Session 1
Alternatives to Antibiotics: Lessons from Nature

Antimicrobials in animal health – Lessons from nature

Frank Blecha
Kansas State University
Manhattan, Kansas
Alternatives to Antibiotics

Begin at the End

- Is there a need?
is for Outbreak

When a drug-resistant salmonella struck a Vermont farm, health officials knew it might be just the beginning

Troubled paradise

Troubled paradise

U.S. News

November 24, 1997
Alternatives to Antibiotics

Begin at the End

• Is there a need?
• Does it work?
• Is it cost effective?
• Will it be accepted?
Host Defense Against Microbes

Physical barriers

Cells

Antimicrobial peptides

Adapted from Ganz T, 2003
What are Antimicrobial Peptides?

PMNs
Neutrophils
Host Defense Against Microbes

Antimicrobial peptides:

PMN

Neutrophils

Bainton, 1992
AMP Classification

Cathelicidins Defensins

alpha beta theta
Cathelicidins

EXON 1 **EXON 2** **EXON 3** **EXON 4**

PRE **PRO (Cathelin)** **MATURE PEPTIDE**

5’-UTR 29-30 aa 94-114 aa 12-79 aa 3’-UTR

Porcine Bovine Ovine Lapine Human Equine Murine
PR-39 Bac-5 SMAP-29 CAP-18 LL-37/ eCATH 1-3 CRAMP
PG 1-5 Bac-7 Bac-7.5 p-15s hCAP-18
PF 1-2 BMAPs Dodecapeptide
PMAPs Indolicidin Dodecapeptide

3’-UTR
Beta Defensins

EXON 1 INTRON EXON 2

PRE PRO MATURE PEPTIDE

5'-UTR 20-29 aa 2-8 aa 36-42 aa 3'-UTR

Porcine Bovine Avian Murine Ovine Caprine Human
pBD-1 TAP GAL 1-2 mBD 1-6 sBD 1-2 gBD 1-2 hBD 1-4
LAP THP 1-2 rBD 1-2

EBD BNBD 1-13

Sang et al., Mamm. Genome, 2006, 17:332
Why AMPs?

• Potential for novel antimicrobials
• Active against a broad spectrum of microbes
• Difficult for microbes to develop resistance
AMP Mechanism of Action

Adapted from Radek and Gallo, Semin Immunopathol 2007, 29:27-43
AMP or Host Defense Peptide

In Vivo Activity?
HD6 nanonets confer mucosal immunity

Ouellette and Selsted, Science 2012;337:420-421
Lessons from the Pig
PR-39, an Amphipathic Peptide

RRRPRPPYLPRLPRPPPPFPPRPLPPRIPPGFPPRFPPRFP

Proline = 48.7% Arginine = 25.6%

Basic, Neutral Polar, Nonpolar
PR-39 and Analogues

<table>
<thead>
<tr>
<th>PR-14<sub>(1-14)</sub></th>
<th>RRRPRPPPYLPRPRPRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR-16<sub>(11-26)</sub></td>
<td>RPRPPPFFPRLPPRI</td>
</tr>
<tr>
<td>PR-15<sub>(25-39)</sub></td>
<td>RIPPGFPPRFPFRFP</td>
</tr>
<tr>
<td>PR-27<sub>(13-39)</sub></td>
<td>RPPPFFPPRLPPRIPPGFPFRFP</td>
</tr>
<tr>
<td>PR-39</td>
<td>RRRPRPPPYLPRPRPPPPFFFFPPRLPPRIPPGFPFRFP</td>
</tr>
</tbody>
</table>

PR-26₍₁₋₂₆₎	RRRPRPPPYLPRPRPPPPFFFFP PRLPPRI
PR-19₍₁₋₁₉₎	RRRPRPPPYLPRPRPPPPPFFP
PR-23₍₄₋₂₆₎	PRPPYLPRPRPPPPFFFFPRLPPRI
PR-26_{G(1-26)}	RRRPRPGPYLPRPPPPFFFFPRLPPRI
Minimal Inhibitory and Bactericidal Concentrations of PR-39 & PR-26

Shi et al., Antimicrobial Agents Chemotherapy 1996, 40:115-121
Inhibition of *Salmonella* Typhimurium Invasion

Graph:
- Y-axis: Viable bacteria (x1000)
- X-axis: Incubation time (min)
- Control, PR-39, PR-26

Shi et al., Antimicrobial Agents Chemotherapy 1996, 40:115-121
Increased Resistance to *Salmonella Typhimurium*

![Graph showing survival (%) over day postchallenge](image)

- **Survival (%)**
- **Day postchallenge**

Shi et al., Antimicrobial Agents Chemotherapy 1996, 40:115-121
pBD-1 Protects against *B. pertussis*

Treated with pBD-1

Non-treated

Days Post Challenge

4

Bacterial Resistance to AMP?

Adapted from Radek and Gallo, Semin Immunopathol 2007, 29:27-43
Alternatives to Antibiotics

Begin at the End

- • Is there a need?
+/- • Does it work?
- • Is it cost effective?
+ • Will it be accepted?
Acknowledgments

K-State
Yongming Sang
Chris Ross
Bob Rowland
Danielle Goodband

UCLA
Bob Lehrer
Piotr Ruchala

USDA & NIH
Thank You