Small molecular weight metabolites regulating growth and immunity as postbiotic antibiotic alternatives

Inkyung Park

Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, MD 20705
Introduction: antibiotic alternatives

- Avian coccidiosis with *Emeria* spp
- Necrotic enteritis
- With AGP withdrawal, there is an urgent need to develop antibiotic alternatives.

Gallucci and Matzinger, 2001; Shirley and Lillehoj, 2012
Introduction: antibiotic alternatives

Bacillus subtilis as probiotics in chicken feed
- Shows growth-promoting effect (Gadde et al. 2017)
- Shows a protective role against chicken pathogen (Park et al. 2019)
What is the mechanisms of dietary *Bacillus subtilis* supplementation?

Introduction: gut microbiota and metabolites

- **Nutrients**
- **Pathogens**

Metabolites

PAMPs

Growth

Immunity

Anti-stress

Anti-oxidant

“Postbiotics” novel materials promoting gut health as functional additive of diet
Therefore, the current study was undertaken to characterize the metabolic alterations in the chicken gut following dietary supplementation with *B. subtilis* DFMs with the goal of identifying potential chemical compounds that might be directly used to improve poultry growth performance without the use of AGPs.
Materials and Methods

84 male day-old Ross 708 broilers

- Initial body weight
- Allocation to 3 treatments

ileal content from euthanized chicken (2 chickens/pen = total 8 chickens/treatment)

Measurements:
- Metabolomic profiling of the ileal contents by mass spectrometry (Metabolon, Durham, NC)

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Supplements</th>
<th>Dose</th>
<th>Chickens/cage</th>
<th>Replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON</td>
<td>Basal diet</td>
<td></td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>B. subtilis 1781</td>
<td>CON+B. subtilis 1781</td>
<td>1.5 × 10^5 CFU/g feed</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>B. subtilis 747</td>
<td>CON+B. subtilis 747</td>
<td>1.5 × 10^5 CFU/g feed</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

- B. subtilis strains were obtained from Church & Dwight Co. Inc. (Waukesha, WI).
Materials and Methods

• Statistical Analysis
 • Growth performance
 - PROC MIXED in SAS (SAS Inst. Inc., Cary NC)
 - \(P \) values < 0.05
 - PDIFF option
 • Ileal biochemicals
 - Array Studio software (OmicSoft, Cary, NC)
 - the programs R (R Foundation for Statistical Computing, Vienna, Austria)
 - JMP (SAS Institute)
 - \(P \) values < 0.05
 - Random Forest Analysis (RFA) by computing the Mean Decrease Accuracy
Result: growth effect and biochemical distribution

Body weight gain of chickens

Body weight gain = final body weight – initial body weight

Principal component analysis of ileal biochemicals
Result: hierarchical clustering heatmap

- Total 674 biochemicals

- Con vs *B. subtilis* 1781
 - Increased 209 (25; \(P < 0.05 \))
 - Decreased 461 (58; \(P < 0.05 \))

- Con vs *B. subtilis* 747
 - Increased 265 (12; \(P < 0.05 \))
 - Decreased 402 (38; \(P < 0.05 \))
Result: pathways in this study

- 193 amino acid pathways
- 32 carbohydrate pathways
- 263 lipid pathways
- 42 cofactors and vitamins pathways
- 51 nucleotide pathways
- 12 energy pathways
- 81 unknown pathways
- 498 Human Metabolome Database (HMDB)
- 336 Kyoto Encyclopedia of Genes and Genomes (KEGG) codes
CON vs B. subtilis 1781

Result: random forest analysis and plot

- **8 amino acids (26.7%)**
 - 2-hydroxy-4-(methylthio)butanoic acid
 - 3-(4-hydroxyphenyl)lactate
 - beta-hydroxycholate
 - creatine
 - cysteine S-sulfate
 - N-methylproline
 - glutamate gamma-methyl ester
 - dimethylglycine

- **8 lipids (26.7%)**
 - 2,4-dihydroxybutyrate
 - glycerophosphoethanolamine
 - 2R 3R-dihydroxybutyrate
 - chenodeoxycholate
 - 16-hydroxypalmitate
 - beta-sitosterol
 - 1-palmitoyl-digalactosylglycerol (16:0)
 - octadecenedioate

- **5 vitamins and cofactors (16.7%)**
 - carotene diol
 - alpha-tocopherol acetate
 - beta-cryptoxanthin
 - nicotinamide adenine dinucleotide (NAD+)
 - alpha-tocopherol

- **3 nucleotides (10.0%)**
 - 2'-deoxyguanosine
 - N6-methyladenosine
 - N1-methyladenosine
Result: random forest analysis and plot

CON vs B. subtilis 747

- **6 amino acids (20.0%)**
 - glutamate gamma-methyl ester
 - betaine
 - taurine
 - dimethylglycine
 - 5-hydroxyindoleacetate
 - methylsuccinate

- **6 peptides (20.0%)**
 - glutaminyleucine
 - alanylleucine
 - valylleucine
 - leucylglycine
 - leucylalanine
 - valylglycine

- **10 lipids (33.0%)**
 - 6-oxolithocholate
 - oleoylcholine
 - glycerophosphoglycerol
 - sebacate (C10-DC)
 - 2-hydroxyglutarate
 - palmitoylcholine
 - linoleoylcholine
 - 3-dehydrodeoxycholate
 - chenodeoxycholate
 - stearoylcarnitine (C18)

- **2 nucleotides (0.1%)**
 - uridine 5'-monophosphate (UMP)
 - guanine
Result: amino acids (dipeptides)

Alanylleucine

Glutaminyleucine

Glycylisoleucine

Valylleucine

Phenylalanylalanine

Valylglutamine
Result: lipids

Miyamoto et al., 2015
Result: nucleotides

- N1-methyladenosine
- N6-methyladenosine
- Guanine
- 2-deoxyguanosine
- Uridine 5-monophosphate
- Cytidine
Result: others

- **Fructose feeding negatively affects antioxidant capacity in the blood of hypertensive rats but improves this capacity in the liver (Girard et al., 2006, Nutrition).**

- **Lactate ion may prevent lipid peroxidation by scavenging free radicals such as O$_2^-$ and -OH but not lipid radicals (Groussard et al., 2000, J Appl Physiol).**
Conclusions

• Dietary supplementation with *B. subtilis* has profound effects on the levels of a wide variety of chemical metabolites in the chicken gut.

• These altered metabolite levels provide a biochemical signature unique to each *B. subtilis* supplementation group.

• Future studies are warranted to assess the growth promoting properties, if any, of the identified chemical compounds in lieu of antibiotics.
Further study: extra data

40 metabolites of
Up-regulated common metabolites between *B. subtilis* 1781 and 747

Chicken epithelial cells (8E11)

Chicken macrophage cells (HD11)

Proinflammatory responses

N-acetylglucosamine

Syringic acid

2'-deoxyadenosine

β-alanine
Acknowledgment

USDA-ARS

• Dr. Hyun S. Lillehoj

Church & Dwight

• Dr. N. P. Zimmerman
• Dr. A. H. Smith
• Dr. T. Rehberger
Thank you!