Recombinant Orally Effective Vaccine Platforms Expressing Putative Conserved Antigens for Reduced Antimicrobial Usage in Poultry

L.R. Bielke1*, A.D. Wolfenden2, L.R. Berghman3, Y.M. Kwon2, B.M. Hargis2

1The Ohio State University, Department of Animal Sciences, Columbus, OH USA
2University of Arkansas, Department of Poultry Science, Fayetteville, AR USA
3Texas A&M University, Departments of Poultry Science and Veterinary Pathobiology, College Station, TX USA
Salmonella: The Problem and Possible Solutions

• *Salmonella* is still a food borne problem in the US and EU
• Cases of *Salmonella* are commonly linked to poultry products
• Multiple intervention strategies have been tried
 • Therapeutic Antibiotics
 • Biosecurity
 • Probiotics and DFM
 • Vaccination (Killed or Live-Attenuated)
Vaccination

Killed whole-cell bacterins
- Systemic infections
- Can reduce organ invasion and shedding but limited in stopping mucosal colonization.
- Often requires multiple injections which is not always an option in poultry production.
- Primarily humoral response

Live-attenuated vaccines
- Can colonize mucosa (i.e. gastrointestinal tract)
- Can competitively exclude other bacteria (*Salmonella*)
- Can be delivered via ocular, nasal or oral administration routes
- Elicit secretory IgA, humoral and cell-mediated response
Salmonella Vector

- Double-attenuated SE PT13A or single-attenuated ST
- Plasmid inserted into the *lamB* gene (loop 9) of the genome to create a site for vaccine sequence insertion
- Many copies of lamB exist on cell surface

- Results in cell surface expression of the vaccine sequences
Bacillus Vector & Plasmid

- *Bacillus subtilis* 1A857
 - Contains *srtA* gene to anchor proteins on cell surface
- Plasmid pNDH10
 - Contains *fpbB* gene to make fibronectin binding protein, a sorting vector to allow binding of proteins to sortase A
Recombinant Vaccines – Cell Surface Expression

Salmonella Enteriditis- CJ0113-PAL-HMGB1
Rabbit polyclonal HMGB1 (90-111) + HMGB1 (156-177)
Antigenic Sequence Selection

- Highly conserved
- Antigenic & immunogenic
- B-cell & T-cell stimulatory
- Immunoprotective
High-mobility group box 1 (HMGB1)

- Passively released from necrotic cells
 - HMGB1 release
 - TNF-α release
- Actively secreted by monocytes, macrophages, and natural killer cells
 - Secreted after IL-1β and TNF-α
- Outside of the cell it binds with high affinity to the receptor for advanced glycation end products (RAGE) response
- Potent mediator of inflammation

Ulloa and Messmer 2006
Salmonella: Antigenic Sequences

- PAL - peptidoglycan-associated lipoprotein
 - Highly conserved in Gram-negative bacteria
 - Expressed on outer membrane
- Cj0113 – Campylobacter
 - Omp18
 - Outer membrane protein homologous to PAL
Salmonella Constructs

- Steric hindrance optimal protein folding
 - *Salmonella*-CJ0113-PAL-HMGB1 (CPH)
 - *Salmonella*-HMGB1-CJ0113-PAL (HCP)
 - *Salmonella*-CJ0113-HMGB1-PAL (CHP)

Unfolded

Folded
Salmonella Vaccine Constructs

- Cj0113 + PAL + HMGB1
- Cj0113 + HMGB1 + PAL
- HMGB1+ Cj0113 + PAL

Cj0113 HMGB1
PAL SPACER
Objectives

• Test all 6 construct configurations against a S. Heidelberg challenge
• Determine if one or more of the vaccine candidates could provide cross-serogroup protection
• Determine if these vaccine candidates could be used as an orally effective live-attenuated vaccine against *Salmonella*
Experiment 1

Treatment Groups (n=20)

- Negative Control
- SE-CPH
- SE-CHP
- SE-HCP
- ST-CPH
- ST-CHP
- ST-HCP

Salmonella Heidelberg challenge

- 6x10^6 cfu/chick

Day 0

- Primary Vaccination
 - 1x10^6 cfu/chick

- Boost Vaccination
 - 1x10^6 cfu/chick

Day 23

- Collect Cecal Samples

Day 28
Recovery of *Salmonella* Heidelberg from ceca after vaccination by oral gavage on day of hatch and 14 days of age

Significantly different (P<0.05) than Control
Experiment 2
Treatment Groups (n=20)

Negative Control
SE-CPH
SE-CHP
SE-HCP

Salmonella Heidelberg challenge
7x10^6 cfu/chick

Primary Vaccination
1x10^8 cfu/chick

Day

0 7 28 35

Collect Cecal Samples
Recovery of *Salmonella* Heidelberg from ceca after vaccination by oral gavage on day of hatch

Significantly different (P<0.05) than Control
Experiment 3
Treatment Groups (n=50)
Negative Control
SE-CPH

Salmonella Heidelberg challenge
3x10^7 cfu/chick

Primary Vaccination
1.6x10^7 cfu/chick
Spray vaccination

Collect Cecal Samples

Day
0
14
18
21
25
Recovery of *Salmonella* Heidelberg from ceca after vaccination by spray on day of hatch

Significantly different (P<0.05) than Control
Bacillus-vectored *Eimeria* Constructs

- **TRAP + HMGB1 (252aa)**
 - TRAP: AAPETRAVQPKPEEGHERPEPEEEEEEKKEEGGGFPTAAVA
 - HMGB1
 - Spacer

- **MPP + HMGB1 (255aa)**
 - MPP: PSHDAPESERTPRVISFGYGACEHNLGVSLFRREETKKDPRGR
 - HMGB1
 - Spacer

- **TRAP + MPP+HMGB1 (302aa)**
 - TRAP: AAPETRAVQPKPEEGHERPEPEEEEEEKKEEGGGFPTAAVA
 - MPP: PSHDAPESERTPRVISFGYGACEHNLGVSLFRREETKKDPRGR
 - HMGB1
 - Spacer
Eimeria challenge

Total mortality post-Eimeria challenge

*P<0.05 **modified chitosan adjuvant*
Discussion & Conclusions

• SE-CPH vaccine was able to provide cross-serogroup protection against a heterologous SH challenge
• ST-HCP vaccine was able to provide cross-serotype protection from the SH challenge and homologous serogroup protection
• *Bacillus* vectored vaccine was able to relay protection against *E. maxima* challenge in broilers
• Persistence of protection requires further work
• Vectors need optimization to make them ideal for commercial use
 • Antibiotic resistance in plasmid (*Bacillus*)
 • Clearance and monitoring (*Salmonella*)
THANK YOU