-fitting progfam (see Table 5). The fitted
values for Case SI-1, however, deviate slightly from the correct values be-
cause of the different boundary condition. The differences in fitted values
between the two analytical solutions are relatively small in this particular
example, but are likely to increase significantly when P becomes much smaller
(e.g., less than 10 = 15). The solid line in Fig. 1 represents the fitted
curve for Case SI-2. The fitted curve for SI-1 was found to be nearly identi-

cal to the curve for SI-2, even though the estimated parameters for the two
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Table 4., Soil-physical data for six column displacement experiments.
p 6 q L ty T

EXP. 3 3,3

No. (g/em”)  (cm”/em”) (cm/day) (cm) (days) (== tracer
1% 1.200 0.400 10.00 30.0 - - -

2 1.126 0.401 16.58  30.0 1.508 2.080  3H,0
3 1.309 0.456 16.81 30.0 - -— 2,4,5-T
4 1.222 0.445 17.12 30.0 5.060 6.488 Boron
5 - 0.463 8.92 30.0 - - Chloride
o* 1.400 0.400 16.00 100.0 ~= - -
*) hypothetical values.

Table 5. Curve-fitted parameter values for the six examples discussed in

this report.

The values in parenthesis were known beforehand and

were kept constant during the least-squares calculations.

Number of

Example Model Case Data Points P R B w Ty
1A B SI~1 20 40,40 2.563 0.500 0.512 -
1B B SI-1 10 40,38 2,563 0.500 0.512 -
1C B SI-2 20 39,99 2.500 0.500 0.500 -
1D B SI-2 10 39.97 2,500 0.500 0.500 -
2A B SI-1 29 30.09 1.048 0.719 0.534  2.103
2B B SI-1 15 29.80 1.053 0.720 0.515 2,105
2C B SI-2 29 30. 37 1.014 0.718 0.519 2.103
2D B SI-2 15 29.47 1.018 0.720 0.500 2.104
2E A Si-1 29 9.43 0.974 - -= 2.079
2F A SI-1 15 9.38 0.976 - - 2,077
2G A SI-2 29 9.13 0.875 - - 2.078
2H A SI-2 15 9.09 0.877 - - 2.076
3A B SI-1 26 25.85 (2.223) 0.605 0.495 -
3B B SI-2 26 21.90 (2.223) 0.596 0.407 -
4A B SI-1 30 38.64 3.891 0.624 0.655 6.183
4B B SI-1 30 23.94 4,297 0.600 0.424 (6.490)
4C B SI-2 30 38.72 3,788 0.623 0.646 6.182
4D B SI-2 30 23.55 4,120 0,600 0.408 (6.490)
5A c SI-1 23 90.60 0.656 0.852 0.605 -
5B c SI-2 23 90.18 0,649 0.852 0.599 -
6A D SI-1 13 133.25 (1.700) - 0.875 -=
6B D SI-2 13 123,36 (1.700) -- 0.836 -
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"Observed" and fitted effluent curves for example 1. The data

points were generated with the analytical solution of Model B,
Case SI-2.
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cases are somewhat different.

A second curve-fitting was also carried out with only ten of the twenty
data ponts shown in Fig. 1. Every other data point on the curve was deleted
for that purpose. Table 5 show that the fitted values of the four parameters
are the same for both number of data points. The same values were also ob-
tained when different initial estimates of the coefficients were inputted into
the curve-fitting program. By making a judicious choice of the unknown coef-
ficients, the number of iterations required to reach convergence can be re-
duced considerably. This, in turn, will lead to less computer time. Serious
convergence problems, however, are only expected when unreasonable initial
estimates are inputted into the program, for example when the initial esti-
mates of R or T; are many times larger or smaller than the correct values.
‘The iterative least-squares technique could, in such cases, even converge to
the wrong solution. No convergence problems were encountered in all examples
discussed here, even though in some cases the initial estimates in the program
were quite different than the correct values. The initial estimates for the
first example were: P = 25, R = 2, B = 0.6 and w = 0.2, Note that these
values deviate considerably from the correct values (Table 5), but that the
program neve;theless converged to the correct solution.

The second example considers the movement of tritiated water through
Glendale clay loam (Exp. 5-2 of van Genuchten and Wierenga, 1977). Figure 2
compares the observed and fitted effluent curves (Model B, Case SI~-2). The
fitted curve for Case SI-1 was again essentially the same as for Case SI-2,

In this case, all five coefficients were fitted to the data (Table 5, examples
2A and 2C). Note that 29 data points were used for these two examples. The
final results were again not significantly affected by deleting every other

data point, and hence by decreasing the total number of points from 29 to
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15, Table 5 shows that the fitted values of R are slightly larger than

one: R~1.050 for Case SI-l and 1.015 for Case SI-2. This indicates that some
adsorption or exchange of 3H20 takes place. The extent of this adsorption,
however, is so small that it could have been neglected easily.k In fact, as
shown by the differences in R-values between Cases SI-1 and SI-2, the adsorp-
tion effects are completely overshadowed by the effects of the boundary
conditions on the fitted values.

Table 5 also lists results obtained when Model A was fitted to the same
effluent data, again using both 29 and 15 data points. In this case only
three parameters (P, R, Tl) needed to be estimated. Figure 3 compares the
observed and fitted curves. The fitted curves for SI-1 and SI-2 were again
nearly identical. The fitted parameter values, however, are quite different
for the two analytical solutions, especially the retardation factor: R~ 0.98
for Case SI-1 and 0.88 for Case SI-2. These large differences are directly
related to the small values of P obtained with Model A (P is about 9). At
such low values of P, the analytical solutions for Cases SI-1 and SI-2 are
known to diverge from each other. Consequently, if both solutions are fitted
to the same curve, different parameter values can be expected (see also van
Genuchten, 1980). Low values of P are also known to cause considerable
asymmetry in pulse-type effluent curves based on Model A. Figure 3, however,
shows that the obtained asymmetry is not enough to produce an accurate
description of the éxperimental data. The observed tailing and asymmetry
could have been described somewhat better by forcing P to be smaller than the
fitted value of 9. This would at the same time, however, caused more
deviations between observed and calculated curves during the initial break-
through of the chemical at the lower pore volumes. The calculated curve here

would have become still more dispersed than the observed one. Lower values
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of P, furthermore, would have lead at to even lower values for R, especially
for Case SI-2. An R-value of less than one suggests the presence of an anion
exclusion phenomenon. This does not seem realistic for tritiated water, at
least not of the magnitude observed here.

For demonstration purposes, also the dimensionless pulse time, Tl; was
fitted to the data of example 2. The experimentally derived value for T was
2.08 (van Genuchten and Wierenga, 1977), which agrees well with the fitted
values given in Table 5. 1In general it is not recommended to fit also Ty to
the data unless the experimental value is suspect, for example because of
measurement errors or lack of reliable data. Including T, as an unknown para-
meter in the program can, in some cases, increase the computer expenses
considerably, except possibly when the much simpler Model A is used.

Table 5 gives only estimates of the dimensionless parameters P, R,

B and w. To obtain estimates of the original variables (D, k, em, f, etc.)
in each transport model, it is necessary to express these original variables
in terms of the dimensionless ones. Table 6 gives expressions for the
different dimensionless variable as they apply to each transport model.
Similar expressions for the original variable in terms of the diﬁeﬁsionless
ones are given in Table 7. This table can be used to obtain estimates for the
original variables, once the dimensionless parameters have been quanfified.

It is thereby assumed that independent measurements are available for the
column length, L, the volumetric water content, 6, the volumetric flux, q, and
bulk density, p. In some cases, independent estimates may also be available
for the distribution coefficient, k (e.g., from batch equilibrium studies) or
the dispersion coefficient, D (e.g., from another displacement experiment).

For example 2, it follows from the expressions in Table 7 (Model B), the

soil-physical data in Table 4 (Exp. No. 2), and the fitted values of R
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Table 6. Expressions for the dimensionless parameters as they apply to
each transport model.
MODEL A | P =& R=1+82K - -
D e
v L 6 + fpk
- Pk =B = oL
MODEL B P D R=1+ 5 B 5 T ok w p
v L 5] w =9__L
MODEL C P=—%‘— 1——‘8—’5 B=e-me q
ex k 6, L
r im
w = —
q
. - YL Pk -8+ Fok = a(1-F)pkL|
MODEL D P = 5 R=1+ 5 B 5 T ok w q
. =YL pk =1 - pkL
MODEL E P D 1+ 6 g R w q
Table 7. Expressions for the original coefficients in each transport model
as they relate to the dimensionless parameters P, R, 8 and w .
MODEL A p =YL - 8R=1) _— -
P o
_ 8 =68 + (B-f)pk
MODEL B D=—§-L—§ - 8(R71 o , o =4
m e 6B - Gm
f = 8 +T
L a =
MODEL C D= emp ox - 8(1-R) em = 6(6 - eex)
w
k =
r (¢ em)L
_ vl _6(R-1) 6(1-8) W
MODEL D D = P 5 F B ok o (1-F)pkL
_ VL _ 8(R-1) o -
MODEL E D = P =5 o ok
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and w in Table 5 (Example 2D), that k = 0.006 (g/cm3) and o = 0,287

(day —l). Similar estimates for em and f, unfortunateiy, cannot be obtained
from the present experiment alone. This is because both parameters appear in
only one dimensionless variable (B). Consequently, either Sm or f needs to be
know before the other parémeter can be estimated. Using the soil—-physical
data for this example and the fitted value of B, the following relation

between em and f can be derived
Gm = 0,293 - 0.0072 £ [79]

This relation shows that the influence of f on the final value for Sm is
extremely small. This is due to the fact that k is very small. A good first
approximation for Sm may be obtained by assuming that f is equal or slightly
lower than B. Taking f =8 (=0.72), the mobile water content, Gm, equals
0.289. The fraction mobile water, ¢m’ is then also equal to B. Once em is
known, the dispersion coefficient can also be calculated: D = 22,8 (cmz/day).
The third example considers the movement of the pesticide 2,4,5-T (2,4,5-
Trichlorophenoxyacetic acid) through Glendale clay loam (Exp. 4~1 of van
Genuchten_gg_gi., 1977). Observed and fitted effluent curves are shown in
Fig. 4. Because of chemical hysteresis only the breakthrough side of the
curve ﬁas considered. Only three parameters (P, 8 and w) were fitted to the
data, thereby assuming that the retardation factor, R, is know. The
adsorptioﬁ isotherm for 2,4,5-T was described well with the nonlinear

Freundlich isotherm (van Genuchten et al., 1977):

S =Kece. , [80]
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The constant K and N in this equation were obtained from batch equilibrium
studies: K = 0.616 and N = 0.792. To obtain an estimate for k, the nonlinear
isotherm must first be linearized. At least two linearization methods may be
used for that purpose. One approach is to assume that the area under the
linearized isotherm (S = kc) is the same as the area under the nonlinear iso~

therm over the range of concentration values used in the displacement experi-

ment, i.e.

Co Co N ’
ke de = Ke'de. [81]
C C

i i

For an initial concentration, Cy» of zero, [81] becomes

ke 1 ,
k =-————o - [82]

N+1
Another linearization method assumes that k can be approximated by the

average slope of the nonlinear isotherm:

c
_ 1 o ds
k = g f = de [83]
[o] 1

Cy

which, for an initial concentration of zero, reduces to
k=KC [84]

In the present experiment (Example 3), the column was leached with a 2,4,5-T
solution of 10 meq/l. Using C, = 10, K = 0.616 and N = 0,792, it follows that
k equals 0.426 if based on Eq. [82], and 0.382 if based on Eq. [84]. The

equivalent retardation factors are 2.223 and 2.097, respectively. Only the
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value of 2.223 for R was used in the present example.

One may again calculate the original variables from the curve-fitted
parametefs in Table 5 and the soil-physical data in Table 4. If Model B is
assumed to be the governing transport model, it is again necessary to have an
independent estimate of either Gm or £ (Table 7). From separate experiments
with tritiated water, it was earlier concluded that the fraction mobile
water, ¢ , must be about 0.85 (van Genuchten et al., 1977). The mobile water
content is hence 0.388 (cm3/cm3). With this information, it is ﬁow possible
to calculate the remaining parameters: f = 0.39, D = 59.4 (cmz/day) and
o = 0.288 (l/day). The estimated value of f suggests that about 40% of the
sorption sites are in equilibrium with the mobile liquid, while the remaining
60% are in contact with immobile water. This, of course, assumes that the
physical non-equilibrium model (Model B) applies. If, on the other hand, the
two=site kinetic non-equilibrium model (Model D) is taken as the governing
transport model, different parameter values will be calculated. From the
expressions in Table 7 and the fitted values in Table 5 (Example 3B), one may
calculate the following values: D = 50.5 (cmz/day), F = 0.27 and a = 0.557
(1/day). Hence, about 27% of the sorption sites are type-l (equilibrium)
sites, and about 73% are type-2 (kinetic) sites if the two-site adséfption
model is the correct transport model. |

The fourth example considers the movement of boron (H3B04) through
Glendale clay loam (Exp. 3-1 of van Genuchten, 1974). Figure 5 compares the
observed data with the fitted curve based on Model B, Case SI-2 (Example 4D in
Table 5). The fitted curve for Case SI-1 deviated only slightly from the
curve of Case SI-2. In this case all parameters except T)} were fitted to the

data. Including also T; as an unkown coefficient resulted in quite different

curve-fitted values (Example 4A, C in Table 5). These large deviations are



43

g l.o 1 1 ¥ 1 ¥ 1 ] ¥ L]

é; [~ i
= 08} -
< B .
(0

5 oe} i
L

QO = -
Z .

o 04} .
(&

- i i
> 02} .
|._

j | o
Ll (o) |/

o o) 2 4 6 8 I0 12 14 16 18 20

PORE VOLUME (T)

Figure 5. Observed and fitted effluent curves for Boron mo#ement through Glendale
clay loam (Example 4D).



44

most likely caused by the rather severe nonlinearity of the present problem.
The coefficients K and N in Eq. [80], as determined with batch equilibrium
studies, were found to be 2.77 and 0.672, respectively (van Genuchten,
1974). Application of Eq. [82] and [84] with C, = 20 (meq/1) leads to
linearized k-values of 1.24 and 1.04, respectively. By comparison, the values
of k obtained from the fitted R-values in Table 5 are 1.05, 1.20, 1.02 and
l.14 for examples 4A through 4D, respectively. From these values, it is
difficult to conclude which linearization technique is better. In fact, both
linearized k-values would have produced fitted curves (P, B8 and w) which, in
accuracy, are comparable to the one shown in Fig. 5. While the fitted values
in Table 5 are not expected to be very accurate because of the observed
nonlinearity, they nevertheless will give a good first approximation for the
various parameters. Assuming that the physical non-equilibrium model is
applicable, and using a value of 0.852 for ¢m (van Genuchten, 1974), one may
calculate the following values for the original variables: f = 0.52, D = 57.5,
and a = 0.233. These estimates are based on the fitted values of Example
4D. Similar values for the two-site adsorption model (Model D) are: F = 0.47,
D = 49.0 and o« = 0.320.

It should be mentioned here that the dimensionless variables for the
Boron experiment were obtained with only 30 data points as shown in Fig. 5.
In reality, 105 data points were measured during the leaching experiment. The
30 points were selected from a smooth, eye-fitted curve, carefully drawn
through all measured data points. Using all 105 data points in the curve-
fitting program would have increased the required computer time many-fold.
This is due to the fact that not only 75 more points need to be calculated
during each iteration in the least-squares program, but that often also more

iterations are required before convergence is reached when more points are
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present. This is expecially the case when the original data exhibit
considerable scatter. Of course, considerable care is necessary when many
data points are deleted. By doing so, an additional source of error is easily
introduced into the data set.

Figure 6 gives a plot of all 105 measured data points of the boron
curve. The solid line in this figure was obtained with a numerical solution
(van Genuchten and Wierenga, 1976a) of the physical non-equilibrium nonlinear
transport model, i.e., of Eq. [22], [23], [24] and [80]. The parameters in
the numerical solution were exactly the same as those given earlier for the
linearized solution (see also Fig. 5), except that in the present case the
experimentally determined nonlinear isotherm was used in the calculations (Eq.
[80] with K = 2.77 and N = 0.672). The excellent fit of the observed data in
Fig. 6 shows that the linearized model can be used to obtain estimates of the
various transport parameters, even if the adsorption isotherm is highly
nonlinear. Part of the good fit in Fig. 6 is due to the fact that the
linearized solution in Fig. 5 was fitted to the entire curve, rather than
being limited to only the front (breakthrough) part.

The next example considers the movement of chloride through Glendale clay
loam (unpublished data of Wierenga, 1971). Figure 7 shows both the observed
and fitted effluent curves. 1In this case all 23 measured data points'were
used in the curve-fitting program. The fitted values of the four unknown
coefficients (P, R, B and w) are nearly identical for béth-analytical
solutions (Model B, Cases SI-1 and SI-2). Because the value of R is less than
one, the anion exclusion model (Model C) can be applied. Using the estimated
values of Case SI-2 in Table 5, the following values for the original
variables in Model C can be calculated (see also Table 7): D = 11.6 (cmz/day),

Sex = 0.163, Gm = 0.256, Sa = 0.044 and o = 0.178 (1l/day). It follows, in
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addition, that k. = 0.869 (1/day) and y = 0.70 if the model of Krupp et al.
(1972) is used (see section C). |

The last example was used to check the accuracy Qf the curve-fitting
model in conjuction with the one-site kinetic adsorption model (Model E).
Figure 8 compares the "observed" and fitted effluent curves for this case.
The observed points were generated with the analytical solution of Model E,
Case SI-1, using the following parameter values: P = 133.33, R = 1.70 and
w = 0.875. As expected, the fitted values for Case SI-1 (Example 6A in Table
5) are essentially the same as the correct values. The fitted values for
Case SI-2 deviate somewhat from the correct values because of the different
analytical solution used in the fitting program. Note that only two
paraméters (P and w) were fitted to the data, thereby assuming that R could

have been derived from batch adsorption studies.
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SUMMARY AND CONCLUSIONS

The least-squares computer model discussed in this report provides a
convenient, efficient and accurate means of fitting various transport
parameters to column effluent data. Both equilibrium and non-equilibrium type
transport models can be used altérnatively in the curve-fitting program. The
conceptually more complex non-equilibrium models may contain up to four
unknown parameters if only the break-through side of the effluent curve is
considered. In some cases, one may also obtain estimates for the dimension-
less pulse time from the observed curve, leading to an additional unknown
parameter. Several examples are given which demonstrate the versatility of
the program. Although the computer program is dimensioned for up to 90 data
points, it is recommended that only a limited number of points be used in the
program, e.g., about 10 to 20 for those experiments in which the tracer is
applied continuously, and about 15-30 points for a pulse-type effluent
curve. The use of considerably more data points will generally not increase
the accuracy of the fitted parameters, but rather will lead to an increase in
computer time. Computer expenses can become especially high when many data
points are used which, at the same time, show coﬁsiderable scatter. The
examples also show that one may expect some differences between the curve-
fitted parameters values when different analytical solutions are used,
especially for relatively small values of the column Peclet number, P. In
this report, only solutions for a semi-infinite medium are considered in the

computer program.
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NOTATION
Symbol Definition

a Dimensionless constant defined by Eq. {37].

A, \ Specific surface area.

b Dimensionless constant defined by Eq. {37].

c Solution concentration.

C1s €9 Dimensionless concentrations.

c, Concentration in immobile, non-excluded liquid.(bbdel c).

Co Dimensionless effluent cdncentration.

Co Sim Concentrations in mobile and immobile liquid regions (Model B).

Ci Initial concentration.

Co Input concentration.

dex Equivalent exclusion distance (Model C).

D Dispersion coefficient.

£ Mass fraction of soiid phase in direct contact with mobile
liquid (Model B).

F Fraction of sorption sites occupied by type-l equilibrium
sites (Model D).

Io, I Modified Bessel functions.

J Goldstein's J-function (see Appendix A).

k Distribution coefficient between solid and liquid phéses.

ki, ky Distribution constants defined by Eq. [62] and [63],
respectively.

k. Rate coefficient defined by Eq. [60].

K Constant in Freundlich isotherm.

L Column length.

N Exponent in n&nlinear Freundlich isotherm.

P Column Peclet number (Table 6).

q Volumetric flux.
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NOTATION (cont'd)

Symbol Definition
R Retardation factor (Table 6).
Ry Retardation factor for dynamic region (Eq. [31]).
5 Adsorbed concentration.
Sis» Sy Adsorbed concentrations for equilibrium (type-1) and kinetic

(type-2) sites (Model D).

Sm, Sim Adsorbed concentrations in dynamic and stagnant soil regions
(Model B).

t Time.

ty Pulse time.

T Pore volume: T = vt/L

T, Dimensionless pulse time: T, = vt;/L.

v Average pore-water velocity.

Vi Average pore-water velocity in mobile liquid (Model B).

Vox Specific exclusion volume (Model C).

X Distance.

z Dimensionless distance: z = x/L

o First—order rate coefficient.

B8 Dimensionless variable (Table 6).

Bm Eigenvalue (Tables 1,2,3).

Y Constant defined by Eq. [59] (Model C).

5] Volumetric soil-water content.

6a Equivalent volumetric water content of the immobile, non-

excluded liquid phase (Model C).

8 Equivalent volumetric water content of the anion excluded part
of the liquid phase (Model C).

8 , 0, Volumetric water contents of the mobile and immobile liquid
phases respectively (Models B, C).

A Dummy integration variable (Eq. [41]).
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NOTATION (cont'd)

Symbol Definition
£ Dimensionless constant defined by Eq. [38] (Model C).
o Soil bulk density.
T Dummy integration variable (Eq. [35]).
9 ox Fraction of liquid phase subject to anion exclusion (Model C).
¢m Fraction of liquid phase assumed to be mobile (Models B, C).

w Dimensionless rate constant (Table 6).
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APPENDIX A. Properties of Goldstein's J-function (Goldstein, 1953)

X
J(x,y) =1 - e_y/ e_TIo(Z/_y?) drt (x,y>0) [Al]
0
J(x,y) = e—y/ e_TIO(Z/?T‘) dt [A2]
X
JG,y) + J(@y,x) = 1+ exp(-x-y) I_(2/%y) [A3]
J(x,0) = e ¥ J(x,») = 1 [44]
J(0,y) =1 J(@,y) =0 [A5]
%§-= - exp(-x-y) 10(2/§§) [A6]
BJV xl/2
3y " exp (-x-y) (-};) I,(2/xy) , [A7]

Approximation 1 (xy<3.5; IE|<2.10—9)

2
J(x,y) =1 = (I4bgyde™ + exp(-x-y) [ + by (l+x)y +-——(x§’) b

4
e et e’ et L
6 °3 7724 P27 120 P1 tYag0 3
where
bl=a5+a6y b2=a4+bly
by = a3z +byy by = ay +t b3y
b5 =a; +b,vy
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and
a) = .999 999 403 ay = .500 006 087
a3 = .166 632 856 a, = .041 786 784
ag = .008 061 141 ag = .001 747 052

Approximation 2 (Lindstrom and Stone, 1974)

o n/2
J(x,9) = exp(-x-y) [ &) I (2/55) (x>y) [49]
n=0
. n/2
JGuy) = 1 - exp(xy) [ Q) 1 (2/x7) (x<y) [AL0]

n=1

where In are modified Bessel functions of order n. These Bessel functions

are easily evaluated by noting that for n)l

L@ =1 _ @ -21 (a) | [A11]

Approximation 3 (De Smedt and Wierenga, 1979)

k n n Xm .
J(x,y) = exp(-x-y) ] -Z—, ) oT T E (x>y) [A12]
n=0 " m=0 °
where
k+1
lE|] < L——(kﬂ)! [A13]
k xn n-1 m
Jy) = 1 - exp(-x-y) [ =y ] % +E  (x<y) [ALl4]
n=1 " m=0 "

where

k
X
IEI< T
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4

Approximation 4 (Klinkenberg, 1948) (x+y > 10, |E| < 8.10 1)
1 1 1
J(x,y) = 7 erfc(vVx - vVy - — - —) + E [Al5]
8&/x &y
Approximation 5 (Goldstein, 1953).
A+ B (x>y)
J(X,Y) ={ [ALl6] ‘
l1-A+3B (x<y)
where
A=TLEED e [AL7]
V&

B = ] exp(-x~y) I (§) + (x—y)e_z °Z° “m Sm(Z) [AL18]
2 ° VEE mel (26)"

T'(m +—§-)
@ =TT [A19]
n I3 m!

I'(m +-%)
Sm+l(z) =g -z Sm(z) [A20]
T(z)

Sl(z) =1 - /7z % erfe (V%) [A21]
z = (/F - /3)? [A22]

£ =27/ ’ [A23]
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APPENDIX B. CFITIM, a computer program for calculating non-equilibrium

transport parameters from observed column effluent curves.

This appendix gives a brief description and listing of CFITIM, a computer
program which may be used to calculate several parameters appearing in both
equilibrium and non-equilibrium type transport models. The parameters are
obtained by means of a least-squares fit of the appropriate analytical solution
(see sections A and B) to column effluent data. The analytical solutions hold
only for a semi-infinite system and two types of boundary conditions at the
column entrance: Case SI-1 for a first-type, constant concentration boundary
condition, and Case SI-2 for a third-type, constant flux bdundary condition.

The program consists of a main program (MAIN), two subroutines (MODEL and
MATINV), and three functions (CCO, EXF and GOLD). Most of the calculations for
the least-squares analysis are carried out in MAIN, including input and output
instructions, calculation of a correlation matrix between‘the unknown
coefficients, and calculation of a 95% confidence interval for each unknown
coefficient. Subroutine MODEL calculates the exit concentration for each
transport model. The choice of the transport model is governed by the input
variable MODE:

1 for Model A, Case SI-1

MODE =

MODE = 2 for Model A, Case SI-2,

MODE = 3 for Model B, C or D, Case SI-1,
MODE = 4 for Model B, C or D, Case SI-2,
MODE = 5 for Model E, Case SI-1, and
MODE = 6 for Model E, Case SI-2.
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Subroutine MATINV describes a matrix inversion scheme which is needed for
the least-squares analysis in MAIN. The function CCO is used to calculate the
argument under the integral sign of Eq. [39]. The integral of this equation
is evaluated with a 20-point Gaussian quadrature scheme. This scheme was
found to be slightly more efficient than a Romberg integration scheme used in
earlier versions of this program (see also van Genuchten and Wierenga, 1976;
and De Smedt, 1979). Equation [39] also contains Goldstein's J-function.

This function is evaluated in GOLD. Appendix Avgives several approximate
relations for J(x,y). The function GOLD uses approximation 3 for small values
of x and y, and approximation 5 for relatively large values. The function
EXF, finally, is used to calculate the complementary error function (erfe),
the exponential function (exp), or the product of exp and erfc.

Table Bl gives a list of the most significant variables of CFITIM. Table
B2 gives instructons regarding set-up of the data cards. An example of the
the input data is given in Table B3, in this case for Cases 1D, 2D and 2H of
Table 5. Table B4 shows the output obtained for these examples. Thevprogram
itself is listed in Table BS5.

An extra comment is needed about the vector B(I)‘in Table Bl. This
vector contains the initial estimates of the unknown coefficients. For Model
A, B(1) contains the estimated values of P, R and Ty (in that ordef). For
models B,C, D and E, B(I) contains estimates for P, R, 8, w and Tl’ again in
that order. If a coefficient is known, the measured values of that
coefficient should be entered on the fifth data card (see Tables B2 and B3).
At the same time the input value for INDEX(1), associated with the known
B(I)-values, should be set to zero. The vector INDEX(I) specifies if the
I-th coefficient, B(I), is an unknown parameter in the program and needs to be

fitted to the data [INDEX(I) = 1], or if that coefficient is known beforehand
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and should be kept constant in the program [INDEX(I) = 0]. For a continuous
tracer application (no pulse of solute), a large dummy variable should be
assigned to Tj. This value should exceed all measured pore volumes, Y(I),
entered into the program. At the same time‘INDEX(3) mist be zero if Model A

is used, while INDEX(5) must be zero for the other models; this is necessary

to indicate that T; is a known parameter.



Table Bl.

VARIABLE

B(IL)

BI(I)

EXF(A,B)

INDEX(I)

MIT

MODE

NC

NDATA

NIT

NOB

$SQ, SUMB

STOPCR

TITLE

X(I), Y(I)
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List of the most significant variables in CFITIM.

DEFINITION

Vector containing estimates of the various coefficients:
P, R and T| for Model A; P, R, B, w and T; (in that order)
for Models B through E.

Vector of coefficient names.

Function to calculate exp(A) erfc(B).

Index for each coefficient. If INDEX(I) = 0, the coefficient
B(I) is known and kept constant in the program. If INDEX(I)

= 1, the coefficient is assumed to be unknown and fitted to the

data. At least two coefficient need to be unknown.

Maximum number of iterations allowed in the least—squares
analysis.

Model number specifying the type of transport model and
boundary conditions to be used (see text).

Number of cases considered.

Data input code. If NDATA 1, new data are read in for that
particular case. If NDATA = 0, the data of the previous case
(or part of them) are used for the new problem. This code
allows one to fit the same data to different models.

Iteration number during least-squares analysis.

Number of observations (cannot exceed 90 with presently
dimensioned arrays).

Residual sum of squares.

Stop criterion. The iterative curve-fitting process stops when
the relative change in the ratio of all coefficients becomes
less than STOPCR.

Vector containing information of title card (input label).

Observed effluent data: pore volume and concentration,
respectively.
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Data input instructions.
CARD COLUMNS FORMAT VARIABLE
1 1-5 15 NC
2 1-5 15 MODE
2 6-10 15 NDATA
2 11-15 15 MIT
2 16-20 15 NOB
3 1-80 20A4 TLITLE
4 1-6 A4, A2 BI(1)
4 11-16 A4 A2 BI(2)
4 21-26 A4, A2 BI(3)
4 31-36 A4 A2 BI(3)
4 41-46 A4, A2 BI(4)
5 1-10 F10.0 B(1)
5 11-20 F10.0 B(2)
5 21-30 F10.0 B(3)
5 31-40 F10.0 B(4)
5 41-50 F10.0 B(5)
6 1-5 I5 INDEX(1)
6 6-10 I5 INDEX(2)
6 11-15 15 INDEX(3)
6 16-20 I5 INDEX(4)
6 21-25 15 INDEX(5)
7, etc. i-10 Fi10.0 X(1)
7, etec.  11-20 F10.0 Y(I)

COMMENTS

Number of cases considered.

The remaining cards are read
in for each case. If NDATA
= 0 on card 2, data cards 7,
etc. are not needed for that
particular case.

Model number.

Data input code.
Maximum number of
iterations.

Number of observations.

Information card.

Coefficient name for P.
Coefficient name for R.
Coefficient name for B(3).
Coefficient name for B(4).
Coefficient name for B(5).

Initial value of P.
Initial value of R.
Initial value of B(3).
Initial value of B(4).
Initial value of B(5).

Index for each coefficient.
See text for explanation.

Value of observed pore
volume.

Value of observed
concentration.

Card 7 is repeated NOB
times.
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Column:
Card

O~V -~
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Input data for Examples 1D, 2D and 2H.

0 1

2

3

4

5

12345678901234567890123456789012345678901234567890

3
4 1

PECLET

o
w
.

.
O CULVILOOOEENOO~O

1

. * o

SNUT W N o= e e
L

4

PECLET

50.0

1 1
.449
«593
.688
.832
1.072
1.455
1.981
2.442
2.682
2.825
3.017
3.304
3.879
4,477
4.956
2 0

PECLET
50.0
1 1

20

10

EXAMPLE 1D

RF

1

20

2.0

1
0155
.1100
.2896
«4620
+5740
.6548
7218
«7952
8710
. 9308
15

EXAMPLE 2D

RF

40

1.0
1
.007
.148
.301
476
.703
.825
.922
.949
.843
.630
<404
.233
.103
.052
.028
15

P=40
BETA

0

0.6

OMEGA

0.2

PULSE

100.0

TRITIATED WATER (EXP., 5-2)

BETA

1

0.6

OMEGA

0.5

PULSE

2.0

EXAMPLE 2H TRITIATED WATER (EXP. 5-2)

RF

100

PULSE

2.0
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Table B4. Output for examples 1D, 2D and 2H.
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MAIN

(2222222 22222222 22222222222 s R 22222 S22 2222222222222 st}

NON-LINEAR LEAST-SQUARES ANALYSIS CFITIM

INPUT INFORMATION

CARD 1: NUMBER OF CASES CUNSIDERED: NC (IS5}
THE NEXT CARDS ARE REPEATED NC TIMES

* *
* *
* 2
* *
* *
* *
* *
* *
* *
¥ CARD 2: MODEL NUMBER (MODE), DATA INPUT CODE (NDATA), *x
* MAXIMUM NUMBER OF ITERATIONS (MIT) AND NUMBER *
* OF OBSERVATIONS (NOB) (4§5) *
* MODE=1,2: EQUILIBRIUM TRANSPORT (MODEL A) *
* =394t NON-EQUILIBRIUM TRANSPORY {(MODEL B) *
* =596 ONE-SITE KINETIC ADSORPTION (MODEL D) =
* =14345¢ FIRST-TYPE BOUNDARY CONDITION ¥
* 294962 THIRD-TYPE BOUNDARY CUNDITION *
* NDATA=0: SAME DATA AS PREVIOUS CASE *
* : =12 NEW DATA *
* CARD 3: INFORMATION CARD (20A4) *
* CARD 4: NAMES OF THE COEFFICIENTS 3(A4,A244X) *
* CARD 5: INITIAL ESTIMATES QOF COEFFICIENTS (3F10.0) *
* CARD 6¢: INDEX FOR EACH COEFFICIENT 5115} *
* =0 IF COEFFICIENT IS KNOWN (CONSTANT) *
x =1 IF COEFFICIENT IS UNKNGWN *
* *
* *
® *
* *
* ®
* *
* *

THE NEXT CARDS ARE READ IN ONLY IF NDATA=]

CARD 7,ETC.: EXPERIMENTAL DATA: PORE VOLUME AND
CONCENTRATION (NOB CARDS) (2F10.0)

REREEEEREXEEEFERAKEERERRE AR R SR e R R BE R KRS SR Lk Rk E KKK ERERKERERKEE

IMPLICIT REAL*8({A-H,0-1}

DIMENSION Y(90) +X{90) F(90},R(90) ,DELZ{90,51,8{10),E{5) TH(10},
1P(5)4PHI{5) 4QU5)LSORT(90),TB(10) +A{5:5)4BI(10),TITLE(20)+D{(5+5),
2INDEX{5)

DATA STOPCR/0.0005/

-==== READ NUMBER OF CASES —--——-
READ(541006) NC

DO 120 NCASE=1,NC

WRITE(6,+1000)

----- READ INPUT PARAMETERS =——=-
READ(5,1006) MODE,NDATA.MIT,NOB
M=(MODE-11/2

IF(M.EQ.0) WRITE(6,1021)
IF(M.EQ.1) WRITE(6,1022)
IF{M.EQ.2) WRITE(6,41023)
N=MODE-2*M
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IF{N.EQ.1) WRITE(6,1024)
IF{NLEQ.2) WRITE(6,1025])
NuU=3

IF{MODE.GT42) NU=5
NUl=NU+1

NU2=2%NU

READ(5,1001) TITLE
WRITE(6,1002) TITLE

~—~—~ READ COEFFICIENTS NAMES ---—--
READ(5,1004) (BI(I),I=1,NU2)

~~~== READ INITIAL ESTIMATES ——-—-
READ(5,1005) (B8{(I1),I=NUL,NU2)
IFIM.EQ.2) B(8)=1./B(T)

————— READ INDICES ——=—-
READ(5,1006) (INDEX(I),1=1,NU)
IF(M.EQ.2) INDEX{3)=0
WRITE{(6,1007)

DO 4 I=1,NU

J=2%]~1

WRITE(6,1008) 1,4BI(J),,BI(J+1)8L1I+NU)

IF(NDATALEQ.0) GO TO 10

~—=—— READ AND WRITE EXPERIMENTAL DATA

DO 6 I=1,NOB
READ(5,10C5) X{I),Y(I)
WRITE{641C09)

DO 12 1=1,N0OB
WRITE(6,1010) l:X(I):Y(IJ

NP=0

DO 14 I=NUL,NU2
TB(1)=B(I)
IF(INDEX(1-NU).EQ.0) GO TO 14
NP=NP+1
K=2%NP~-1
J=2%{[-NU)-1
BI(K)=BI{J)
BI{K+1)=Bl(J+1)
BINP)I=B(I}
TBINP)=B(])
TH{(NP)=B (NP}
TH{I)=8(1)

NP 2=2¥NP

CALL MODEL(THsF4sNOB+X o INDEX,MODE)
$5Q=0.

DO 32 1=1,NOB



32

34

36

38

40
42
44

52

54

56

58

62

64
66

79

MAIN

RIII=Y(1)-F(I)

SSC=SSQ+R{I1*R(I)

WRITE(6,1011) (BI(JI4BI{J+1)yJ=1,NP2,2)
WRITE(6,1012) NIT,SS5Q.{(B{I),1=1,NP)

----- BEGIN OF ITERATION w=—~-
NIT=NIT+1

GA=0.1%GA

D0 38 J=1,NP

TEMP=TH{J)}

TH(JI=1.01*TH{J)

Q(J4)=0

CALL MODEL(TH,DELZ{1,J)yNGB¢XsINDEX,MODE)
D0 36 1=1,N0OB
DELZI(I,J)=DELZ(I,J}-F(I}
QUJI=QUJII+DELZ(14J)*R(I)
Q(J4)=100.%Q(J)/TH(J)

——=== Q=XT%#R (STEEPEST DESCENT) ——v=-=
TH{J)=TEMP

DO 44 I=1,NP

DO 42 J=1,1

SUM=0

DO 40 K=1,NOB
SUM=SUM+DELZ(K,II*DELZ(K,J)
D(I+4J1=10000%SUM/{TH(I}*TH(J))
D(J, 1I=D{1,4)
E{I)=DSQRT{D(I,IN

DO 52 l=1,NP

DO 52 J=1,NP
AlTJi=DUI+J)/LELIY*ELJ))

—=——== A IS THE SCALED MOMENT MATRIX =——w=-
DO 54 I=1,NP

PLIN=Q(II/E(])

PHI(I)=P(1])

A(I.I)=A{1,1)+GA

CALL MATINV(A.NP4P}

----- P/E IS THE CORRECTION VECTOR --——
STEP=1.0 ’
DO 58 I=1,NP

TBUL}=P{I)*STEP/E(I)+THII)

DO 62 I=1,NP

IF(TH(I}*TB{1))66466,62

CONT INUE

SUMB=0

CALL MODEL(TBsFoNOB, Xy INDEXsMODE)

D0 64 1=1,NOB

REII=Y{I)=-F(I)

SUMB=SUMB+R(I)*R (I}

SUMI=0.0

SUM2=0.0

SUM3=0.0
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12

T4
16

18

80

82

86

34

96

98

100
102

80

MAIN

DO 68 I=1,NP

SUML=SUM1+P{I)*PHI(I)

SUM2=SUM2+P (1 )*P(I)

SUM3=SUM3+PHI () *PHI (1)

ARG=SUML /DSQRT(SUM2*SyMmM3)
ANGLE=57.295T8%DATAN2(CSQRT (1 .—~ARG*ARG) 4 ARG)

- —— - s -

DO 72 I=1,4NP
IF(TH(LI)I*TB(I))T4,74,72

CONTINUE
IF{{SUMB~5SQ).LT.1.D~-081G0 TO 80
IF(ANGLE~30.0)76476,78
STEP=0.5*STEP

GO TO 56

GA=10.%GA

60 T0 50

----- PRINT COEFFICIENTS AFTER EACH ITERATION --=---
CONT INUE

DO 82 I=1,NP

TH(I)=TB(1)

WRITE(691012) NIT,SUMB, (TH(I) I=1,NP)

DO 86 I=14NP

IF(DABS(P{IY*STEP/E(I))/(1. OD-ZOfDABS(TH(l)l) STOPCR) 86486994
CONT INUE

GO TO 96

SSQ=SUMB

IFINITL.LE.MIT) GO TO 34

-~=~= END OF ITERATION LOOP -----
CONTINUE
CALL MATINV(D.NP,P)

===w= WRITE CORRELATION MATRIX =-==--
DD 98 I=1,NP
E(I1)=DSQRT(DMAXLI(D(I,1[)s1.D-20))
WRITE(641013) (1,1=1,NP)

DO 102 I=1,NP

DO 100 J=1,I1

AlJy D=0 1)/ (ECL)*E(J))
WRITE(6,1014) I+(A(J,1)4d=1,1)

- CALCULATE 95% CONFIDENCE INTERVAL ==—===
I=1./FLOAT(NOB~NP)

SDEV=DSQRT(Z*SUMB)
TVAR=1.9642%(2.377942%(2.T135+2%(3.18793642.466666%1%%2)))
WRITE(6,1015)

DO 108 I=1,NP

SECOEF=E(1)*SDEY

TVALUE=TH(1)/SECOEF

TSEC=TVAR*SECOEF

TMCOE=TH(I)-TSEC

TPCOE=TH(I)+TSEC

J=2%[~1
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178 WRITE(6,1016) I,8I(J),B81(J+1),TH(I),SECOEF,TVALUE,TMCOE,TPCOE

~—=--—= PREPARE FINAL OUTPUT ——-—
LSORT(1)=1
DO 116 J=2,N0O8B
TEMP=R(J)
K=Jd=-1
D0 111 L=1,K
LL=LSORT(L)
IF(TEMP-RILL)) 112,112,111
111 CONTINUE
LSORT{J)=J
GO T0 llé6
112 KK=J
113 KK=KK-1
LSORT(KK+1)=LSORT(KK}
IF(KK-L} 115,115,113
115 LSORT(L)=J
116 CONTINUE
WRITE{6,101T}
DO 118 1=1,N0O8B
J=LSORT(NOB+1-1)
118 WRITE(651018) IoX{I)oY(IdoF{I)oRIIDodoX{J)sY(I)sFUJ),RUD)
WRITE(6,1020)
120 CONTINUE

----- END OF PROBLEM ———=-

1000 FORMAT(1H1,10X,82(1H*)/11X,1H*,80X,1H%/11X,1H*,10X, *"NON-LINEAR LEA
1ST SQUARES ANALYSIS' ¢37Xs 1H%/ 11Xy 1H#980X,1H*)

1001 FORMAT(20A4)

1002 FORMAT(L1X,1H*,20A4%, LH*/11Xs1H*,80X, 1H*/11X,82(1H¥*}])

1004 FORMAT(5(A4,A2,4X)) '

1005 FORMAT(S5F10.0)

1006 FORMAT(SI5)

1007 FORMAT(//11X,'INITIAL VALUES OF COEFFICIENTS'/11X,30(1H=1/12X,'NOC"'
146Xy "NAME' 49X, * INITIAL VALUE')

1008 FORMAT(L1XsI395X9A45A2,4XyF1243)

1009 FORMAT(//11X,*OBSERVED DATA',/11X,13(1H=)/11X,'0BS. NO.'s5Xs'PORE
1VOLUME' ,5X, *CONCENTRATION') '

1010 FORMAT(11X,15,5XsF12e4¢4X,F12.4)

1011 FORMAT(//11Xs"ITERATION' ;6X,"55Q" 14Xe5(TXsA%4A2))

1012 FORMAT(L1Xy1595XeFLlle742X95F13.5)

1013 FORMAT(1H1,10Xs 'CORRELATION MATRIX*/11X,18(1H=)/14X,10(4Xs12,5X})

1014 FORMAT{11XsI3,10(2XsFT7.442X})

1015 FORMAT(///411X, 'NON-LINEAR LEAST SQUARES ANALYSIS, FINAL RESULTS'®
1/711X»48( 1H=17/72X,'95% CONFIDENCE LIMITS'/11Xs'VARIABLE® +4Xy' NAME"
248Xs "VALUE® 98Xy ' SeE<COEFF o 43 Xe ' T-VALUE" y5X ' LOWER' y 10Xy 'UPPER")

1016 FORMAT(14X,12,6XsA%9A292X9F12e515XsFFeb94X1FBe242X1F90496XoFF44)

1017 FORMAT(//10X,9(1H-}, ORDERED BY COMPUTER INPUT*,10(1H-), TX,12(1H-
1), *ORDERED BY RESIDUALS'912(1H-)/ 18Xy *PORE"96Xs *CONCENTRATION®»
26X, "RESI~", 18X, 'PORE" 46Xy 'CONCENTRATION® 6X 4 *RESI="/10X, "NUO' s 4X,
BYVOLUME Y 36X "0BSe 34Xy "FITTED 536X ¢ "DUAL Y 310X "NO* 44Xy 'VOLUME® 46Xy
4'0BS.* 94X 'FITTED' ,6X,'DUAL")

1018 FORMATI10X,12,4F10+3410Xy12+4F10.3)
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1020 FORMAT(///11X,*END OF PROBLEM'/11X,14(1H=))
1021 FORMAT (11X, 1H*,10X,"EQUILIBRI UM TRANSPORT (MODEL A) ' 439X, 1H*)
1022 FORMAT(llelH*leXc'NDN*EQUILIBRIUM TRANSPORT ({MODEL 8)* 435X, 1H*)
1023 FORMAT(11X,1H%*,10X,'ONE-SITE KINETIC ADSORPTION (MODEL D) 933X, 1H*
1
1024 FORHAT(IIX:lH*;lOX.'FIRST—TYPE BOUNDARY CONDITION' y41X,1H%)
1025 FORMAT(11X,1H*,10X.'THIRD~TYPE BOUNDARY CONDITION® 341X, LH¥)
sTOP
END
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SUBROUT INE MODEL (B+Y ¢ NOB ¢ Xs INDEX,MODE)
PURPOSE: TO CALCULATE CONCENTRATIONS FOR GIVEN PORE VOLUME

IMPLICIT REAL#*8(A-H,0-1)

DIMENSION B({10)4Y{30),X(90), INDEX{5)+XG(20),W{(20]}

DATA XG/.03877242+4116084194192697694.2681522+43419941+.4137792,
1448307589 45494671,46125539,4.67195679.7273183947783057,.8246122,
2.86595954.90209889+9323128549579168,.9772599,.9907262,.93823717/

DATA w/.077505959.0770398244076110374.07472317,.07288658,.,37061165
1,.0679120454C064804019.061306249.05743977,.05322785+.04869581,.0438
27091,.038782174.03346019,.027937019.022245859.016421064.010498284.
300452128/

K=0
IF(MODE.LE.2) GO TO 12

----- SOLUTION FOR NON-EQUILIBRIUM TRANSPORT (MODEL B) —-===—-
DC 2 I=6,10

IF(INDEX{I-5).EQ.0) GO TO 2

K=K+1

B(I1=8B(K)}

CONTINUE

P=B(6&}

R=B(7)

IF(MODELGE.S5) B{B8)=1./R

BETA=DMINLI(B{8) ++.5999D00)

OMEGA=8(9)

DO 10 J=1,N0OB

DO 8 M=1,2

C=0.0

T=X{J)+{(1-M}*B(10]}

IF(T.LE.O.) GO TO 6

A=DSQRT (1l +405%P)
T2=DMINL(TBETA*R* (1. +40.% (1, +A)/P))
T1=0MAX1(0.D0DBETA*R¥(1.+40.*{1.~A)/P))
IF{T2.LE.T1) GO TO 6

DO 4 I=1,20
TAU=05%(T1¢T24(T2-T1)%X%XG(I))
C=CeWl11*CCOCPyR+BETAL,OMEGA, T2 TAU,MUDE)
TAUS0.5%(TL+T2+(T1-T2)*XG(1})
C=C+W{I1)*CCO(P,R,BETA,OMEGA,T,TAU,MODE)
C=0.5%({T2-T1l)*C

IF(M.EQ.2) GO 70O 8

Y(J)=C

CONT INUE

Y(J)=Y(J)-C

RETURN

~=—=== SOLUTION FOR EQUILIBRIUM TRANSPORT {(MODEL A) ————-
DO 14 [=446

IFUINDEX{I-3).EQ.0) GO TO 14

K=K+1
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- B8{I)=B(K)
14 CONTINUE
€=0.0
P=B (4]}
R=B{5)
D0 18 J=1,NOB
DO 16 M=1,2
C=0.0
T=X{(J1+(1-M)*B8(6)
IF(T.LE.O0.) GO TO 18
CM=0.5%(R-T}*¥DSQRT(P/{(R%T}}
CP=0.5%{R+T)*DSQRT(P/ (R*T) )
C=0.5%EXF(E,CM)+0.5¢«EXF(P,LP)
IF(MODE.EQ.2) C=C+DSQRT({. 3183099*?*7/R'*EXF( “CMECMyE)—05% (2. +P+P %
1T/RI*EXF(P4CP)
IF{M.EQ.2} GO TO 18
Y{J)=C
16 CONTINUE
18 Y(Ji=Y(J)~-C
RETURN
END
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FUNCTION CCO(P,R,BETA,OMEGA,T,TAUyMODE)
PURPOSE: TO CALCULATE THE ARGUMENT UNDER THE INTEGRAL SIGN

IMPLICIT REAL*8 (A-H,0-Z)

CCC=0.0

BER=BETA*R
CM=Px(BER-TAU}**2/{4.*BER*TAU}
C=.2820948*DSQRT (P*BER/TAU**3)%DEXP(-CM)
IF{{MODE.EQ+3).OR.{MODELEQ.5)) GO T0O 2
CP=(BER+TAU)*DSQRT(P/ (4. *¥BER*TAU})
C=2.*C*TAU/BER-QS5#P*EXF(P,CP)/BER
IF(C.LT.1.0-07) RETURN
EPSI=OMEGA*TAU/BER

ETHA=OMEGA* (T-TAU)/ (R-BER)
CCC=C*GOLD(EPSI,ETHA)

RETURN

END
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FUNCTION GOLDIX,Y)
PURPDSE: TO CALCULATE J(X,Y)

IMPLICIT REAL#*8{A~H,0-2)

GOLD=0.0

BF=0.0

E=2.%DSQRT( X*Y}

L=X+Y-E

IF(Z.GT«17.) GO TO 8

IF(E«NE.O.) GO TO 2

GOLD=DEXP(-X)

RETURN

A=DMAX1{X,sY)

B=DMINL{(X,Y}

NT=z1l.+2.%8+0,.3%A

IF(NT.GT.25) GO TO 6

1=0

IF(X«LTLY) I=1

GXY=l.+1%(B-1.}

GX=1.0

GY=GXY

GZ=1.0

DO 4 K=1,NT

GX=GX*¥A/K

GY=GY%8/(K+1)

GZ=G2+GX

GXY=GXY+GY*GZ

GOLD=GXY*DEXP{~X-Y)

GO TU 8

DA=DSQRT(A)

DB=DSQRT(B)

P=3,.75/E
BO=(43989423+P%{.01328592+P*(.00225319-P*{.,00157565-P*{,00916281-P
1%¥{.02057706-P%(.02635537-P%{(, 01647633-.00392377*P))))))))/DSQRT(E)
BF=BO*DEXP(-7)

Pz=la/{1.4.3275911%(DA-0B))

ERE g;;E2568296 -P*(,284496T7-P*(1.421414-P*{1.453152-P%*1.061405}})))
CO=1le~1.772454*%(DA~-DB)*ERF

Cl=0.5-2*C0O

C2=0.75~2%C1

€C3=1.875~-21%C2

C4=6.,5625-1%C3

SUM=.1994TL1%x{A=B)*P.(CO+]1 .5¥PR{L1+1.66666T*P*x(C2+]1.T5%Px(C3¢P%(C4
1%¥(1.8-3.3%P%2)+97.45313%P1)) 1))

GOLD=0.5*BF +{. 3535534*(DA+DB)*ERFfSUM)#BF/(BO#DSQRI(E)l

8 IF{XeLT.Y) GOLD=1.+BF-GOLD

RETURN
END
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FUNCTION EXF(A,B)
PURPOSE: TO CALCULATE EXP(A) ERFC(B)

IMPLICIT REAL*8 {(A-H,0~-Z)

EXF=0.0

IF{(DABS(A).GTe170.) .AND«(B<LE.O. )} RETURN
IF(B.NE.N.O) GO TO 1

EXF=DEXP{A)

RETURN

C=A-B%8

IF((DABS(C) eGTo1704) oANDe (BeGTe04)) RETURN
IF(CelT.-170.) GO TO 4

X=DABS(B)

IF(X.GT«3.0) GO TO 2

T=le/(1.4.3275911%X)
Y=T*(02548296—T*(.2344967‘7*(10421414-T*(1.453152—1.061405‘7’,3,
GG 70 3
Y=.5641896/(Xf.S/(X*l-/(x*1.5/(x*2./(X*Z.S/(X*lo’,)’))
EXF=Y*DEXP{C)

IF(B.LT<0.0) EXF=2,%DEXP(A)-EXF

RETURN

END
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MATINY

SUBROUTINE MATINV(A,NP,B)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(595)4B(10) s INDEX(5,2)
00 2 Jy=},5 '
INDEX(Js1)=0

I=0

‘HAX"lQO

DO 12 J=1,NP

TFCINDEX(Jy 1)) 12,6,12

D0 10 K=1,NP

IF{INDEX{K,1)) 10,8,10
P=DABS(A(J,K))

IF(P.LE.AMAX) GO TO 10

IR=) '

IC=K

AMAX=P

CONTINUE

CONTINUE

IF(AMAX) 30,30,14
INDEX{ICy1)=1IR
IF(IR.EQ.IC) GO TO 18
DO 16 L=1,NP
P=A{IR,L)
A(IRsLI=A(IC,L)
ALIC,L)=p

P=B{IR)
B{IRI=B(IC)
B(IC)=pP

I=]+}
INDEX(Le20=]C
P=l./A11C,IC)
ALIC,IC)=1.0

DO 20 L=1,NP
ACIC,L)=ALIC,L)*p
B{IC)=B(IC)=p

DO 24 K=1,NP
IF(K.EQ.IC) GO TO 24
P=A(K,IC)
AlK,IC)=0.0

DO 22 L=1l,NP
A(K.L"A(K.L"A( ‘CQL"P
B(K)=B(K)-B{IC)*p
CONT INUE

GO TO 4
IC=INDEX(1,2)
IR=INDEX(IC,1)

D0 28 K=1,NP
P=A(K,IR)
A{K,IR}=AIK,IC)
AlKyIC)=P

I=]-1

IF(I) 26,32,26
RETURN

END
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