Understanding The Life Cycle Of FMDV In Endemic Settings

Luis L. Rodriguez
Foreign Animal Disease Research Unit

Plum Island Animal Disease Center
Orient, NY
FMD Ecology

• Epidemiological knowledge on FMD clinical occurrence is extensive
 • Geographic distribution (pools) of serotypes/topotypes derived primarily from clinical occurrence

• Less known about FMD ecology:
 – Where is FMD between outbreaks?
 – Role of persistence (e.g. Asian buffalo) in long term maintenance?
 – What determines emergence of epidemic viral strains?
Subclinical Infections

• In endemic settings the great majority of infections are subclinical
 • Prior immunity (vaccination, maternal)
 • Prior exposure
 • Other factors – genetic resistance?

• Subclinical infections:
 – Acute
 • replication at primary site – clears infection
 – Chronic
 • Replication at primary site – does not clear infection (carrier definition >28 dpi)
When we study clinical FMD are we seeing the full picture?
Acute infections, outbreaks

Serotype A, O
Example 1: VIETNAM
MOLECULAR EPIDEMIOLOGY, SURVEILLANCE AND PREDICTIVE TOOLS FOR FMD CONTROL IN VIETNAM

58-1940-0-070F, 057 14S
6/1/2010-9/30/2012

Co-PIs:
Dr. Luis Rodriguez
Dr. Jonathan Arzt
Dr. Thanh Long Ngo, DAH, HCMC
Dr. Ho Huu Dung, DAH, Hanoi

Collaborators
Dr. Helena Ferreira – ORISE
Dr. Carla Huston, Mississippi State University
Design

Objective 1 – Acute Clinical Samples
- Samples collected during outbreak
- Pigs, buffalo and cattle
- Northern and Southern Vietnam

Objective 2 – Longitudinal Field Study
- HCMC region – transmission cells
- Hanoi-SonLa region – carrier cattle and buffalo (field necropsy)

Objective 3 – Persistent buffalo studies
- Field necropsies
- Molecular characterization (tissue level, cytokine mRNA, protein expression)

(Dr. Dung and Dr. Arzt will present progress of this project in their presentation)
Example 2 PAKISTAN

CHARACTERIZATION OF LOCAL ISOLATES OF FMDV AND DEVELOPMENT OF VACCINES

58-1940-7-161F; 057 002S
9/1/2007 - 8/31/2012

REAL TIME DATA ANALYSIS AND RESEARCH CAPACITY BUILDING TOWARDS FMD CONTROL IN PAKISTAN

1940-32000-052-14S
09/27/2012 - 09/26/2014

Dr. Khalid Naeem – NARC
Dr. Umer Farooq – NARC
Dr. Muhammadimam Afzal, FAO
Dr. Manzoor Hussain, NVL

Collaborators:
Dr. Zaheer Ahmed
Dr. Anna Ludi
Study Design

- **Acute Clinical Samples**
 - Clinical case reports, geographic location, demographics, etc
 - Clinical samples, viruses, sequence

- **Longitudinal Field Study**
 - Serological survey of farms for NSP positive animals, probang, history
 - Selection of 40 farms for sampling (probang) 4X year for 1 year ==
 - NSP-ELISA, RT-PCR and virus

- **Establish panel of reference sera for vaccine matching testing**
 - Vaccination of 10 cattle and 10 buffalo with commercial vaccine to be used in field
 - Serum collection at 0, 21 dpv, boost vaccination
 - Serum collection at 42 dpv
 - Carry out vaccine matching studies

(More details in next presentation – U. Farooq et al)
Example 3 CAMEROON
TRANSMISSION AND EVOLUTION STUDIES OF FMDV IN LIVESTOCK IN
THE LAKE CHAD BASIN

Collaborators:
Dr. Rebecca Garabed,
Laura Pomeroy, Ohio State
University

Dr. Simon Dickmu,
LANAVET. Garoua
Cameroon

Dr. Zaheer Ahmed
Dr. Anna Ludi
Dr. Carla Bravo-Rueda
Objective

• To understand the epidemiology of infectious diseases in the ecological context of networks of host movement

• How different networks of livestock movement affect disease epidemiology
Sampling strategy

<table>
<thead>
<tr>
<th></th>
<th>Routine sampling</th>
<th>Transboundary trade routes/market</th>
<th>Additional sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Mobile herds</td>
<td>Sedentary herds</td>
<td>Reports of clinical disease</td>
</tr>
<tr>
<td>Number of herds</td>
<td>15</td>
<td>15</td>
<td>Variable</td>
</tr>
<tr>
<td>Animals / herd</td>
<td>5 / herd<sup>a,b</sup></td>
<td>5 / herd<sup>a,b</sup></td>
<td>10-30 / sampling day</td>
</tr>
<tr>
<td>Sample frequency</td>
<td>2x year (rainy season/dry season)</td>
<td>2x year (rainy season/dry season)</td>
<td>4x year (2x rainy season/2x dry season)</td>
</tr>
<tr>
<td>Samples / activity</td>
<td>Serum, probang, survey</td>
<td>Serum, probang, survey</td>
<td>Serum, probang, abbreviated survey, lesion swab/tissue sample/vesicular fluid</td>
</tr>
</tbody>
</table>

(Details in poster P7 by C. BravodeRueda)
SAMPLING LOCATIONS

[Map showing sampling locations in Nigeria and Chad]
CONCLUSIONS

• Studies combining clinical and subclinical surveillance are necessary to understand ecology
• Longitudinal studies – help understand virus circulation (life cycle?)
• Characterization of persistent animals – viruses necessary to assess their role in long term maintenance of infection
• Understanding where the virus hides between outbreaks will help target control programs
• This information is relevant to modeling control programs in the both endemic and non-endemic regions
Funding Acknowledgements

- USDA-ARS – Offshore Research Fund
- USAID – BEP
- NSF
- DHS
- DoD- DTRA
Thank you!

XIN CÂM O?url