Yeast cell wall immunomodulatory and intestinal integrity effects on broilers challenged with *Salmonella enteritidis*

Breno Castello Branco Beirão
Max Ingberman
Melina Aparecida Bonato
Liliana Longo Borges
Ekachai Jenwitheesuk

Imunova Análises Biológicas
Imunova Análises Biológicas
ICC Brazil
ICC Brazil
ICC Brazil

Ekachai Jenwitheesuk, PhD
Technical & Sales Manager for South East Asia
ICC Brazil
Alternative agents to replace antibiotic to fight against bacterial pathogens

• Essential oils
• Organic acids / Acidifiers
• Phytogenic / Herbal plants
• Probiotics
• Prebiotics
Yeast physiology

Different pH, temperature, fermentation conditions

Ethanol yeast

Brewer yeast

Baker yeast
Yeast cell wall anatomy

- Fibrillar Layer
- Mannoprotein
- β Glucan
- β Glucan-Chitin
- Mannoprotein
- Plasma Membrane
Yeast cell wall and yeast hydrolysate preparation

Yeast cell wall (ImmunoWall)
- Mannan oligosaccharide
- Beta glucan

Yeast hydrolysate
- Peptides
- Nucleotides
Major composition of yeast cell wall

<table>
<thead>
<tr>
<th>Composition</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude protein</td>
<td>35.0</td>
</tr>
<tr>
<td>Beta glucan</td>
<td>30.0</td>
</tr>
<tr>
<td>Mannan oligosaccharide</td>
<td>17.0</td>
</tr>
<tr>
<td>Crude fiber</td>
<td>3.1</td>
</tr>
</tbody>
</table>
Beta-(1,3)(1,6)-D-glucan
Beta-glucan enhance immune responses

- β Glucans
- Macrophage Recognizes β Glucans
- Activated Cell Releases Cytokines
- Phagocytic Action Against Microorganisms
- New Macrophage Production
Mannan oligosaccharide
Yeast

Salmonella

Gut epithelial lining cells

Mannan oligosaccharide

Yeast

Ekachai Jenwitheesuk (ekachai@iccbrazil.com)
Previous research findings

TABLE 1. Screening of bacterial isolates from clinical material for mannose-binding lectin

<table>
<thead>
<tr>
<th>Strain</th>
<th>No. of strains positive</th>
<th>No. of strains tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>54</td>
<td>118</td>
</tr>
<tr>
<td>Salmonella typhi</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Salmonella typhimurium</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>Salmonella enteritidis</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Proteus morganii</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Citrobacter diversus</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Citrobacter freundii</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Aeromonas hydrophila</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

* Mannose-binding activity determined by agglutination of *Saccharomyces cerevisiae* yeasts.

Previous research findings

Mannan oligosaccharide (MOS) significantly improved feed efficiency and performance in livestock and aquaculture, which likely were a result of bacterial (coliforms, vibrio, clostridia and salmonella) load reduction and increased total leukocyte levels.

Staykov et al., 2007; Amani Denji et al., 2015
Scanning electron micrograph of ImmunoWall

Ekachai Jenwitheesuk (ekachai@iccbrazil.com)
Previous research findings

Yeast cell wall and mannan oligosaccharide agglutinate bacteria with type I fimbriae appendages

E.coli Salmonella

Previous research findings

Microscopic photos of the intestine 14 days post challenge with 10^8 CFU/mL E.coli

No ImmunoWall

0.2% ImmunoWall

Ekachai Jenwitheesuk (ekachai@iccbrazil.com)
Hypothesis of this study

Yeast cell wall could help **prevent gut leakage** and **promote immune response** in *Salmonella* challenged chicken.
Materials and Methods
Animal 2-day-old Cobb broiler
ImmunoWall 500 g/ton of feed
S. enteritidis 10^8 CFU/chick PO
Gut leakage test 4 days after challenge
Specific IgA 14 days after challenge
Gut leakage test

Dextran-FITC

2 hr 30 min after PO
Salmonella specific IgA measurement

Tetra Methyl Benzidine (TMB)

Anti-chicken IgA - HRP

Salmonella-specific Ig in feces

Salmonella enteritidis LPS

450 nm
Results and Discussion
Gut leakage test in broiler on day 4 after challenge with 10^8 *Salmonella enteritidis*
Gut leakage test in broiler on day 4 after challenge with 10^8 *Salmonella enteritidis*
Gut leakage test in broiler on day 4 after challenge with 10^8 *Salmonella enteritidis*
Gut leakage test in broiler on day 4 after challenge with 10^8 *Salmonella enteritidis*

$P < 0.05$
Specific immune responses on day 14 after challenge with 10^8 *Salmonella enteritidis*

IgA anti-*Salmonella*

![Graph showing specific immune responses](image)

- **Control**
- **ImmunoWall**
- **S. enteritidis**
- **S. enteritidis plus ImmunoWall**

P = 0.053

Ekachai Jenwitheesuk (ekachai@iccbrazil.com)
Conclusion

1. Gut leakage prevention
Yeast cell wall (ImmunoWall) at the inclusion rate of 500 g/ton could significantly prevent gut epithelial lining damage from *Salmonella enteritidis* infection.
Conclusion

2. Stimulation of immune response

Fecal secretory IgA is secreted by mucosal tissue and represents the first line of defense of the GI mucosa and is central to the normal function of the GI tract as an immune barrier.

Specific IgA in serum is a good predictor of the release of specific IgA at intestinal surfaces after intragastric immunization.

Yeast cell wall (ImmunoWall) at 500 g/ton could **significantly increase IgA level** to fight against *Salmonella enteritidis* infection.
ImmunoWall

- Strengthening gut lining
- Efficient gut functions

Higher growth performance
Lower morbidity & mortality
Thank you