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• Food security—global megatrends
– Another inconvenient truth

• Importance of irrigated agriculture
• A time for benchmarking:

– Yield potential and exploitable yield gap
– Water productivity

• Implications for research and extension 
on water use in U.S. agriculture

Topics
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Energy or Cereal Consumption versus Income by Country

Naylor et al., 2007. Environment 40: 30-43. Energy and income data from World 
Bank development indicators; cereal consumption data from FAOSTAT.

2003-2004 energy

food
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Oil Production vs Oil Discovery
Near-surface oil reserves

Deep-water reserves, 
oil sands and shales
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• Will business as usual meet projected 
global food demand in 2050?

 Global area for cereal crops declining

48% increase in cereal production 
needed by 2050 (40 yr) = 1.2% yr-1

 
of 

current average yield, or…..

1% annual exponential growth rate

• If business as usual won’t do it, what is 
needed to change course?
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Global Cereal Area Trends, 1966-2006

Total cereal area
(maize, rice, wheat, sorghum, millet, barley, oats)

19661966--19801980
+4.6 +4.6 MhaMha yy--11

19811981--20062006
--1.7 1.7 MhaMha yy--11

maize + rice + wheat area

19661966--19801980
+3.9 +3.9 MhaMha yy--11

19811981--20062006
+0.5 +0.5 MhaMha yy--11
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Urban-industrial expansion onto prime farmland at the periphery 
of Kunming (+6 million), the capital of Yunnan Province, China, 

Photo: K.G. Cassman
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Clearing virgin rain forest in Brazil

Photo: K.G. Cassman
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y = 2260 + 62.5x
r2 = 0.94

         Rice Yield
y = 2097 + 53.5x
r2 = 0.98

Wheat Yield
y = 1373 + 40.1x
r2 = 0.97

Global Cereal Yield Trends, 1966-2006

THESE RATES OF INCREASE ARE NOT FAST ENOUGH TO MEET 
EXPECTED DEMAND ON EXISTING FARM LAND! source:  FAOSTAT

+2.8%

+1.3%
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Tyranny of constant rate of yield gain:
Decreasing relative rate of gain
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Evidence that average national yields begin to plateau 
when they reach 70-80% of yield potential

Note yield plateaus in Korea and China for rice, wheat in northwest Europe 
and India, and maize in China and……..perhaps for irrigated maize in the USA

Cassman, 1999. PNAS, 96: 5952-5959 
?

Cassman

 

et al, 2003, ARER 28: 315-358 
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• Little change in yield potential of rice and maize 
in the past 35-40 years:
– Cassman

 
KG, Dobermann

 
A, Walters DT, Yang H.  2003.  

Meeting cereal demand while protecting natural 
resources and improving environmental quality. Annu. 
Rev. Environ. Resour.  28: 315-358 

– Duvick
 

DN, and Cassman
 

KG.  1999.  Post-green-
 revolution trends in yield potential of temperate maize 

in the north-central United States.  Crop Sci. 39:1622-
 1630

– Peng, S., K.G. Cassman, S.S. Virmani, J. Sheehy, and 
G.S. Khush. 1999. Yield potential trends of tropical rice 
since the release of IR8 and the challenge of increasing 
rice yield potential. Crop Sci. 39:1552-1559



08 Sept 2010 Water-Energy-Agriculture 13

Decreasing water supply in all major irrigated areas

Yet, irrigated agriculture produces 40% of global food supply 
on just 18% of the cropped area.
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Impact of Biofuels
 

on Food Security
• Use of cereal (maize, sorghum, wheat) and oilseed 

crops (soybean, oil palm) will increase due to current 
government mandates and rising cost of petroleum

• Use of perennial cellulosic crops (switchgrass, 
Miscanthus) will compete for crop land devoted to 
food crops—at least initially (first 5 billion gallons of 
second gen biofuels), due to higher development 
costs on marginal lands with low yield density

• Both will amplify need to accelerate rate of gain in 
crop yields on existing farm land while reducing 
agriculture’s environmental footprint (EI)

• Increased pressure to expand irrigated crop area
• Water supply for biorefineries

 
mostly a local issue
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Bottom Line on Yield Trends
• Expansion of crop area limited by lack of good 

quality arable soils and concerns about loss of 
wildlife habitat and biodiversity
– USA conservation reserve land
– Rainforests and wetlands in Latin America, SE Asia, SSA

• Current rates of gain in crop yields not adequate to 
meet expected demand for food, feed, fiber, and fuel 
on existing

 
crop land

• Little scope for increasing irrigated crop area due to 
competition for water with other sectors

• Little increase in yield potential of maize or rice for 
the last 30-40 years; yield stagnation in some areas

• What is scope for quantum leap in yields from 
biotechnology?
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double- to 
single-cross
hybrids

Expansion of irrigated area

Conservation tilliage and soil testing

Increased N fertilizer rates 

Improved balance in N,P,K fertilization

Precision planters

Transgenic (Bt)
insect resistance

Electronic
auto-steer

Multi-location hybrid testing in
1000s of on-farm strip trials

Integrated pest management

USA Corn Yield Trends, 1966-2009
(and underpinning science and technology support)
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From NCGA website, 8 May 2008: 
http://www.ncga.com/PDFs/NCGA%20Presentation%20on%20Food%20and%20Fuel%205-7-08.pdf
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Bottom Line on Yield Trends
• Expansion of crop area limited by lack of good 

quality arable soils and concerns about loss of 
wildlife habitat and biodiversity
– USA conservation reserve land
– Rainforests and wetlands in Latin America, SE Asia, SSA

• Current rates of gain in crop yields not adequate to 
meet expected demand for food, feed, fiber, and fuel 
on existing

 
crop land

• Little scope for increasing irrigated crop area due to 
competition for water with other sectors

• Little increase in yield potential of maize or rice for 
the last 30-40 years; yield stagnation in some areas

• Little scope for quantum leap in yields from 
biotechnology

• Need for ecological intensification and precision ag
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Ecological Intensification
• How high can average farm yields 

come to the yield potential ceiling 
using crop and soil management 
practices that conserve natural 
resources, protect environmental 
quality, give acceptable rate of 
economic return?

• Research and extension to close 
existing gap between average farm 
yields and crop yield potential



08 Sept 2010 Water-Energy-Agriculture 21

Importance of Irrigated 
Agriculture
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Irrigated systems occupied 18% of 
cultivated land area but produced 
40% of human food supply
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Million Irrigated Acres
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Irrigated crop production area 

Corn is the crop with greatest irrigated area, especially in GreCorn is the crop with greatest irrigated area, especially in Great Plainsat Plains
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Reliability of Irrigated Agriculture
• Assured water supply greatly reduces year-to- 

year variation in yield
• How to quantify yield variability in relation to 

water supply?
• Coefficient of variation (CV = standard 

deviation divided by the average yield)
• In 2007, 2008, and 2009 average grain yield was 

equal at 5 tons/ha in two counties (A and B)
• County A had yields of 4, 5, and 6 t/ha
• County B had yields of 3, 5, and 7 t/ha
• County A CV = 16%, county B CV = 33%
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• Irrigated agriculture 
attracted investment in 
livestock feeding 
operations, biofuel

 
refineries, and 
manufacturing of 
irrigation equipment 

• NE companies are world 
leaders in pivot 
irrigation systems (two 
are on the NYSE)
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Benchmarking Yield Potential and 
Water Productivity

PhD projects:
Patricio Grassini
Justin van Wart

Support from:
Bill and Melinda Gates Foundation

Water. Energy, Agriculture Initiative
Nebraska Center for Energy Sciences Research
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Hybrid-Maize model:  potential dry matter and grain yield

Daily intercepted solar radiation 
f(x)

 

= solar radiation, LAI

TemperatureLength crop cycle

Cumulative intercepted 
solar radiation

Gross assimilation

Dry matter 
production

Maintenance 
Respiration

Growth 
respiration

Grain dry 
matter

Kernel #

Kernel 
growth rate

Grain-filling 
duration

around silking

Kernel weight

grain-filling



08 Sept 2010 Water-Energy-Agriculture 31

G
ra

in
 y

ie
ld

 (b
u

ac
-1

)

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50
Seasonal water supply* (in)

Simulated corn grain yield / water supply relationship

*Available soil water (0-5 ft) at planting + planting-to-maturity rainfall + applied irrigation

Water productivity 
(WP) boundary 
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Mean WP function 
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Yields were simulated over 20-y for 18 
locations in the Western Corn-Belt 
using Hybrid-Maize model (Yang et al., 
2004). Crops assumed to grow under 
optimal conditions (no nutrient  
deficiencies and no incidence of pests, 
diseases, and weeds). Model inputs 
based on actual sowing date, plant 
population, weather data, and soil 
properties for each of the 18 locations.

Modified from: Grassini et al., 2009. Agricultural and Forest Meteorology
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Reported grain yield** / water supply data collected 
in the Western Corn-Belt by UNL researchers

** Crop grown under near-optimal management practices
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and Verma, 2009) 
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Nebraska, 2007-2008 (Burgert, 2009) 
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unpublished data). 
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From:  Grassini

 

et al., In Press.  Field Crops Research
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Analytical framework to benchmark and analyze water 
productivity in farmers’

 
fields
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On-farm analysis: corn fields in the Tri-Basin NRD

Data from 3 years (2005, 2006, and 2007): 777 field-year data 
identified with 100% corn (not split with other crops).

From:  Grassini

 

et al., In Press.  Field Crops Research



On-farm water productivity 
at the Tri-Basin NRD
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** Yield data based on farmer-reported values to the Tri-Basin NRD, 
2005-2007. Each data point corresponds to a site-year crop. Dashed 
blue line indicates the apparent water supply value (≈

 

37 in) above 
which grain yield is not responsive to water supply. Yield and 
irrigation between pivot and mixed irrigation

 

systems (typically, 
center pivot plus gravity irrigation in field corners) were not different, 
thus, both irrigations systems were pooled under the pivot category.
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From:  Grassini

 

et al., In Press.  Field Crops Research
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●

 

Simulated yield under limited-

 
irrigation management (75% of 
fully-irrigation except during the 
interval around silking when the 
crop was fully-irrigated)

■

 

Simulated yield under fully-

 
irrigated conditions (irrigation 
based on ETO

 

and phenology)

Opportunities to increase WP and save irrigation water 
through optimization of the irrigation management

Each point is the average of 3 years (2005-2007); circles indicate the approximate 
distribution of each category. Vertical and horizontal bars indicate ±

 

SD of the mean. 

Reported yield and actual water 
supply under pivot (  ) and 
gravity ( Δ

 

) irrigation systems.
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46.6 x 106 m3 yr-1

Optimal
irrigation

25.4 x 106 m3 yr-1

Limited
irrigation

41.0 x 106 m3 yr-1

Total district-level water saving: 113 x 106

 

m3

 

y-1

(~35% of current water use in maize!) 
Grassini et al., submitted to 

Field Crops Res.

From:  Grassini

 

et al., In Press.  Field Crops Research
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• Irrigated agriculture must support an acceleration in 
crop yields while using less water

• Tremendous need and opportunity to benchmark 
water productivity in U.S. cropping systems—

 especially for irrigated crops, but also rainfed
 

crop 
and livestock systems

– Helps with prioritization of research and extension
– informs policies to promote more efficient water use

• Real-time simulation models, weather data, soil and 
ET monitors, remote sensing to implement limited 
irrigation approaches that can support continued 
increases in yield with reduced water requirements

• Increased emphasis on research in farmer’s fields 
with explicit

 
emphasis on ecological intensification 

(higher yields with reduced negative environmental 
impacts)

– Very little such research in current public sector portfolio

Conclusions
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•QUESTIONS?
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