Building tools for healthy vineyard soils:

A Salinity Story

Kerri L. Steenwerth¹, Maya C. Buelow², Lucas C.R. Silva², and Sanjai J. Parikh²

1. USDA/ARS Crops Pathology and Genetics Research Unit, Davis, CA
2. Department of Land, Air, and Water Resources, University of California, Davis
Winery Wastewater Studies Around the World

- **South Africa**
 - Aybar 2007
 - Walsdorff 2004
 - Conradie 2013

- **Spain**
 - Bustamante 2005

- **Greece**
 - Vlyssides 2005

- **Chile**
 - Aybar 2007

- **Australia**
 - Arienzo 2009
 - Laurensen 2011
 - Mosse 2011
What Do We Know About Winery Wastewater?

- Grape pulp, skins, & seeds, lees, tartar, & fining agents
- Cleaning compounds \(\rightarrow \) Often Na\(^+\) and K\(^+\) based
- Organic acids, alcohols, esters, & polyphenols
- Widely fluctuating acidity, organic loads, & flow volume
- Treatment approaches vary
Objectives

Baseline of winery wastewater for Northern & Central California

How do Na$^+$ and K$^+$ affect hydraulic conductivity (HC) of soils of diverse dominant mineralogy?

Pictures eliminated
Long-term View: mitigating temperatures in 2040-2069

Increases in temperature, °C

Winter

Summer

A. Kerr et al. 2017, Climatic Change
Crop Sensitivity to Temperature

Effects of total specialty crop acreage by county

Scaled by acreage ➔

Reflects counties with low acreage but sensitive crops
Winery Wastewater Survey

- Winery background surveys conducted
- 18 Wineries **pre-treatment** and **post-treatment** WW samples monthly for 2 years
- Winery activities logged
Winery Wastewater Analysis Methods

- Dissolved organic carbon (DOC)
- pH & EC
- Ion composition

\[\text{BOD}_5 \]

Biological Oxygen Demand
How Does Winery Wastewater Impact Soils?

Risk of reduction in HC = Little to moderate

Hydraulic conductivity (HC)
Movement of water through soil profile (cm s\(^{-1}\))
HC reduced by clay swelling and dispersion

Adapted from Rhoades, 1977; and Oster and Schroer, 1979; Taken from Ayers and Westcot 1985. Water Quality for Agriculture. FAO Irrigation and Drainage Paper 29 rev. 1 FAO Rome.
Predictions for reductions in soil hydraulic conductivity, HC

Risk zones adapted from Ayers and Westcot (1985).
Points above the line = no anticipated impact on soil hydraulic conductivity

Oster, J.D., Sposito, S., Smith, C.J. 2016. California Agriculture, volume 70, no. 2, pp. 71-76
Conceptual Vision of Tool to Manage Salinity and Wastewater

Web Interface

Location
Management Activities
Results & Recommendations

In the background

Scenario analysis:
Indices of Salinity and Water Quality & Quantities
Other mitigating factors – plant physiological effects, soil organic matter dynamics

Equation Factors
Climate & Soil
Historic Land Use Information

K. Steenwerth – USDA-ARS
A. Oberholster, S. Parikh, A.T. O’Geen – UC Davis

Original slide by M. Easter
USDA-ARS / UC Davis research publications that contain this reported work.

This publication is a product of the USDA California Climate Hub and the USDA Southwest Climate Hub.
Thank You

Kearney Foundation of Soil Science. Grant #2009.011
USDA-ARS, Sustainable Viticulture Project

Thank you to the 18 participating wineries

Kim Mosse, Fulbright Scholar, Monash Univ., Queensland, AU
Parikh Soil Chemistry Laboratory, University of California, Davis