Research Priorities in Support to the Global FMD Control Strategy

Samia Metwally, DVM, PhD
Secretariat, Global FMD Control
Animal Production and Health Division
FAO of UN, Rome, Italy
samia.metwally@fao.org
PCP Stages (5)

Countries at PCP stages per region

Source: GF-TAD FMD-WG, WB
• **Stage 0-1:** gain an understanding of the epidemiology of FMD in the country and develop a risk-based approach to reduce the impact of FMD

• **Missing Tools:**

 – Develop and validate on-farm testing lateral flow device:

 • Universal antigen and serotype specific tests

 – Develop and standardize methods for socioeconomic impact studies

 – Develop and validate more sensitive and specific antigen and antibody typing ELISA (recombinant-based)- low cost

 – Strategy of safe and effective vaccination in the face of an outbreak

 – Share and develop farm biosecurity manual including disinfectants, carcass disposal …etc
• **Stage 1-2**: “implement risk based control measures such that the impact of FMD is reduced in one or more livestock sectors and/or in one or more zones”

• **Missing Tools:**
 – Develop and validate molecular serotype-specific assays
 – Designing control programs and conducting applied research relevant to regional and national FMD control programs,
 – Establish reliable method for sample preservation,
 – Non-invasive samples for surveillance such as oral fluids and meat juice for swine and cattle,
 – Carrier buffalo: Improved methods of VI and viral sequence, identify sites of virus localization in buffalo,
 – More studies to understand the efficiency of carrier buffalo in transmitting the virus,
• Stage 2-3: “Progressive reduction in outbreak incidence, followed by elimination of FMD virus circulation in domestic animals in at least one zone of the country”

• Missing Tools:
 – Validated computer-based models to delineate possible vaccination zones which are required to aid decision-making during outbreaks
 – Establish warning system for early detection and reporting
• **Stage 3-4**: “To maintain ‘zero tolerance’ of FMD within the country or zone and eventually achieve OIE recognition of FMD-free with vaccination”
Post Vaccination Monitoring (Why)

- One of the most important components of FMD control is vaccination;
 - Vaccine cost $0.7-1.0/dose and vaccination is up to $0.7
 - Vaccination represents the highest cost of FMD control ~90% (12:1)
- Timely needed for global FMD control initiative
- Cost-benefits to vaccination = effectiveness of the vaccine
- Outbreaks have been reported in vaccinated animals
- Effectiveness of vaccine is complicated to measure because it is affected by a number of crucial elements
Goals and Outcomes

• Design PVM system to evaluate FMD vaccine effectiveness
 – Universal
 – Country/region - specific
• Publish guidelines for PVM with associated SOPs and protocols for field use
 – FMD specific
 – With modification, this can be used for other vaccines
• Identify cause(s) of vaccine inadequacy or failure for timely improvement of control program
• Evaluate vaccine performance and provide feedback to manufacturer
• Create field data for correlation between field protection and SP antibody titers
PVM working group (Jan 13, 2012)
virologists, diagnosticians, epidemiologists, statisticians, field vets

- **FAO- Italy and Botswana**
 - Giancarlo Ferrari
 - Akiko Kamata
 - Ludovic Plee
 - Mok Mokopasetso

- **Pirbright- IAH- UK**
 - Paul Barnett
 - Simon Gubbins
 - Theodore Knight-Jones

- **BVI- Botswana**
 - Gaolathe Thobokwe

- **NAFMDVB- USA**
 - Hernando Duque

- **OIE- France**
 - Susanne Munstermann
 - Marta Martinez Aviles

- **PANAFTOSA- Brazil**
 - Rossana Allende
 - Antonio Mendes

- **IVRI- India**
 - B Pattnaik

- **Lanzhou Research Ins- China**
 - Xiangtao Liu

- **Friedrich-Loeffler Ins- Germany**
 - Bernd Haas

- **Merial and MSD**
PVM: Elements contribute to vaccine effectiveness

- Vaccine quality including potency; low vs. high PD$_{50}$
- Vaccine performance characteristics in relation to circulating virus strains, r-value..etc
- Strategic vaccination dictated by epidemiological setting
- Vaccine coverage
- Age of vaccinates
- Vaccine shelf-life
PVM: (continued)

Elements contribute to vaccine effectiveness

- Vaccination program: cycle, time of the year and frequency
- Vaccine availability during campaign
- Health condition of vaccinates
- Vaccine storage at recommended temp (cold chain)
- Training of vaccinators for proper vaccine delivery
- Vaccination campaign and taskforce for PVM
Parameters for PVM

- desired percent protection
- desired percent coverage of vaccinates

- Protective antibody titer to structural protein
 - Some published data showed strong correlation between in-vivo protection and virus neutralization test

- NSP at herd level
 - NSP best used in PCP stage 0 to determine FMDV prevalence at the country or regional level
 - In population vaccinated with pure vaccine, NSP can be used towards the end of PCP stage 3 to proof absence of virus circulation
Design of PVM

- serological surveillance:
 - population selection based on farming system
 - animal identification (retention of tags) for serological surveillance
 - sample collection post vaccination;
 - day post vaccination
 - sample size at standard error of 5% & ≥ 95% confidence interval,
 - dx assays to use for SP and NSP analysis

- Clinical and passive virological surveillance:
 - conduct regular field investigations for early detection and characterization of circulating virus isolates

- data analysis:
 - Front end information on vaccine and vaccination
 - Serological and virological surveillance
• **Gaps of PVM:**
 – Vaccine quality control centers
 – Validated PVM screening tools; using vaccine virus strain in SP ELISA and VNT
 – Producers awareness and incentives
Thank You for Your Attention