A Basis for Understanding Responses to Global Change

Chapter 11

Long-Term Trends in Climate
and Climate-Related Drivers

In this chapter, we first describe common methods to
measure climate and climate-related drivers and our
rationale for the selection of variables in this book. We
then show graphs of climate data through time for each
site and summary maps at the continental scale.

Methods of Measurements and
Selection of Variables

Climate has been monitored throughout the United
States since President Grant started the National
Weather Service in 1870. Numerous standardized
measurement locations exist on land, in streams and
lakes, and in the coastal ocean. In this report, we focus
on contemporary climate records (late 1880s to present)
obtained from standardized instruments and stations
located at or near the research sites described in this
book.

For land sites, standardized data were obtained from
meteorological stations either located and maintained
at a research site or at a nearby airport or city and
maintained, in most cases, by the National Weather
Service (NWS) and archived by the National Climate
Data Center. The NWS station at the nearest city was
used for coastal sites. For terrestrial sites, the onsite
station was used unless a longer record was available
from a nearby NWS station with similar climate. In
some cases, we used onsite data combined with NWS
data to obtain a longer-term weather record.

Standards are used at all sites for daily measurements
of minimum and maximum air temperature (°C),
precipitation (mm), relative humidity (%), wind speed
(m/sec) and direction (from 0 to 360°), and solar
radiation (MJ/m?) (WMO 2008). Other measurements,
such as soil temperature (°C) and soil moisture (% or
cm water per cm soil) often have site-specific criteria
for depth and timing that make cross-site comparisons
difficult. Here, we show climate data for all 50 sites
for four variables most commonly used by ecologists
(minimum, maximum, and average air temperature, and
precipitation) (Greenland 1986). For each variable, we
calculated the mean across all days in each year of the

record to focus on long-term trends in annual values.
Data for climate variables can be found on the Internet,
either on individual research site home pages or on the
EcoTrends website (http://www.ecotrends.info ).

We show two additional measures of climate that are
particularly useful in comparing ecosystems. First, the
Palmer Drought Severity Index (PDSI) was obtained for
all sites where calculations are available (http://www7.
ncdc.noaa.gov/CDO/cdo); this analysis excludes sites in
Alaska, Antarctica, French Polynesia, and Puerto Rico.
This index uses air temperature and rainfall information
as well as soil properties to estimate monthly moisture
supply and demand as a measure of departure from the
mean condition at a site (Palmer 1965, Heim 2002).
The PDSI is standardized to local climate to allow

sites to be compared for relative drought or rainfall
conditions. A value of 0 is normal; drought is shown by
negative numbers. Drought severity increases with the
absolute value of the negative number (-3 is moderate
drought; -4 is extreme drought). Excess rain is shown
by the magnitude of the positive number (for example,
2 is moderate rainfall). Second, we calculated Walter-
Lieth climate diagrams for each site using monthly
total precipitation and average air temperature values,
scaled two to one respectively. These diagrams allow
climate seasonality to be compared among sites using
standardized diagrams. Shading of the diagrams are
used to illustrate dry or wet months (see figure 11-1).

Figure 11-1. Example of a Walter-Lieth climate diagram

for one site, Jornada (JRN). Mean monthly temperature in
degrees Celsius (left axis, red) is plotted with precipitation

in millimeters (right axis, blue) for each month in the year
(bottom axis, J-D = January-December). Areas shaded in
speckled red indicate dry months; areas with blue vertical
lines indicate wet months. Dark blue bars at the bottom of
the diagram indicate months with possible frost. The title
gives range of years the data fall within, the average annual
temperature, and the average annual precipitation. Black and
green numbers on the left axis, from top to bottom, are the
mean maximum temperature of the hottest month (black), the
mean daily temperature range (green), and the mean mini-
mum temperature of the coldest month (black), respectively.
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In water, five common measurements are illustrated.
Streamflow is measured daily in liters per second

by gauges located within streams using standards
determined by the U.S. Geological Survey (Buchanan
and Somers 1969). Sea level (meters), as shown here,

is measured in coastal oceans using tide gauges that
measure sea surface height relative to a nearby geodetic
benchmark. Ice duration is the number of days in a
year on which a lake is ice covered. Water clarity or
transparency is measured using a Secchi disk in oceans
and lakes (Hutchinson 1957). A circular disk mounted
on a line is lowered slowly in the water, and the depth
at which the pattern on the disk is no longer visible

is the Secchi depth (meters), which is proportional

to the average light extinction coefficient. Standard
methods for lake monitoring are available from the U.S.
Environmental Protection Agency (http://www.epa.
gov/OWOW/monitoring). Water temperature (°C) is
measured at a near-surface depth in streams, lakes, and
oceans using thermometry or temperature probes.

Graphs Showing Long-Term Trends

The remainder of this chapter is devoted to showing
trends in climate and climate-related drivers displayed
in two ways to provide a sense of change across a range
of spatial scales (continent, site) for each variable.

First, we provide a summary of trends at the continental
scale using maps that show either the mean across
years or the slope of the regression line (if significant)
across time for each of four variables collected at

all sites (precipitation and minimum, average, and
maximum air temperature). Slopes are shown using
either red (positive) or blue (negative) bars; the height
of the bar is the magnitude of the slope. Following

the continental-scale maps for precipitation and
temperature, we show site-scale data through time using
four panels: (1) annual average minimum, mean, and
maximum air temperature, (2) annual precipitation, (3)
annual PDSI, and (4) monthly average air temperature
and precipitation in a Walter-Lieth diagram. For panels
1 and 2, a solid line indicates a significant positive or
negative trend through time (p < 0.05) based on simple
linear regression, uncorrected for autocorrelation. The
site graphs are organized by ecosystem type to allow
comparisons of sites in the same ecosystem. Five
additional variables are shown for sites where these
data are collected: ice duration, sea level, streamflow,
water clarity (Secchi depth), and surface water
temperature. For variables with many sites (sea level
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height, streamflow), continental-scale maps of averages
and slopes are shown. For all five variables, site-scale
graphs through time are embedded within a continental
map, and the same regression statistics are shown as in
the previous panels. Long-term means and regression
coefficients can be found in appendices 2 through 4.

Summary

A few noteworthy trends can be seen in these graphs.
Air temperatures are increasing in at least one variable
(minimum, mean, maximum) for 27 of the 50 sites.
Although effects of global warming may be most
dramatic and most visible to the public at high latitudes
in the Arctic and Antarctic, much of North America is
experiencing increases in air temperatures. In addition,
sea level is increasing at all 11 coastal sites. This
combination of increasing global change drivers (air
and water temperature, sea level) can be expected to
have more serious ecological impacts than individual
drivers acting alone. Coastal waters and lakes may be
susceptible to factors that increase water temperature:
Increases in water temperature at three sites (CCE,
SBC, and NTL) were not found in water bodies in other
parts of the country or at high latitudes. Additional
sites would have to be sampled to confirm this spatial
pattern. Observing these trends in climate across
multiple ecosystems across continents is only possible
with spatially extensive, long-term data collection and
analysis, such as provided by the EcoTrends Project.
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Figure 11-4 (Alpine and Arctic sites) continued next page.
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Figure 11-5 (aridland sites) continued next page.
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Figure 11-6 (coastal sites) continued next page.
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Chapter 12

Long-Term Trends in
Precipitation and Surface
Water Chemistry

In this chapter, we first describe common methods to
measure precipitation and water chemistry, as well as
our rationale for the selection of variables in the book.
We then show graphs of long-term data summarized
across sites and by site for four major elements
(nitrogen and sulfur, in precipitation as inputs and
surface water as export, and calcium and choride).
Examples of research questions that can be addressed
using these data can be found in chapter 6. Data for
additional elements are available on the EcoTrends
website (http://www.ecotrends.info).

Methods of Measurements and
Selection of Variables

One of the challenges associated with conducting cross-
site analyses of long-term biogeochemistry data is that
sites in different biomes focus on different research
questions and use different approaches to address these
questions. A second problem is that biogeochemical
research has typically focused on measurements of the
inputs to and losses from ecosystems rather than pool
sizes and transfers among pools. Inputs often provide
information on important drivers to ecosystem function.
Losses provide an indication of the response of
ecosystems to changes in environmental drivers. Losses
or export of nitrogen in surface water depend on the
ability of vegetation to retain nitrogen. This retention is
affected by soil, vegetation, hydrologic properties, and
climate. Nitrate is much more mobile than ammonium
(which is often very low in streams) and is recognized
as an indicator of watershed’s nitrogen status. The
ability of watersheds to retain nitrogen is important in
preventing its movement downstream to waters that are
sensitive to nitrogen-induced eutrophication (examples
include the Chesapeake Bay and the Gulf of Mexico).

Although study of internal element pools and

transfers among pools is essential to understanding
ecosystem function, obtaining the data is often difficult
and expensive and generally is not part of routine
monitoring. Thus, no long-term data on soil chemistry
are available for cross-site comparisons. However,

cross-site comparisons from short-duration nitrogen
fertilization studies are discussed in chapter 6.

In this chapter, we focus on measurements made using
common methods for a relatively large number of sites
(up to 34). As a result, we focus on (1) wet deposition
and precipitation chemistry through data available
either in the National Atmospheric Deposition Program
(NADP; http://nadp.sws.uiuc.edu/) or from a site and
(2) on surface water chemistry collected by each site.

Two measures of wet deposition are commonly
obtained from precipitation (rain, snow) collected at

a site: (1) concentration, expressed as milligrams per
liter, is measured on a subsample of the precipitation
collected and averaged based on the total volume
collected (the volume-weighted concentration), and

(2) total amount collected in a precipitation sample is
converted to an areal basis (deposition expressed as
kg/ha per year). In both cases, samples are collected
frequently (daily or weekly, for example) and converted
to a mean value for the entire year. In most cases,

data were obtained for nitrate, ammonium, chloride,
hydrogen (acidity as pH), and base cations (calcium,
magnesium, potassium, and sodium). Nitrate is an
important nutrient for the biota, although it can be toxic
at high levels. The dominant source of nitrate emissions
to the atmosphere is combustion of fossil fuels from
transportation sources and electric utilities. Ammonium,
which can be toxic at high levels, is an important
byproduct of animal metabolism and fertilization.
Sources and atmospheric deposition of ammonia (figure
12-9) typically vary more locally than those of nitrate,
which tends to show strong regional patterns (figure
12-1). Additional elements and finer resolution data

are available on the EcoTrends website (http://www.
ecotrends.info). Concentrations of all of these solutes
are changing in precipitation in response to changes

in emissions of air pollutants, and these changes have
implications for water quality and ecosystems. Mean
surface water export data on an annual basis (mg/L) for
nitrate, ammonium, sulfate, chloride, and calcium are
shown here.

Graphs Showing Long-Term Trends

The remainder of this chapter is devoted to graphs
showing trends in precipitation and surface water
chemistry, displayed in two ways, to provide a sense of
change across a range of spatial scales (continent, site)
for each variable. First, we provide a summary of trends
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at the continental scale using maps that show either the
mean across years or the slope of the regression line (if
significant) across time for each variable. Slopes are
shown using either pink (positive) or blue (negative)
bars; the height of the bar is the magnitude of the slope.

Following the continental-scale maps, we show data
through time using three panels for each site and each
variable: (1) concentration in precipitation (mg/L),

(2) deposition in precipitation (kg/haly), and (3)
concentration in surface water (mg/L). These panels
allow comparisons between atmospheric deposition
(inputs) and the amount of nitrogen lost from surface
water each year. A line indicates a significant positive or
negative trend through time (p < 0.05) based on simple
linear regression, uncorrected for autocorrelation. The
site graphs are organized by ecosystem type to allow
comparisons of sites in the same ecosystem. For surface
water, we show each site graph on a continental map
with similar sites to allow direct comparisons among
sites. Long-term means and regression coefficients can
be found in Appendices 5-14.

Summary

Trends in nitrogen compounds vary through time
within a site and spatially among sites because of the
multiple forms of nitrogen in ecosystems with different
sources and dynamics. Nitrates in precipitation are
either decreasing (in the East) or not changing at

most sites. Notable exceptions are sites in the Rocky
Mountains (NWT) and sites with rapidly increasing
urban populations near a research site (FCE). Patterns
in nitrate export from streams and lakes are more
variable in that some sites are increasing, some are
decreasing, and many remain unchanged. Ammonium
deposition either has not changed or is increasing over
the past 20 plus years. Given that nitrate is not changing
or is declining for many sites outside of the Rocky
Mountains, ammonium is increasing in importance

as a component of atmospheric deposition nationally.
Nitrate and sulfate deposition are decreasing in many
eastern sites, consistent with efforts to control emissions
of acid-causing nitrogen and sulfur from power plants
in that part of the country. Declines in nitrate deposition
have not been as marked as declines in sulfate.
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Chapter 13

Long-Term Trends in Human
Demography and Economy
Across Sites

In this chapter, we first describe the methods used to
obtain data on human populations and the variables
used in this report. We then show graphs of human
population and economic data by county for each site,
as well as summary maps at the continental scale.
Scientific hypotheses and the rationale for comparing
these data can be found in chapter 8.

Methods of Obtaining Data and
Selection of Variables

In the United States, the Census Bureau and the USDA
National Agricultural Statistics Service are the original
sources for many long-term population and economic
data. These data are available online directly (www.
census.gov) or through separate initiatives, such as the
Inter-University Consortium for Political and Social
Research (http://www.icpsr.umich.edu/icpsrweb/
ICPSR/). Since 1790, the Census Bureau has collected
information every 10 years on the population and
economic characteristics of the country. Sites east of
the Appalachian Mountains typically have census data
from 1790; most areas west of the Rocky Mountains
have data starting after 1860, and Alaska has data since
1970. Because of funding constraints, we focused on
collecting key population and economic variables for
counties selected to represent each site. Census data are
not available for sites in Antarctica or French Polynesia;
thus a total of 47 sites are included in the current
analysis (table 13-1). Scientists at each site provided
the names of counties associated with their site that, in
most cases, went beyond the boundaries of the research
site per se.

We tabulated census data for three population variables
for each county in each year of the census: total
population, the percentage of the population living in
urban areas, and the density of people in the county
(number of people per km?). Because counties differ in
their area covered, the total population size of a county
in a year was divided by the county area to obtain an
average density value for that year. We also tabulated

162

economic variables for each county—percentage of

the population employed by one of four economic
sectors: commercial industries, farming, manufacturing,
and service industries. Data for these variables are

also available on the EcoTrends website (http://www.
ecotrends.info) and on an associated website (http://
coweeta.ecology.uga.edu/trends/).

Graphs Showing Long-Term Trends

We display the long-term data in two ways to show
change through time across a range of spatial scales for
each variable. First, we provide a summary of the data
at the continental scale using maps that show either the
change in total population for four time periods (1800
to 1850, 1850 to 1900, 1900 to 1950, and 1950 to 2000)
or the percentage of the population that was urban at
the end of each of the four time periods (1850, 1900,
1950, 2000). Following the continental maps, we show
site-scale data through time using five panels: (1) a map
showing the location of the counties associated with
the site, (2) total population by county, (3) percentage
of the population that was urban in each county, (4)
population density by county, and (5) percentage of the
population in each economic sector in the focal county
where the site resides. The site graphs are organized

by ecosystem type to allow comparisons of sites in

the same type. For the 2000 census, total population,
population density, urban percentage of the population,
and percentage of the population in each economic
sector in the focal county can be found in appendix 15.

Summary

Several trends are noticeable at the continental scale.
The settlement of the country progressed from the east
coast and then jumped to the west coast by 1900, and
then to the interior between 1900 and 1950 (figure
13-1). The Midwest lost population between 1950 and
2000. Most areas of the country had a high percentage
of urban population by 1950 (figure 13-2). Urbanization
continued for most of the country until 2000 with

the Northeast, Appalachian Mountains, and northern
Wisconsin providing notable exceptions.
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Table 13-1. Counties selected to represent each site used in the analysis of population and economic

data

(The focal county based on the location of the research site is in bold. Additional counties for some sites are
available on the EcoTrends website at http://www.ecotrends.info.)

Site code State Counties
AND OR Benton, Deschutes, Douglas, Lane, Linn
ARC AK North Slope Borough
BEN NC Buncombe
BES MD Anne Arundel, Baltimore City, Baltimore County, Carroll, Howard
BLA CA Lassen
BNZ AK Fairbanks North Star Borough
CAP AZ Maricopa, Pinal
CCE CA Los Angeles, Orange, San Diego, Ventura
CDR MN Anoka, Hennepin, Isanti
CHE OR Lincoln, Tillamook
CRO AR Ashley
CSP CA Mendocino
CWT GA Rabun, Towns
NC Clay, Jackson, Macon
EOA OR Harney
FCE FL Broward, Collier, Miami-Dade, Monroe, Palm Beach
FER wv Tucker
FRA CO Grand
FTK MT Custer
GCE GA Bryan, Camden, Glynn, Liberty, McIntosh
GLA wy Albany, Carbon
GRL OK Caddo, Comanche, Grady
GSW X Bell, Falls, McLennan
HAR MS Harrison, Stone
HBR NH Grafton
HFR MA Berkshire, Franklin, Hampden, Hampshire, Worcester
JRN NM Dofia Ana
KBS Ml Allegan, Barry, Calhoun, Eaton, Kalamazoo
KNz KS Geary, Morris, Pottawatomie, Riley, Wabaunsee
LUQ PR Ceiba, Fajardo, Luquillo, Naguabo, Rio Grande
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Table 13-1. Counties selected to represent each site used in the analysis of population and economic
data—Continued

Site code State Counties
LvVW (6{0) Boulder, Grand, Larimer
MAR MN Itasca
MCM* No data
MCR? No data
NTL WI Dane, Oneida, Vilas
NWT CoO Boulder
PAL No data
PIE MA Essex, Middlesex
PRI ID Bonner
RCE ID Owyhee
SAN SC Berkeley
SBC CA Santa Barbara
SEV NM Bernalillo, Sandoval, Socorro, Valencia
SGS (6{0) Weld
wy Laramie
SPR OK Woodward
SRE AZ Pima, Santa Cruz
TAL MS Lafayette
VCR VA Accomack, Northampton
WBW TN Anderson, Loudon, Roane
WGE AZ Pima, Santa Cruz
WIN WA Skamania

1 MCM and PAL are located in Antarctica.

2 MCR is located at the island of Moorea in French Polynesia.
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Figure 13-3 (Alpine and Arctic sites) continued next page.
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Figure 13-4 (aridland sites) continued next page.
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Figure 13-5 (coastal sites) continued next page.
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Chapter 14

Long-Term Trends in
Production, Abundance, and
Richness of Plants and Animals

Trends in biotic structure have been of interest in

the United States since the establishment of the
Division of Biological Survey in the U.S. Department
of Agriculture in the late 1890s. Changes in biotic
structure can serve as a bellwether for quantifying the
effects of climate change, land-use change, and the
spread of exotic species, as well as the loss of rare and
endangered species. Considerable evidence suggests
that changes in biotic structure can have significant
consequences for ecosystem functioning and the
provisioning of ecosystems goods and services.

In this chapter, we first describe common methods for
measuring responses of plants and animals and our
rationale for the selection of variables included in this
book. We then show graphs of biotic data through time
for each site arrayed across the continent.

Methods of Measurements and
Selection of Variables

Biotic structure can be characterized by a wide array of
variables, but we limit our discussion to those variables
that represent key components of ecological systems.
One of the most important variables in all ecosystems
is net primary production (NPP), the accumulation

of biomass over a specified time period, usually
seasonally or annually. NPP represents the amount

of energy fixed by producers (for example, vascular
plants or algae) that can be used for their growth and
reproduction and that is available for consumption by
herbivores. Life on Earth depends on this conversion
of inorganic compounds to organic molecules and the
release of oxygen; thus NPP is a critical variable for all
ecosystems, even though the primary producers vary
from vascular plants on land to algae and phytoplankton
in the lakes and oceans. Terrestrial NPP consists of
both aboveground (ANPP) and belowground (BNPP)
components, although ANPP is the most commonly
measured in long-term studies (chapter 5).

Other variables of particular importance are the
biomass, cover, and density of key species and groups
of similar species (that is, functional groups) that
represent each ecosystem. Biomass is the mass per
unit area of living material (plants, animals, microbes),
typically measured as grams per square meter (g/m?)
or kilograms per hectare (kg/ha). Changes in biomass
over time are often used to calculate NPP. Biomass

is a measure of stored energy (in wood, sugar cane,
corn, for example) and carbon that is sequestered from
the atmosphere. Cover is the amount of surface area
occupied by plants or animals and is often represented
as a percentage of the total area (for instance, [m? leaf
area + m? ground area] x 100). Density is the number of
individuals found in a unit of area, such as number per
square meter or per hectare.

Biomass, cover, or density can be used as estimates of
the abundance of organisms and species composition
(the percentage that each species contributes to a
measurement). Species richness, the number of species
in an area (such as per m?), is an important measure

of biodiversity. Species richness is available for some
sites, although differences in sampling area often result
in difficulties in comparing across sites.

The long-term biotic structure data represent a
somewhat eclectic set of species on which, for the most
part, the same measurements are rarely collected at

all sites—in contrast to climatic, biogeochemical, and
human population data (chapters 11-13). This diversity
of species is to be expected given the uniqueness of
the biota across the broad range of sites represented in
the EcoTrends database. Also, a research philosophy
that originally helped structure the LTER Network was
a focus on core research areas relevant to each site.
One of these areas was the measurement of the spatial
and temporal distribution of populations selected to
represent trophic structure within a given ecosystem.
As a consequence, most LTER sites have quantitative
data on plant community composition and structure,
but many different kinds of consumer species are
represented in figures14-1 to 14-12. In many cases, the
graphs present aggregate variables (species richness,
total abundance); however, data on long-term species
trends are available on the EcoTrends website (http://
www.ecotrends.info ).
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At most sites, NPP is shown in comparable units, such
as grams/m?/year, despite a variety of measurement
techniques. For terrestrial ecosystems, most sites only
estimate long-term ANPP; difficulties in obtaining
accurate and cost-effective estimates of BNPP

result in very few, if any, long-term datasets of this
variable. Repeated clipping of herbaceous biomass or
estimations of changes in plant sizes are often used

in grasslands and deserts to estimate ANPP. Diameter
at breast height (DBH) or basal area increment (BAI)
and annual litterfall are most often used in forests.
Chlorophyll content or measurement of either O, or
CO, consumption or production in light and dark bottles
can be used as surrogates for NPP in aquatic systems.
Although the methods in terrestrial and aquatic systems
are highly disparate, all measurements can be converted
to common units for cross-system comparisons. At very
large spatial scales, satellite data and remotely sensed
images can be used to estimate “greenness” which

can be correlated with NPP in freshwater, marine, and
terrestrial systems.

Similarly, the measurements of species composition
and abundance also differ among terrestrial and aquatic
systems, as well as in different types of ecosystem.
These differences are reflected in the different units of
measure on the graphs below.

Graphs Showing Long-Term Trends

The remainder of this chapter is devoted to showing
trends in plant and animal variables by site across the
continent. For plants, we focus on four variables that
are often measured at many sites: species richness,
ANPP, biomass, and DBH. For animals, we include
species richness of birds, insects, and fish and
abundance of birds, insects, and small mammals. Data
are shown annually through time, and a regression line
is shown if the relationship was significant (p < 0.05)
and the trend appears linear. Long-term means and
regression coefficients can be found in appendices 16
through 23.
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Summary

At many sites, multiple locations are sampled for
plant and animal dynamics. The large within-site
variability in responses often overwhelms trends
through time. Although plant response variables of
ANPP, richness, and biomass are sampled for most
LTER sites to allow cross-site comparisons, animal
response variables are more variable among sites with
fewer comparable groups. These results reflect the
underlying organizational structure of the LTER to
select representative trophic groups from a site rather
than attempting to standardize across sites. The length
of the time series also varies across sites, which further
complicates cross-site comparisons.
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Figure 14-7 continued next page.
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Chapter 15

Management and Policy
Implications of Cross- and
Within-Site Long-Term Studies

K.M. Havstad and J.R. Brown

Management is defined as a set of processes that

guide and evaluate actions required to implement a
program. In the management of natural resources, it is
understood that these processes are guided not only by
science, but also by experiences learned by or conveyed
to a resource manager over time. We recognize that
information based on scientific studies and available
through the peer-reviewed literature is often lacking

or inadequate to address many of today’s complex
resource management issues.

Fortunately, long-term datasets are now becoming
available that can provide useful information with
application to natural resource management and
policies. For example, climate, and particularly the
occurrence of long-term drought, is a major driver of
ecosystem dynamics across the United States. Long-
term data provide a basis for evaluating not only the
likelihood of drought, but resilience of drought within
managed landscapes. Drought records, such as annual
Palmer Drought Severity Indices (PDSI; figure15-1),
provide these utilities to managers of both public

and privately held natural resources. To illustrate, the
historical record of PDSI for southern New Mexico
(figure 15-1; JRN ARS-LTER) informs managers that
over 75 percent of the years during this 50-year period
were recorded droughts and that the drought of 1951-
1956 was the most severe of its time. Management
actions based on resource inputs, such as reseeding
native grasses, implemented during this period would
likely be failures, and the interpretation of their
usefulness needs to be judged within this context of
perpetual drought.

Another driver that strongly influences resource
management is the increasing human population and the
increased landscape fragmentation accompanying these
population increases. Census data collected since the
late 18th century show an increase in population density
across the continental United States that can seriously
impact natural resources and their management (figure
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15-2). These long-term data reflect the heterogeneous
nature of population dynamics across the country. For
example, in the late 20th century, growing population
demands on water resources in the Southwestern
United States are quite evident (Jackson et al. 2001).
Conversely, decreases in human population densities
across rural counties of the Central Plains will likely
result in a loss of knowledge and experience in natural
resource management.

These examples illustrate the value of long-term data

beyond their contribution to our understanding of

important ecological processes. Specifically, the value

of long-term data to management of natural resources

includes a basis for the development of—

* conservation practices which have direct application
to natural resource management,

* policies and programs that can be instrumental in
guiding that management, and

« adaptive strategies required to contend with both
the spatial and temporal heterogeneity that are
characteristic of natural resources and managed
landscapes.

These values emerge from analyses of long-term data
based on two key attributes: our ability to examine
data retrospectively to identify temporal and spatial
sensitivities and our ability to build those historical
perspectives into predictive models with which we can
objectively evaluate potential future scenarios. Both
attributes provide the needed perspectives to manage
our natural resources and to adapt our management
practices to conserve those resources and mitigate the
effects of our actions.
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Historical Perspectives

Long-term data provide three important perspectives
that are useful in management of natural resources.
First, we are able to quantify temporal dynamics
characteristic of natural systems. For example, in the
St. Lawrence River watershed of Canada, 100 years

of agricultural census data have allowed calculation

of phosphorus accumulations in soils within that large
basin (MacDonald and Bennett 2009). These long-term
data document the periodic pulses that characterize soil
phosphorus dynamics over decades and provide a basis
for development of management strategies to contend
with environmental issues associated with phosphorus
accumulation, such as eutrophication.

Long-term data on soil nitrogen and carbon cycles

in response to climatic drivers in the Hubbard Brook
Ecosystem Study in New Hampshire provide a basis for
modeling ecosystem responses to key environmental
factors, such as temperature and snow levels, and to
possible future climate scenarios (Groffman et al.
2009). These models also illustrate different responses
of carbon and nitrogen to future changes in temperature
and soil moisture and provide a basis for forest
management policy decisions.

Data collected for nearly a century in south-central New
Mexico have been analyzed to identify the climatic
variables and rangeland management factors that
contribute to vegetation dynamics over time (Yao et

al. 2006). Repeat photos beginning in 1937 have been
analyzed to characterize vegetation dynamics in this
desert system (figure 15-3). Collection of these types of
data and their subsequent analyses provide insight into
the influences of extreme climatic events and provide

a basis for projecting responses under future climatic
scenarios. The data illustrate the episodic nature of
invasive species dynamics and changes that often
respond to co-occurrence of disturbance factors, such
as overgrazing by livestock during multiyear droughts
(Fredrickson et al. 1998). These data have informed
grazing management practices and policies at the State
and regional scale.

Forty years of data on vegetation responses to
landscape modifications in an Atlantic forest showed
a time lag in responses of numerous species to those
modifications (Metzger et al. 2009). These long-term
data demonstrate the importance of landscape history
in affecting species presence and diversity within a

region and the effects of species attributes on important
aspects of ecosystem function (such as carbon storage)
and resilience.

Long-term data also provide opportunities to evaluate
responses to management actions over time. In another
example drawn from southern New Mexico, we have
been able to track vegetation responses over time to
specific vegetation management practices (figure 15-4).
In numerous other examples across the United States,
historical treatment areas can also be evaluated from
either ground-based records or from archived aerial
photography.

Similar experiments conducted on several sites across
the continent can provide insights into the effects of
management on ecological processes. For example,
rangeland grazing management practices have been
studied on numerous sites across the Western United
States throughout much of the 20th century. Recent
analyses from these studies show that two common
types of grazing systems showed similar responses in
plant production for 89 percent of studies: 36 percent of
studies showed greater animal production per head for
continuous grazing than for rotational grazing, while
57 percent of studies showed no difference between
grazing systems (figure 15-5a) (Briske et al. 2008).
Studies were conducted at locations across the Western
United States (figure 15-5b).
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Figure 15-3. Repeat time series of aerial photographs over a 71-year period in southern New Mexico illustrating a variable
increase in percentage of shrub cover through time as a result of extreme climatic events. Shrubs increased dramatically
between 1937 and 1947 and again between 1996 and 2008. (D. Browning, unpublished data.)
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Figure 15-4. Temporal sequence over a 61-year period of alternating grubbed (shrubs physically removed at the ground-
surface level; light-colored strips) and control areas (dark strips) in a predominantly creosotebush-dominated shrubland in
southern New Mexico. Original grubbing was performed in 1936. Aerial photos were taken from flights in 1937, 1948, 1973,
1991, and 1998 (Rango and Havstad 2003). Reprinted with permission from Cambridge University Press.
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Figure 15-5. (a) Synthesis of research results from long-term
studies of the response of plant and animal production to
two common types of grazing systems: continuous grazing
(CG) and rotational grazing (RG). When stocking rates were
similar, 89 percent of the studies showed no difference in plant
production between grazing systems, 36 percent of the stud-
ies showed greater animal production per head for CG than
for RG, and 57 percent showed no difference between CG
and RG. Redrawn from Briske et al. 2008. (b) Studies were
conducted at locations (represented by red dots) across the
Western United States. Map by Shawn Salley.
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Predictions

Another important application of long-term, cross-site
data collection is to develop and run mathematical
models of ecosystem behavior, especially to predict
responses of ecosystem services (such as water
quality, carbon flux) to changes in climate, land use,
and management. As the solutions to environmental
issues become more contentious, the effects of human
activities become more extensive in both space and
time. In addition, the cost of conducting long-term,
multisite field experiments increases. A reliable set

of predictive models that can be used to estimate

the effects of a variety of climatic and management
scenarios are critical to informed decisionmaking and
effective communication.

Examples exist of the application of complex models
to integrate a small set of land management options
and climate scenarios for the purpose of predicting a
limited range of ecological and socioeconomic response
variables (an example is the USGS’s Land Carbon
Project [USGS 2009]). However, consistency and
transparency remain critical problems. The foundation
for improving modeling approaches is ready access to
data from well-designed, replicated experiments that
can encompass the ecological, social, and economic
questions of interest. Few experiments are currently
designed, conducted, and analyzed with a focus on
improving the performance of a mathematical model.
Experiments often lack the range of treatments
necessary to confidently predict beyond a fairly narrow
set of circumstances. As a result, the use of some
popular models to predict ecosystem response is ill
advised (Brown et al. 2010).

Traditional comparative treatment experiments should
be continued in order to more efficiently develop
existing and new models. Improving the performance
of models with the use of long-term data from multiple
locations will remain a challenge and will require
serious thought and commitment of resources to ensure
that the sometimes conflicting goals of hypothesis
testing and model development are met. However,

the value that long-term, multisite data have already
contributed to the use of mathematical models that
predict ecosystem behavior and that guide policy and
land management decisions demands that serious
efforts be mounted to organize existing data and to cost-
effectively collect new information.
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Summary

Long-term data and their collection at specific sites
across the United States have provided three distinct,
but complementary, values to management of natural
resources.

First, these data provide an opportunity to understand
the temporal and spatial variability of many ecological
patterns and processes. This value is important
because many management actions, such as prescribed
burning or reseeding of degraded land, incorporate key
ecological processes and are sensitive to both location
and time. For example, the timing of synergistic
environmental conditions, such as periods of dryness
for prescribed fires or periods of subsequent moisture
for reseeding practices, is an important constraint on the
success or failure of management actions.

Conversely, most management actions are highly
dependent on site features. It is commonly understood
that no single management practice will work in all
locations at all times. Without long-term data across
numerous sites, we cannot identify this array of
temporal and spatial sensitivities nor develop data-
based guidelines to direct the appropriate timing and
application of management practices.

Second, long-term data provide the opportunity

to evaluate policies and programs that have been
implemented for resource conservation. Often, policies
are developed and enacted with incomplete knowledge
of ecological ramifications. The ability to evaluate
environmental responses after policy implementation
provides the data necessary to validate policies or

may lead to their subsequent revision. Of additional
importance is the value of long-term data in assessing
and monitoring ecological responses to implemented
policies. For example, nitrate concentrations in
precipitation collected at locations across the United
States reflect the positive effects of federally mandated
clean air policies enacted in the 1970s in reducing
nitrate concentrations in the industrialized upper
Midwest and the Eastern United States (figure 15-6).
Avreas of the less industrialized West and Southwest
reflect negligible effect of these policies, as would be
anticipated.

In another example, a key technology for management
of rangeland resources is an ecologically based
system for delineating landscapes into units of similar
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vegetation potential that are expected to respond
similarly to a management practice. The principal
provider of this technology since the mid 20th

century is USDA Natural Resources Conservation
Service (NRCS). For decades, this technology was
described as “range sites,” where the condition of

a site is characterized by its linear departure from a
potential determined by the combination of climate

and soil properties. This technology was based on an
assumption that state changes are reversible and that the
potential of a site is consistent over time. In the 1990s,
NRCS revised this management technology in an effort
to incorporate an understanding drawn from long-

term data which state that changes may be irreversible
and that site potentials are not permanent over time
(Bestelmeyer et al. 2003). The new technology, known
as “ecological sites,” represents an improved tool that is
more firmly rooted in a data-based understanding of the
ecological dynamics of arid and semiarid ecosystems
(Bestelmeyer et al. 2009).

Third, long-term data collection provides the
opportunity for clients, partners, and stakeholders to be
engaged in scientific processes. Often, long-term study
sites, such as those that contribute to EcoTrends, are
platforms for cooperative and collaborative activities
with users of the information. These interactions create
opportunities not only for technology and information
transfers but for users to inform the science and its
research directions. This kind of involvement increases
the likelihood for research to be conducted that has
impact and enhances the utility of long-term data.

It would be difficult, if not impossible, to adequately
estimate the economic cost of developing today the
network of sites and their long-term data sets that exist
across the continent. As a reference point, the National
Science Foundation has committed over $300 million to
develop the soon-to-be-established National Ecological
Observation Network (NEON) at 60 locations across
the country. This network will be a sensor- and tower-
based system; and though highly advanced scientifically
and technologically, NEON is not as expansive as

the land-based network of research sites currently in
existence that form the basis for data in this book. The
investment required today to develop the long-term
data system currently in place would likely require
many billions of dollars, if sites could even be selected
and secured from existing land uses. Fortunately,

these sites and data sets are in place, and their value to
management of our natural resources is both evident
and real.
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Chapter 16

Recommendations for Data
Accessibility

C.M. Laney, K.S. Baker, D.P.C. Peters, and
K.W. Ramsey

The EcoTrends Project was established to aid
researchers and others interested in synthetic studies of
long-term, continental-scale and national-level patterns
in environmental drivers and ecological responses.
Hundreds of standardized, documented datasets from
many sites and scientific fields were synthesized to
meet this goal. Generating comparative data at many
sites across several organizational networks and
finding novel solutions to technical, organizational,
and communication challenges required ongoing
collaborative work with all project participants,
including researchers and information managers.

The lessons learned from this collaborative effort
contributed to our understanding of contemporary
ecological information management (that is, the
management of digital ecological data via multifaceted,
interdependent arrangements and systems). Drawing
on these lessons learned by EcoTrends participants—
project leaders, researchers, and network- and
site-level information managers—we present

10 recommendations for site-level information
management and for future synthesis projects. These
recommendations for supporting synthesis projects are
related to three broad categories:

* Data management and products
* Project design
* Information environments

Challenges

The collection, management, and sharing of ecological
data are rapidly changing because of escalating
advances in technology and in knowledge-sharing.
Advances in automated, continuous collection of data
from sensors are increasing the number of methods
available to observe and measure the environment.
These technologies and methods can generate data
that span a wide range of spatial and temporal scales
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(see Porter et al. 2005, Collins et al. 2006, Benson

et al. 2010 as examples). Management of data has
evolved along with statistical software and database
technologies. For example, quality checking of data for
errors in values and formats was previously conducted
manually by researchers or technicians but is now
often performed using automated statistical software
(for example, Michener and Brunt 2000). Data that
were once stored in simple spreadsheets are how often
stored in more complex relational databases. The
sharing of data and knowledge has increased as more
research sites post links to their data on web pages

or make the data available via new web services. To
aid in the sharing of data, data practices, policies, and
documentation standards have been and continue to be
developed among research communities (for example,
Karasti and Baker 2008, Porter 2010, Vanderbilt et al.
2010).

Large synthetic studies of diverse ecological data have
been greatly facilitated in recent years by advances

in data collection, management, and sharing, which

is exciting for the research community, but these

new projects also pose new challenges. Comparing
large amounts of data across diverse ecosystems can
aid in understanding of ecological processes and the
effectiveness of new research methodologies. When
such analyses lead to new understandings about ecology
and ecological data, the lessons learned can inform the
next round of data collection, processing, analysis, and
documentation. Thus, large synthesis projects have
been increasingly popular over the past few decades
(for example, Riera et al. 2006, Moran et al. 2008).
However, new challenges have appeared with each
large-scale project. Here, we describe the primary 10
challenges that the EcoTrends Project faced, grouping
them into three categories.

The first category addresses data management and
products. Ideally, datasets would be easy to find online
and to incorporate into a well-defined workflow for
databasing and analysis. However, as the EcoTrends
project illustrates, the task of finding and creating
comparable datasets from disparate sources can be
challenging because of several underappreciated
impediments, including—

+ difficulties in finding data,

* inadequate data and metadata standards,

* inaccurate or incomplete data and metadata
content, and

» complex datasets.
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Similar issues have been identified in other
environmental science synthesis projects (for example,
Benson et al. 2005, Jones et al. 2006, Michener et al.
2007, Baker and Chandler 2008).

The second category addresses synthesis project design.
There are many ways to start, design, and implement a
synthesis project, and it is important to begin with well-
defined goals, knowledgeable and enthusiastic partners,
and a well-informed sense of the challenges that may
be faced throughout the project. Challenges in this
category include—

 data heterogeneity and scaling issues,

* planning flexibility into project design, and

» making decisions on how to best design and
implement a project and its requisite information
infrastructure.

Finally, the third category addresses information
environments to support synthesis. Challenges
include—

» working with and developing environments in which
information is effectively shared among participants,

» finding motivation to continue the project over time,
and

* encouraging involvement of a large number of
research sites.

Over the course of the EcoTrends project, participants
accumulated a rich body of experience with data
processes and collaborative data practices. While
large datastreams and technology configurations have
prompted a variety of large-scale program endeavors,
the EcoTrends project is unique as a multisite,
multinetwork activity involving ecological data that
span biological, chemical, and physical realms. The
project simultaneously informed development while
coordinating site- and network-level information
environments.

In the next section, we provide recommendations
related to the challenges listed above. For each
recommendation, we first provide specific examples of
the challenges that EcoTrends faced, then the lessons
that we learned, and then explain the recommendation
that may help address the challenge in future projects.
These recommendations are expected to resonate with
researchers and information managers, who work
together as a cohesive, integrated team at both research
sites and in multisite comparative studies of ecological
data.

Recommendations for Data,
Metadata, and Derived Data Products

1. Make data easily accessible online to
researchers.

Locating data for the EcoTrends Project was a time-
intensive exercise. A small, but significant, portion of
datasets were not stored online, but were submitted
via email by individual researchers or information
managers. Moreover, online long-term datasets

were often difficult to find within extensive catalogs
of datasets on the webpage for each research site.
Occasionally, when a research site updated its webpage,
the link to a dataset changed, and the dataset would
have to be relocated by EcoTrends personnel. These
challenges were met by contacting researchers and
information managers at each research site in order to
solicit data that were not online, locate data that were
online but difficult to find, and find datasets when they
had been moved.

We recommend that research sites be supported in
developing practices and procedures to make high-
quality, well-documented datasets publicly available
online as soon as possible. For example, the Long
Term Ecological Research (LTER) program data
policy, based on guidelines from the National Science
Foundation, states that data should be posted within

2 years of being collected, with a few exceptions. In
addition, we recommend that each dataset be assigned
locally a unique identifier code, or accession number,
that does not change over time. This identifier would
make it easier for a synthesis project to more easily find
a dataset that has been moved. Dataset titles are often
used as identifiers, but these titles are subject to change
when datasets are reorganized or displayed at different
Internet locations.
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2. Implement and develop metadata
standards at the site and community
levels.

The metadata documentation format was highly
variable between research sites. At some research

sites, each researcher documented datasets in a format
unique to his or her personal standards of completeness.
Other sites maintained site-level standards, such as
filling out specific fields in a text document. Data
downloaded from national repositories usually adhered
to the standards created or adopted by that particular
repository. For example, metadata from the Climate
and Hydrology Databases Project reports metadata for
each dataset via a standardized form, the completeness
of which varies between participating sites. The LTER
sites (approximately half of the participating research
sites), however, recently adopted a standard metadata
protocol, the Ecological Metadata Language (EML).
This specification documents datasets with information
such as study location, data collection methods, data
policies, and descriptions of data table elements. It
also includes community-defined lists of terms, or
ontologies, to aid standardization. With EML only
recently adopted by the LTER community, many LTER
datasets were not yet fully documented and many
documentation best practices are still in development.

As a result, the metadata documents that EcoTrends
personnel worked with were highly variable between
datasets and were error-prone, such that time was spent
trying to understand the data. In metadata documents,
the locations where data collection took place were
often missing. We found that a lack of variable naming
conventions (for example, primary productivity

may be labeled “primprod” in one table, and “PP”

in another table—even within the same study) made
data processing difficult. Species names were often
recorded as codes in data tables, yet in many cases,

the codes contained typographical errors or were not
adequately documented in the metadata. In other cases,
a lack of detail in the methods led to misinterpretations
of how the data were collected. Discussions between
the EcoTrends Project Office (EPO) and the lead
researcher of the study became a necessary component
in processing the data correctly.

EML was developed for a large, diverse community
that intended to share data using standards that support
consistent data packaging and routine update of datasets
over time. The EcoTrends Project found that source
datasets with EML documentation were often easier
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to understand and process than those without such
documentation, thus the Project used EML to document
every derived dataset that the project generated. These
metadata documents contain information about the
source dataset (including ownership and a link to the
original metadata) and about the EcoTrends Project as
well as definitions of the associated data table.

However, while the EcoTrends Project attempted to
support the existing EML standards as thoroughly as
possible, the resulting documents were incomplete.

For example, the methods used to calculate the derived
data from the source data are not included in the EML
because a standard does not exist for this information.
Derived datasets on the EcoTrends website may thus be
misinterpreted, and the source data should be examined
before proceeding with further analysis.

EcoTrends work brought the concept of derived data
to the foreground. The issue of data misinterpretation
was discussed with the broader community, prompting
discussions about how to best accommodate this level
of information within future EML schemas.

EML content standards are still in development, which
means that a number of data comparability issues
remain undefined. LTER information managers have
been prominent advocates for improvement of EML,
thereby benefiting the ecological research community.
EcoTrends contributed to the development of site-level
conventions and to the enactment of metadata standards
by reporting documentation errors to site personnel.
Specifically, benefits included prompting sites either
to create EML for their historical data or to improve
on what was available; to standardize attribute, unit,
and taxonomic codes and names; to flesh out methods
sections; and to provide stable Internet addresses
(preferably with dataset accession numbers) for each
dataset over time.

We recommend that research sites implement
community-wide metadata standards, such as EML,
and become involved in the process of refining existing
standards and developing new local standards when
community standards are not adequate for local
research. Implementing local procedures with reference
to community standards helps maintain data integrity at
both the site and project levels. Standards that guide the
documentation of a scientific study, its methodology,
and the resulting data tables, can promote responsible
sharing and use among researchers by clearly
representing dataset origin and can make data more
discoverable via online searches.
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3. Develop and use standard data practices
to create “clean” data.

Data lose their integrity if there are errors. We
consider “clean” or quality-controlled data to be

free of typographical or value errors and to be easily
importable into a spreadsheet, a statistical program, or
a database. In practice, there were frequent errors found
in the source data that significantly hindered analysis
and synthesis. For example, time-series data often had
unexplained gaps. Occasionally, incorrect values, such
as outliers or incorrectly labeled data (for example,
mean temperature labeled as maximum temperature)
were found by the EPO during the data processing or
during data checking by site personnel. Outliers often
existed in the data early in the study when techniques
were new and the collection process had not been
thoroughly tested. Where data and metadata gave no
indication of poor quality or missing value assignment,
problem data were inadvertently used in the initial
analyses and corrected in the final analyses and graphs.

There are several plausible reasons for a lack of data
integrity. Long-term data, assumed to be “clean” due to
the long period of time that they have been maintained
and their availability on the Internet, may actually
suffer from neglect. Legacy data practices such as
short and nondescriptive variable names or inadequate
software tools for checking are often an issue.
Alternatively, when delivery of data from site changes
(for example, becomes updated, semiautomated, or
automated), quality control, and other site-level analysis
work may not be carried out or may not be adequately
incorporated into the dataset.

By presenting source data in a recast form on a website,
EcoTrends focused the attention of site participants on
quality-checking of those datasets. Frequently during
the site data checking process in 2008-2009, site
personnel noticed erroneous data points in the annual
summaries of their datasets, attributable to poor-quality
primary data or to erroneous summarization of the data.
Many source datasets and EcoTrends-derived datasets
were corrected following discussions about data
practices that occurred with individual researchers and
at larger meetings.

While good data practices goes beyond the scope of
this chapter, we recommend that sites act upon the
developing resources available in the literature at the
community level (Michener and Brunt 2000, Cook et al.
2001, Baca 2008, Borer et al. 2009) and the national or

international level (NISO 2004, Van den Eynden et al.
2009). Data processing is an iterative exercise involving
multiple facets, from sample analysis and measurement
calibration to data analysis, quality control, statistical
analysis, comparative study, and visualization. All of
these activities can occur at both the site level, driven
by scientific inquiry for a specific use of the data,

and at the multisite or network level, driven by new,
often synthetic uses of the data. Site-based analyses

to scrutinize the data are needed before data can be
used effectively by others. Development of good
information-management practices must include ways
to prevent misuse and/or misinterpretation of data.

4. Provide well-documented derived data
for use by local and remote researchers.

In many cases, the source data were complex and
difficult to process correctly due to unique collection
and analysis methods. A goal of the EcoTrends Project
is to create derived data products whose format is
much simpler than the way the data were originally
collected in order to ensure that a broad range of users
can understand the data. The EPO, in consultation with
the science advisory committee, aggregated data using
methods commonly used by ecologists. Most of the
time, these methods worked well. However, in some
cases no matter how well documented and how cleanly
represented in data tables, the complexity of the dataset
was the main barrier to synthesis. Biotic datasets were
particularly challenging, with numerous species and
different kinds of measures. In many cases, the Project
Office needed to discuss with the lead researcher the
suitability of a dataset for a particular aggregation
effort.

We recommend that research sites create and post
online derived data products as long-term, signature
datasets. These types of derived data products are not
typically posted online, though they are often created
and used for in-house analysis. There are two main
reasons for our recommendation.

First, creating derived datasets provides a mechanism
for performing regular checks on the integrity of the
data, a procedure that helps ensure “clean data” (see
recommendation 3). If the data are kept up-to-date

in a standard format, then statistical programs can be
written to periodically recheck the format of the data
tables themselves, check the data table contents against
what is recorded in the metadata, check for errors in
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the data, and produce visualizations of the data that
an experienced researcher could quickly check for
anomalies. This recommendation would increase the
integrity of the data and increase the stature of the
dataset as other researchers use the data over time.

Second, posting in-house, high-quality derived data
could have great benefits for collaborative research by
assuring the use of appropriate and accurate derivation
methods. Moreover, when routinely available, derived
data become a shared product that may prompt dialogue
among researchers. Several discussions were initiated
between the Project Office and sites when datasets were
complex and the data aggregation or summarization
approach was unclear. For example, while implicitly
known as being important at the site level, month-long
oceanographic cruises carried out three times a year are
rarely integrated to give annual estimates. In general,

a check on the regularity and frequency of sampling

is required before annual estimates are calculated.
Researchers used to working with terrestrial data may
inadvertently create annual summaries of the data, not
being aware of the issues associated with the logistics
of cruises and oceanographic sampling. However, if
derived data were made available, along with links

to the source data from which they were created and

the methods with which they were derived, including
algorithms and scripts, they would provide a standard in
data quality and use and would increase the integrity of
the dataset in its entirety.

Recommendations for Project
Design

5. Plan for data heterogeneity and
“complexities of scale.”

Data are collected, quality-checked, and organized in
various ways depending on the phenomena sampled
(such as bird counts or wind measurements), the
spatial distribution (for example, single vs. multiple
locations), frequency of sampling (for example, daily
vs. quarterly), regularity of sampling (missing days
in a daily record, for example), and methods of data
collection (for instance, an observer vs. an instrument).
Heterogeneity in data management methods adds

to the challenge of producing comparable data. For
the EcoTrends Project, we focused on time-series
data of specific variables which mitigated some
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effects of incoming data heterogeneity. However, no
single programming solution could be developed to
automate data handling; programming solutions were
developed for single datasets or clusters of similar
datasets. To share standardized derived data on a
website, data summarization and organization were
optimized for display of single variables over specific
time aggregations (for example annual bird counts

or monthly wind speed). Decisions made to simplify
website development, such as only graphing variables
through time in the EcoTrends Project, resulted in
limitations in the current underlying data structure.

Data are also collected and aggregated at different
temporal and spatial units under a variety of
circumstances. Scaling from small to large regions and
from short to long time periods can involve complex
processes. For example, sites collect weather data using
a varying number of stations distributed across the

land. The EcoTrends Project asked each site to identify
“representative” weather datasets from their site. For
some sites, particularly those that have relatively flat
surfaces, choosing data from site headquarters was
sufficient because differences between stations were
relatively small. At other sites, however, particularly
those with major elevation differences within a small
area, choosing a “representative” dataset was difficult.
If the EcoTrends Project was expanded to use long-term
data from all weather stations at each site, this quandary
would be side-stepped only to introduce scaling issues
due to an increase in the number of datasets to be
handled.

The multiple options for presentation of data also
introduce complexities of scale. The initial plan—for
a website with static content containing data shown
graphically in this book—changed to planning for
dynamic data delivery and visualization. The Technical
Committee recommended structuring the data and
database to support automated metadata generation
for derived datasets using existing tools that were
under develoment (EML for documenting derived
datasets and Metacat for cataloging the resulting

EML documents) and tracking data provenance and
versioning. This proved to be a significant increase in
project scope and requirements for information system
design and infrastructure building.

We recommend that, before a multisite synthesis
project is completely planned and started, the project
leaders recognize and consider carefully the project
scope, accounting for the variety and complexity of
the source data as well as the constraints associated
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with their management. Such advance planning is key
to adequate and appropriate information management
for such synthesis projects. We also recommend that
project leaders consider how to best present their
data before implementing information management
solutions. For example, will the data be presented, as
in EcoTrends, as time series? Or will it be expected
that different variables will be compared against one
another or against non-time-series data? Planning for
additional functionality after the project has begun
may require changes in how datasets are organized.
Therefore, accounting for data heterogeneity and
scaling complexity, both in the source data and the
resulting data, before the project begins is important.
Information specialists trained in both economies

of scale and complexities of scale can add insight to
project planning (Baker and Chandler 2008).

6. Iteratively design and assess project
processes and systems.

Interdependent information environments existed at
research sites EPO and LNO. Work at the interfaces of
these environments involved an unanticipated amount
of coordination and design work as well as mediation,
negotiation, and decisionmaking.

The EcoTrends Project started with a linear workflow
(traditional for many data management processes),
but the workflow rapidly evolved into a cyclical set
of processes using feedback from participants to
inform further development. Just as the scientific
process often does not proceed linearly, there was
value in envisioning the data processes as a complex
set of interdependent systems, sometimes operating
on differing time scales. In the case of the EcoTrends
Project, feedback from discussions among various
groups subsequently informed further development.

Similarly, data handling cannot be solved by a single

technical solution, but rather requires ongoing redesign.

Our recommendation for improving data handling and
information management is to plan for modifications,
whether in the short term or the long term, according
to insights gained and lessons learned throughout the
process. For example, when initial assumptions about
the readiness and easy access of long-term data and
metadata from site web pages proved to be incorrect,
the science advisory committee was formed to inform
the process of identifying the variables and datasets of
interest and the common aggregations to be performed.

The project coordinator position was developed to
work directly with site personnel to obtain, correct,

and understand their data in preparation for inclusion
as derived data products and to ensure that committee
decisions were followed. As the volume and complexity
of the data increased, new communication systems
evolved, including ways to share derived data with site
contributors. The project coordinator position expanded
into an interactive role in both assembling data and
creating the derived products needed for the EcoTrends
Project and in providing feedback to site personnel

on the quality of their data and metadata. Iterative
modification of a project may include striving to refine
conceptual models of how data are stored and related,
continuing design of information systems, working
iteratively in phases, and incorporating inquiry-based
collaborative learning.

7. Involve advisors from fields who reflect
the breadth of the project and who are
experienced with information management.

Science-driven ecological synthesis projects may be
either narrow, focusing on a single variable over space
or over time, or broad with respect to space, time, and/
or variables. In either case, advice from experts in

the fields that the project embraces is highly useful.
The breadth of the EcoTrends Project mandated the
collaboration of experts in different fields without
which EcoTrends would have fallen short of its goals.
When EcoTrends was first started, communications
regarding project development were principally
between two scientists and site principal investigators
because it was thought that the data of interest would
be easily accessible online. When it was discovered
that the data were difficult or impossible to find, the
project was formulated more formally. The science
advisory committee was formed to widen the breadth of
scientific knowledge and the technology committee was
formed to inform technological development (chapter
2). Communications were then expanded to first
include researchers from each site, then information
managers. The LNO formally became involved when
supplemental funding from the National Science
Foundation became available.

The combined advice from a wide range of expert
contributors had a profound effect on the success of the
project. We recommend for a new synthesis project that
the project leader(s) recruit experts whose knowledge
spans the breadth of the anticipated project and that
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they be involved at the start of project planning. This
expansion should include not just experts in the focal
science but also experts in roles necessary for the
implementation of the project, such as information
systems designers, information managers, and
statisticians.

Recommendations for Improved
Information Environments To
Support Synthesis Products

8. Focus on development of both local and
network information environments.

An “information environment” is a collection of
scientists, information managers, and analysts and

of the technology needed to manage and share

data. Effective information environments involve
development of shared language, conventions,

and practices for communication among people

from different backgrounds. These environments
exist at both site and network levels. They include
development and use of technical, organizational, and
social work processes to manage multiple types of
data and the translation of science. Comparing data
from multiple sites can stimulate new information
management activities and approaches; however, work
on collaborative data activities must be constantly
balanced with the need to meet site requirements.

The EcoTrends Project needed an effective information
environment to successfully manage data and
communications. The environment established
included a technological system to track, process, and
manage data and a communications system to support
collaboration and decisionmaking among participating
scientists, information managers, and developers.
These systems had to develop iteratively with lessons
learned from one iteration informing the development
of the next. Specifically, these systems promoted
understanding of technical and cultural issues regarding
data; informed decisions on how data should be
selected, processed, and shared; and provided feedback
on data handling. Time invested in identifying,
developing, and using coordination mechanisms
accounted for a large amount of unplanned time that
was ultimately recognized as well spent.
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We recommend that sites that already have information
environments continue to invest in their multifaceted
growth and ongoing redesign and that sites without

a formal environment dedicate time to developing
strategies for creating one, even if resources are scarce.
The rewards of a smoothly operating set of practices
and systems more than compensate for the cost.

9. Combine long-term data handling with
short-term scientific products and data
checking procedures.

Throughout the several years that the EcoTrends
Project needed to produce its intended products—this
book and a complementary website—it was important
to keep participants engaged with the project and to
share preliminary products. EcoTrends generated both
short-term scientific products and periodic data checks
requested by the participating sites. The scientific
products included papers written by the 2009 scientific
working groups. These prompted review of the website
content and accessibility, fostered new ideas for future
website features and content, and motivated supporters
of the project. EcoTrends also developed a data quality
report when requesting sites to check their derived
data. Created as a spreadsheet and distributed easily
by email, this file provided a much needed feedback
mechanism for sites and provided a useful, albeit
improvised, approach to recordkeeping. Each round of
responses from the sites after a data-checking session
generated improvements to the report. In the long term,
however, a more sophisticated online solution may be
more robust, transparent, and user-friendly.

Balancing long-term goals with short-term actions is
central to development of a contemporary information
environment. Juxtaposing the fulfillment of immediate
tasks within a well-defined long-term project creates an
environment in which design can be proactive planning
for the future while meeting immediate needs. Short-
term scientific products, such as papers that examine the
data, can justify the usefulness of the project, motivate
participants to continue with further development,

and inform future development. Data-checking events
can validate data processing, elicit feedback from the
supporting community, and generate enthusiasm for the
project. However, short-term products may require the
development of new methods or work-arounds to create
them, potentially involving new analysis procedures,
communication mechanisms, or types of collaborative
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activities. These methods or work-arounds can be
very useful, but they should inform long-term project
development.

10. Develop and maintain transparency by
fostering communication and feedback.

Project transparency refers to making participation,
processes, and systems accessible and clear for both
those closely involved and those casually connected to
the project. Transparency requires constant attention
to ensure availability of information and openness

of the decisionmaking process. While the original
intent of the EcoTrends Project was to be open and
inclusive, identifying and developing mechanisms

for collaboration and documentation took time.
Initially, the existing LTER community networking
infrastructure—from listservs to use of regular LTER
community meetings and monthly information
management video conferences—served the project
well. However, there was a persistent push to create
and continue collaborative activities that would open up
discussions concerning data by EcoTrends committees
or individual research sites to a public arena that could
engage a full spectrum of data providers and users.

The EcoTrends Project Office communication systems
evolved in response to projects’ and participants’
needs. For example, an initial group email request

for data submission was followed by individual site
communications; committee work with individual
hardcopies of graphs evolved to presentation of graphs
on an internal website. Presentations at community
events improved multisite awareness and engagement.
Initial contact with principal investigators and selected
members of committees eventually broadened to
include information managers and eventually the LTER
information management community. The development
of a site-specific spreadsheet summarizing dataset
submissions created much needed feedback to sites and
a coordination mechanism for joint recordkeeping, both
within a site and between sites and the Project Office.
Graphical representations were referenced online to
allow sites to check their contributions.

Attention to project transparency improved both
quality and quantity of data submitted, influenced the
practice of collaborative science, and promoted buy-
in to the EcoTrends Project by participants at all sites.

We recommend that future projects assess the needs of
their stakeholders as involved and engaged participants
and plan accordingly for project transparency.
Research into existing communications systems and
online networking tools may help. In addition, we
recommend that the project be poised to evolve their
communication systems as further needs are perceived.

Conclusions

In this chapter, we presented key lessons learned and
recommendations for future synthesis projects from the
perspective of a distributed information management
team tasked to support network-level ecological
research. Alternatively, a site-based research scientist
using the data from such a project might have further
recommendations on how to best expand analysis teams
and develop software routines to statistically explore
the data. A software or database developer might have
further insights in framing unique, iterative design
situations for use in dynamic synthesis environments.
Successful planning of any large data synthesis project
can be significantly enhanced by the perspectives and
knowledge of people from diverse backgrounds and
experience.

The EcoTrends Project can be considered a success for
the following reasons:

 First, this book, with a diverse array of summarized
long-term data collected from 50 sites, and an
associated website with some searching and data
exploration functionalities fulfill the initial goals of
the project.

* Second, EcoTrends contributed significantly to
both individual- and community-level understanding
of multilevel information management by providing
hands-on experience with multisite data integration.

* Third, the EcoTrends Project was unique in carrying
out a data production process in a collaborative,
interdisciplinary setting with a well-established
information management community and in having
the information system work distributed between
two geographically distinct, but communicating
centers (EcoTrends Project Office in Las Cruces,
NM, and LTER Network Office in Albuquerque,
NM). These arrangements reveal a number of
underappreciated dimensions of the work involved
in creating comparable data.
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In addition to the highlighted successes, the EcoTrends
Project demonstrates the importance of addressing and
supporting knowledge production, data production,
and infrastructure growth within a single framework.
The project also highlights the importance of
broadening participants’ perspectives over time via
transparent processes and communication. Specifically,
the perspectives of EcoTrends Project participants
broadened from simply defining digital products and a
single companion workflow to eventually envisioning
multiple interdependent data processes and information
environments. These processes and environments
included not only a technical infrastructure but an array
of organizational and social arrangements. Besides
just considering the data and the individual work
arenas, participants learned to consider the variety of
participant roles and activities that tied them together.
Iterative, collaborative learning throughout a project
and planned flexibility to react to new ideas were
important elements of the EcoTrends Project and may
well serve any new multisite synthesis project.
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Chapter 17

Long-Term Research Across
Sites, Ecosystems, and
Disciplines: Synthesis and
Research Needs

D.P.C. Peters

Dramatic changes in climate, land cover, and habitat
availability over the past several centuries influence
nearly every ecosystem on Earth (MEA 2005, IPCC
2007). Large amounts of data have been collected

to document these changes, such as shifts in species
dominance, loss of biodiversity, and reductions in clean
air and water (Parmesan and Yohe 2003, Grimm et al.
2008b). Solutions to these environmental problems
have been more elusive because much of the data
remain inaccessible to a broad audience (Bennett et
al. 2005, SNE 2008). Most data are too technical or
complicated for general use, and many data are posted
online in nonstandard formats. Inaccuracies in the
data and missing descriptive metadata further limit
accessibility (chapter 16). Some complex data have
been distilled into useful formats for nonscientists
(MEA 2005, SNE 2008), but questions can arise as to
how the data were interpreted or analyzed.

The EcoTrends Project is one of the first attempts to
standardize, simplify, integrate, and visualize data from
diverse terrestrial, aquatic, and marine ecosystems in
order to promote understanding and synthesis by a
broad audience. This chapter discusses key scientific
results from this project, describes developing
conceptual and operational frameworks for cross-site
synthesis, and provides recommendations for future
research.

What Have We Learned
Scientifically?

Long-term ecological research started over a century
ago in the United States to address public concern
for the future of the Nation’s resources and with a
belief that historic information would be important
to future generations. Specific sites and individuals
dedicated to data collection required a long-term
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vision to sustain their efforts through the characteristic
turmoil of turnover in personnel, land ownership,
funding agencies, and government policy. Fortunately,
the development of networks of sites over the past
century, either by Federal agencies like USDA Forest
Service (FS) and USDA Agricultural Research
Service (ARS) or by programs such as the Long Term
Ecological Research Program (LTER) funded by the
National Science Foundation, provided a broader scale
vision with some coherence in data collection and
standardization.

The data assembled in this book are a testament

to this continuing dedication by individuals, sites,
networks, and funding agencies. The data, graphs,

and maps also provide a strong statement about the
importance of continued collection of ecological data
as environmental drivers continue to change, with
consequences for both natural and human-dominated
systems. Key results are described below for patterns in
environmental drivers and in response variables.

Patterns in Environmental Drivers. Even though
most data in this book were not collected to address
cross-site ecological questions, comparisons of
long-term data across sites illustrate regional- and
continental-scale patterns in environmental drivers.
Mean air temperature has increased at 24 of our 50
sites, and annual precipitation has increased at 9 sites
with no obvious spatial distribution in either climate
variable (figure 11-3). Changing climatic patterns
are affecting both terrestrial and marine ecosystems
(chapter 3).

Trends in atmospheric chemistry show clear patterns
across the continent, with reduced deposition of nitrate
and sulfate in precipitation through time in the Eastern
States as compared with the West (figures 12-1 and 12-
22). These patterns in deposition reflect Federal policies
that had different effects geographically because of
different sources of chemical inputs to the atmosphere
(chapter 6). Increases in nitrogen have increased
primary production globally and decreased biodiversity
in many herbaceous communities (chapter 7).

Patterns in stream-water chemistry across sites do not
reflect broad-scale patterns in atmospheric chemistry
(figures 12-19 thru 12-21 and 12-30 thru 12-34);
thus, local conditions (for example, soils, geology,
topography, vegetation, adjacency to urban areas)
strongly influence chemical inputs to and losses from
streams. Patterns in disturbance events and ecosystem
responses are more difficult to compare across sites
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(chapter 9), although recent conceptual advances should aboveground net primary production (ANPP; figures

promote cross-site comparisons in the future (Peters et
al. 2011).

Human population density has increased at all sites,
although at different rates (figure 13-1). The Eastern
States are more heavily populated than those in the
West (figure 8-1), although parts of the West, such as
Phoenix, AZ, have experienced some of the highest
rates of increase over the past 50 years (chapter 13).
This urbanization can have large impacts locally
within urban ecosystems (Grimm et al. 2008a), in
natural ecosystems at large distances from cities
(Grimm et al. 2008b), and globally through long-
distance environmental teleconnections (Adger et al.
2009). Disturbance regimes associated with climate,
pollution, and human activities are also changing

at many sites, resulting in significant effects on
ecosystems (chapter 9).

Integrating multiple sources of long-term data provides
new insights into both temporal and spatial dimensions
of ecological systems. Long-term data have shown that
space-for-time substitutions commonly used in ecology
are not always appropriate and may result in misleading
conclusions (figure 5-6). Combining site-based data
through time on ecological processes with climatic data
collected by the National Weather Service since the late
1800s, atmospheric chemistry data from the National
Atmospheric Deposition Program since the 1970s,

and human population and economy data from the

U.S. Census Bureau since the late 1700s provides the
temporal context for understanding trends in ecological
responses. For example, sea level is increasing at all
nine coastal sites (figure 11-13), with important effects
on ecosystem processes and services (Hopkinson et al.
2008). In general, these sites also have high population
densities and became urban areas earlier than inland
sites (figure 13-2). In addition, mean air temperature

is increasing at six of these sites (figure 11-3), and
water temperature is increasing at two coastal sites in
California (figure 11-19). Thus, multiple drivers, each
with a different magnitude, timing, and rate of change,
are interacting to influence these coastal ecosystems
through time.

Placing site-based dynamics within a broader spatial
context of landscape-, regional-, continental-, and
global-scale patterns in drivers shows connectivity in
the flow of material and information among different
systems or nonadjacent locations (Peters et al. 2008).
At the landscape scale, spatial heterogeneity in

14-1 through 14-3) can be related to within-site
variation in redistribution of water from upslope to
downslope topographic positions (Peters et al. 2006)
and in the disturbance regime (Briggs and Knapp 1995).
At broader scales, regional patterns in precipitation
chemistry can reflect rainfall patterns that connect

cities (as sources of nitrate and sulfate) more closely

to upslope mountainous areas rather than to nearby
agricultural land (figure 6-4).

Patterns in Ecological Responses. Although a large
number of biological response variables are collected,
measured, or sampled on plants, animals, and microbes
at every site included in this project, relatively few
(six) biotic variables met our criteria for inclusion in
this book (more than 10 years of data, collected from

a number of sites, data and metadata in a form suitable
for synthesis). Time constraints and resource limitations
resulted in many datasets being left out of these initial
analyses. However, the plant and animal datasets that
are included provide useful information

for cross-site comparisons. All LTER sites collect
primary production or plant biomass data that can

be compared across diverse terrestrial, aquatic, and
marine systems (figures 14-1 thru 14-6) similarly to
how terrestrial systems have been analyzed (chapter 5).
Many of the USFS and ARS sites also collect similar
data. A subset of sites also collect plant and animal
richness data and animal abundance data, with insects
and mammals providing the most comparable datasets
across the most sites (figures 14-7 thru 14-12). Biotic
data are often idiosyncratic in that they reflect high
spatial and temporal variability inherent in biological
phenomena; thus cross-site comparisons after the data
have been collected are challenging, and in many cases
it is not possible to convert these data to common
metrics for comparison.

Conceptual Framework for Synthesis

Assembling long-term data across a diverse set of
sites allows us to draw generalizations, primarily
about patterns and trends in individual environmental
drivers or key response variables that either have
been collected using standard methods or can be
converted to similar units (chapters 11-14). These a
posteriori comparisons of patterns within and among
individual datasets are extremely valuable as a first
step in developing a framework for synthesis across
sites. However, these comparisons are insufficient to
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address many questions. A conceptual framework for
cross-site synthesis is being developed that integrates
three strategies associated with ecological research:
pattern-process studies for deep understanding within
a site, long-term studies, and broad-scale patterns from
observation networks of sites (Peters 2010).

Ecology of the “deep.” Many sites collect a wealth of
information in great detail about processes and about
pattern and process relationships (chapters 3-10) that go
beyond comparisons of pattern alone (chapters 11-14).
This drilling down into the complex interactions that
make up an ecological system are needed as part of a
synthesis framework in order to understand and predict
dynamics at a site representative of an ecosystem

type (Peters 2010). This information integrates

system components vertically, both literally in that
aboveground and belowground structural components
are integrated and also figuratively in that hierarchical
levels of organization are integrated (for example,
genes, individuals, populations, species, communities,
and ecosystems) as well as pattern-process relationships
across spatial and temporal scales (Levin 1992,
Carpenter and Turner 2000, Turner 2005). Predicting
future dynamics of ecological systems requires detailed
understanding and integration of the interactions

and feedbacks among many components (examples

are found in Driscoll et al. 2001, Hobbie et al. 2003,
Seastedt et al. 2004, Briggs et al. 2005, Ducklow et al.
2007).

Ecology of the “long.” Observations collected
through time for many sampling periods are needed
to determine the rate and direction of change, to
distinguish long-term trends from short-term variability,
and to assess the importance of infrequent events

as well as time lags in responses (Magnuson 1990,
Kratz et al. 2003, Likens 2004, Lugo 2008). The
ecology of the long was suggested as a complement
to process-based studies conducted over short time
periods at a site (Carpenter 2002). Long-term data
from diverse sites can be used in a qualitative way to
investigate similarities in processes across sites. These
similarities can then be used to develop or modify
general ecological theories. For example, shifts from
one state of a system to another state show similar
patterns through time for many systems: Abundance
of one dominant species decreases through time as
the abundance of another species increases until there
is a shift in dominance (chapter 4). These shifts in
dominance (state changes) are often driven, at least in
part, by climate but are reinforced by internal (among
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the biota) feedbacks that make reversals to the previous
state very difficult (Carpenter 2003). Comparisons of
two very different systems (desert plants and Antarctic
penguins) show that these internal feedbacks can have
strong similarities. In the Western Antarctic Peninsula
(WAP), a shift back to a climate favorable to Adélie
penguins may not result in recovery of this population
over ecological time scales (decades to centuries)

if potential source populations remaining in higher
latitudes are too fragmented to overcome the critical
thresholds in recruitment and survival needed to export
individuals back to the Peninsula (W.R. Fraser, personal
communication).

Similarly, perennial grasses that historically dominated
much of the American Southwest have been reduced to
remnant populations within large areas of shrublands
(figure A1-43). A change in climate that favors grasses
may not result in increased recruitment and survival

if seeds can not disperse beyond these isolated grass
patches. Cross-site studies “by design” (chapter 10)
are needed to compare processes and patterns driving
dynamics in these very different systems.

Ecology of the “broad.” The third component of

a synthetic framework for cross-site synthesis is
integrating observations collected by networks of sites
designed to examine broad-scale patterns in drivers
and responses (Peters 2010). Observation networks of
sites collecting similar data across broad areas have
been operational in the United States since the National
Weather Service started collecting meteorological
data in 1870 (http://www.nws.noaa.gov/). Streamflow
has been monitored at some sites for over 100 years
(http://waterdata.usgs.gov ), and the census of human
demography and economy began in the 1700s (http://
www/census.gov). A number of observational networks
have emerged over the past decade to collect similar
ecological data using standard protocols (Peters et al.
2008), including the Ocean Observatories Initiative
(Clark and Isern 2003), the WATERS Network (http://
www.watersnet.org), and the National Ecological
Observatory Network (Keller et al. 2008). Other
networks are collections of sites with similar missions,
such as the ARS network of rangeland sites and the
USFS network of experimental forests. Both collect
data with site-specific methods, so standardization is
required before comparisons can be made (Lugo et al.
2006, Moran et al. 2008).
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Operational Framework for
Synthesis

As part of the EcoTrends Project, we integrated
different types and sources of data from these three
strategies of ecological research into one operational
framework with three key steps (figure 17-1).

First, data from all three strategies were obtained from
four sources:

* downloaded from standardized Internet pages
containing many sites, such as climate data from the
National Climate Data Center,

* downloaded from Internet pages of individual
research sites or scientists,

» received directly from scientists who collected the
data, and

 received from an information manager or staff
personnel with access to the data.

These source data were checked for errors in values
and format and then assembled into a common database
structure. The quality of the data varied such that the
amount of work required to obtain “clean” data also
varied (chapter 16).

Then common aggregations were conducted on the
source data to reduce the complexity of the structure

of each dataset and to create a common format for
multisite comparisons. Finally, these new data products
were used to generate the graphs in this book (chapters
11-14).

Figure 17-1. Operational framework for assembling different sources of data into a database of new products that allows and
encourages cross-site comparisons and synthetic analyses. Redrawn from Peters (2010).
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Recommendations: What Do We Still
Need To Do?

Rather than an exhaustive list of all possible research
needs for the future, a few key recommendations are
noted here based on experiences from this project:

1. Conduct “by-design” cross-site, multiscale
experiments of multiple drivers combined with
observation networks.

a. Conduct experiments of multiple interacting
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drivers operating across a range of spatial

and temporal scales for diverse ecosystem

types. Quantitative comparisons of processes
across sites require experimental manipulations
of resources or populations, such as invasive
species, pests, or pathogens, within and

among diverse ecosystem types. Examples of
these manipulative studies exist primarily

within an ecosystem type (Chapter 10), although
there are notable exceptions (the Long-Term
Intersite Decomposition Experiment Team;

see Parton et al. 2007). Experiments are needed
that integrate (1) horizontally to include patterns
in multiple interacting drivers across broad spatial
extents and multiple ecosystem types and

(2) vertically to include depth of knowledge about
changing pattern-process relationships across
scales. These experiments are expected to provide
insights into understanding and predicting
ecological dynamics in the future.

Conduct long-term experiments or monitoring

of variables that are not well understood or
easily standardized. These variables include many
belowground components of ecological systems,
such as soil respiration, belowground net primary
production and biomass, and microbial diversity,
abundance, and biomass. Long-term biotic
datasets that could be easily standardized and
compared are relatively scarce, and this scarcity
severely limited useful cross-site comparisons

of ecological responses to environmental drivers.
In addition, many datasets are not of sufficient
duration for determining trends. In many cases,
biotic datasets have been collected but are
missing metadata, limiting their usefulness

to others.

c¢. Conduct long-term experiments to allow
comparisons of disturbances and experimental
manipulations across sites. Although disturbance
regimes and ecological responses to disturbance
are studied at most sites, these data are not
collected or structured in a standardized way
that allows comparisons. Progress has been
made in defining disturbances by events
rather than by types and in decomposing an
event into its constituent drivers and responses
(Peters et al. 2011). Similar procedures are
needed for experimental manipulations.

. Expand the scope of the project (sites, within-site

sampling locations, variables, web-based tools)
(figure 17-2).

a. Add sites to improve representation of the
ecosystems of the United States and the World.
Large areas of the Western United States are not
represented, in particular the cold deserts of the
Great Basin and Colorado Plateau, Mediterranean
shrublands, and annual grasslands of California; in
addition, greater representation of the central
Great Plains grasslands is warranted. Freshwater
systems are not included, and the one site that
focuses on lakes (North Temperate Lakes, NTL)
was classified here as eastern forest to allow
cross-site comparisons. Diverse systems in large
states, such as Alaska (currently two sites) and
Texas (one site), should be represented. In
addition, more urban sites (two sites) should be
added as well as sites that examine interfaces,
such as urban-natural systems, land-water
margins, and elevational gradients.

b. Add locations to characterize spatial variability
within a site. For most variables, our initial
analysis included one sample location selected
by a site investigator to represent that site. High
spatial variability in drivers and responses across
many sites cannot be studied without additional
sample locations. Connectivity in transfer
processes that may include dynamics, such as
wind and water erosion-deposition patterns, also
cannot be examined without more locations.
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c. Add variables that did not meet our initial criteria. d. Add tools to the web-based user interface that
Additional variables that are specific to a few will enable users to fully understand the data, and
sites, with shorter records than 10 years, or have to enable within- and among-site comparisons.
complicated data structures should be added to Tools for visualizing, animating, and analyzing
improve understanding and prediction. Contextual the data statistically will allow users to more
variables, such as soil texture, landform, and easily see trends in time and through space.

topographic information (elevation, slope, aspect),
that may not change through time should also
be added.

Figure 17-2. Web-based tools that allow visualization, animation, and analysis of derived data products are needed to fully
utilize long-term data from many sites to address critical questions from a broad audience.
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Summary Recommen dation: Make * Make all of the data and metadata easily accessible
Data and Associated Metadata Easily ~ 2nd usable by others.

Accessible to and Usable by Others. Without this approach, we will remain limited in the

application of these research sites and datasets for the
This is the strongest recommendation that follows conservation of our Nation’s resources.

logically from this project. Many thousands of datasets

have already been collected; analyses in this book and

on the current website (http://www.ecotrends.info) References
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