ICM Gasification Technology

USDA-ARS Presentation

February 8, 2011
ICM Engineering, Manufacturing, Construction and Management

Construction Management

Rotary Drying Equipment

Installation Services

Manufacturing

Process Engineering

Process Automation
ICM Technology: 102 Facilities across North America

Serving the U.S. and Canadian Ethanol Industries

- Process engineering, project management, training, and start-up services for 102 plants
- General contracting services for 27 plants
- Retrofits, operations and engineering assistance to other fuel ethanol technologies
ICM’s Auger Gasification Technology

- Successfully developed in the late ‘70s early ‘80s
 - Tested 250 TPD using MSW and wood wastes
 - Supported by DOE and Boeing

- After extensive technology review and installation of another gasification technology ...
 - Licensed technology
 - Fuel flexible
 - Greater control
 - BioChar capable
 - Shop fabricated
Reducing Ethanol’s Carbon Footprint

- Provide a proven, robust gasification technology
 - Reduce the Ethanol Industry’s dependence on natural gas

- Gasification technology that is fuel flexible
 - Fiber from the dry fractionation of corn
 - Separation of starch from food grade corn oil and proteins
 - Local corn stover, wood chips, other biomass/energy crops
 - Municipal solid wastes and sludge

- Promote sustainable agriculture through co-production of BioChar
ICM’s Commercial Demonstration Gasifier

- Located in Newton, Kansas
- 150 - 200 ton/day capacity
ICM’s Commercial Demonstration Gasifier

- Evaluate feedstock performance
 - Maximum feed rate and turndown
 - Mass & energy balance and carbon conversion
 - Emissions testing services
ICM Gasifier

- **Better Control**
 - Mass input
 - Low rpm auger
 - Retention time
 - Wet gas bypass
 - 10% - 50% mc
 - Zoned air input

- **Robust Design**

- **Small footprint**
 - 8 ft x 40 ft = 150 ton/day

- **Low energy**
 - Minimal size reduction
 - < 5 hp for auger
 - < 15 hp air fan
 - Fluid bed >> hp
Gasifier Operations: March 2009 – Nov. 2010

- **6,850 tons** gasified
- 20 months in operation, 2100 hrs
- **Two 100 hour continuous runs**
 - 100 hours on corn stover
 - 100 hours on wood chips
- **35 day continuous run**
 - Wood chips, stover and straw
 - Independent engineer’s review

- Wood Chips 4,000 tons
- Corn Stover 1,000 tons
- Wheat Straw 400 tons
- Sorghum Stalks 400 tons
- C & D 200 tons
- Paper Pulp + Plastics 100 tons
- Switchgrass 50 tons
- Corn Bran + Syrup 50 tons
- Auto Shredder Res. 50 tons
- MSW (RDF) + Tires 350 tons
- Chicken Litter 200 tons
- Dairy Manure 50 tons
- Manure + Woodchips 50 tons
Applications

- **1st OPPORTUNITIES:** Steam & Power, 10-60 MW_e
 - RDF, RDF+TDF, Wood chips
 - ICM also providing startup and long-term O&M services

- **Domestic and International**
 - 20 MW_e WTE for Charlotte, NC, etc.
 - Early stages in permitting, preliminary engineering and financing
More Applications

- **In DEVELOPMENT:** IC engine to Power, 5-20 MWₑ
 - Gasifier ⇒ ⇒ Gas Cleanup ⇒ ⇒ IC Engines & CHP
 - RDF, RDF+TDF, Wood chips
 - Harvey County Kansas

- **Targeting smaller municipalities**
 - Lower capital requirements
 - No high pressure steam, boiler certifications, etc.

- **Other Opportunities**
 - Industrial applications – waste disposal
 - Process residuals
Flue Gas Emissions Control

- Particulate removal
- Staged injection of air & flue gas recycle
- NOx - Selective non-catalytic reduction
- Dry sorbent injection
- Dual-field Wet ESP
 - Strategic alliance with EISENMANN Corp.
 - IC Engine gas cleanup
BioChar
Co-Production
Research and Development

- Can the ICM gasifier produce high quality biochar?
 - Pyrolysis is not the only path to biochar
- To date - supplied over 100 tons Biochar to ...
 - Research institutions
 - Community organization
 - Private entrepreneurs
- Continued interest in promoting biochar and sustainable agriculture
High Adsorption, High Carbon BioChar

- High quality biomass, low gasification temperatures
 - S. yellow pine bark biochar @ 92-94% carbon

![Graph showing adsorption of R134a at different temperatures]
Germination Testing on High and Low Carbon BioChars

Lettuce Seed Germination Tests

- 3 replications, 20 seeds per rep

Bed Temps.
- Wheat Straw: 540-600°C
- Wood chips: 600-700°C
- MSW & Tires: 750-820°C

Graph:
- Control
- Wheat Straw (34.2 % C)
- Corn Stover (12.4 % C)
- G.Sorghum Stalks (5.2 % C)
- Wood Chips (87.7 % C)
- Switchgrass (34.7 % C)
- 75% MSW 25% Tires (32.0 % C)
- Chicken Litter (28.4 % C)

Key:
- 10%wt BioChar 102 MT/ha (45 t/acre)*
- 25%wt BioChar 254 MT/ha (113 t/acre)*
- 50%wt BioChar 508 MT/ha (227 t/acre)*

* First 10 cm (4") of top soil; soil bulk density: 1.0 g/cm3 (52 lb/cf)
High and Low Carbon BioChar

<table>
<thead>
<tr>
<th>Feedstock Input</th>
<th>Feedstock</th>
<th>%ash, db</th>
<th>%C, db</th>
<th>Carbon Conversion</th>
<th>%C to syngas</th>
<th>Biochar Production</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. Yellow Pine Bark</td>
<td>1.8%</td>
<td>52.6%</td>
<td>44.5%</td>
<td>94.1%</td>
<td>31.0%</td>
</tr>
<tr>
<td></td>
<td>1.8%</td>
<td>52.6%</td>
<td>59.7%</td>
<td>92.1%</td>
<td>23.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.8%</td>
<td>52.6%</td>
<td>93.5%</td>
<td>65.0%</td>
<td>5.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Urban Wood Waste</td>
<td>2.8%</td>
<td>50.2%</td>
<td>43.0%</td>
<td>91.0%</td>
<td>31.4%</td>
</tr>
<tr>
<td></td>
<td>2.8%</td>
<td>50.2%</td>
<td>59.8%</td>
<td>87.7%</td>
<td>23.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.8%</td>
<td>50.2%</td>
<td>91.5%</td>
<td>60.0%</td>
<td>7.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wheat Straw</td>
<td>6.4%</td>
<td>47.0%</td>
<td>69.7%</td>
<td>69.0%</td>
<td>20.6%</td>
</tr>
<tr>
<td></td>
<td>6.4%</td>
<td>47.0%</td>
<td>79.6%</td>
<td>60.0%</td>
<td>16.0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.4%</td>
<td>47.0%</td>
<td>92.9%</td>
<td>34.2%</td>
<td>9.7%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.4%</td>
<td>47.0%</td>
<td>98.5%</td>
<td>10.0%</td>
<td>7.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Corn Stover</td>
<td>8.4%</td>
<td>46.9%</td>
<td>86.0%</td>
<td>44.0%</td>
<td>15.0%</td>
</tr>
<tr>
<td></td>
<td>8.4%</td>
<td>46.9%</td>
<td>97.5%</td>
<td>12.4%</td>
<td>9.6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.4%</td>
<td>46.9%</td>
<td>98.9%</td>
<td>6.0%</td>
<td>8.9%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chicken Litter</td>
<td>21.2%</td>
<td>38.7%</td>
<td>70.9%</td>
<td>34.7%</td>
<td>32.4%</td>
</tr>
<tr>
<td></td>
<td>Switchgrass</td>
<td>6.0%</td>
<td>50.0%</td>
<td>93.6%</td>
<td>34.7%</td>
<td>9.2%</td>
</tr>
</tbody>
</table>
Co-Production of Power and BioChar

- **Three commercial gasifiers**
 - 4.5 MW - 136 MT/day (150 TPD)
 - Same scale as demonstration facility; footprint: 2.0m x 12m (6.0’ x 39’)
 - 9.0 MW - 272 MT/day (300 TPD)
 - Same scale as original DOE demonstration footprint: 2.6m x 12m (8.5’ x 39’)
 - 13.5 MW - 408 MT/day (450 TPD)
 - 1.5x original DOE demonstration; footprint: 3.0m x 12m (11’ x 39’)

- **Example: wood chips and corn stover**
 - **Yellow Pine** 1.3% ash db 25% mc 90% carbon conversion to syngas
 - BioChar with 80% carbon content (6.5% biomass db)
 - 4.5 MW – 7.3 MT/day 2,560 MT/y
 - 9.0 MW – 14.6 MT/day 5,120 MT/y
 - 13.5 MW – 21.9 MT/day 7,680 MT/y
 - **Corn Stover** 8.3% ash db 18% mc 90% carbon conversion to syngas
 - BioChar with 36% carbon content (13% biomass db)
 - 4 MW – 16.0 MT/day 5,600 MT/y
 - 8 MW – 31.9 MT/day 11,200 MT/y
 - 12 MW – 47.9 MT/day 16,750 MT/y
BioChar Currently Available

- 2+ ton of S. yellow pine bark BioChar
 - 92-94% carbon content
 - Free … just pay shipping costs
 - 80-100lb bags

- 200+ ton from woodchips for Apr-May 2011
 - >90% carbon content
 - Most going to academic institutions
 - Some may be available @ $250/ton + shipping
ICM Torrefaction Technology
100-150k TPY Demonstration Facility

- TORREFACTION REACTOR
 - Precise Control
 - Retention Time
 - Reactor Temperature

- DRYER

- FEED METERING BIN

- TORREFIED PELLET STORAGE AND LOADOUT

- THERMAL OXIDIZER

- ROLLER MILL

- SURGE BIN

- PELLET MILL

- COOLER

- WATER COOLING

- REACTOR GAS
Questions?

Albert S. “Bert” Bennett, Ph.D.
Senior Engineer and Principal Scientist
Direct: 316-977-6671
albert.bennett@icminc.com