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CEAP: What is the American public getting Iin
return for their conservation dollars?

(a backward looking question, but CEAP is also forward looking)




CEAP is a multi-agency effort to quantify the environmental
effects of conservation practices and programs and develop the
science base for managing the agricultural landscape for
environmental quality.

CEAP findings will be used to guide USDA conservation policy
and program development and help conservationists, farmers
and ranchers make more informed conservation decisions.

CEAP Vision... Enhanced natural resources and healthier
ecosystems through improved conservation effectiveness and
better management of agricultural landscapes.

CEAP Goal... To improve efficacy of conservation practices and
programs by guantifying conservation effects and providing the
science and education base needed to enrich conservation
planning, implementation, management decisions, and policy.
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Case Studies

Stream bank fencing — University Park (UP), PA

Denitrification bioreactors for NO; removal In tile
drainage — Ames, |IA

Gypsum filter for P removal — UP, PA
Engineered wetlands for P removal — Kimberly, 1D

Innovations in manure application — UP, PA
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Problem: Farmer resistance to stream bank fencing
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In-stream fecal P deposition = 3,600 kg/yr

P LOADINGS




Steps in the Development of Denitrification
Bioreactors for Removal of NO, in Tile Drainage

* Proof of concept

e Research to optimize design
and determine efficacy

e Develop NRCS Conservation
Practice Interim Standard

e Demonstration Projects and
Training

* [ssuance of NRCS Conservation
Practice Standard and

Modification of Standard by
Individual States




Proof of Concept

Blowes, D.W., W.D. Robertson, C.J. Ptacek, and C. Merkley. 1994. Removal of

agricultural nitrate from tile-drainage effluent water using in-line

bioreactors. J. Contam. Hydrol. 15:207-221.

* a200-L bioreactor removed nearly all NO, from field drainage water with
concentration of 3to 6 mg N L™,

Robertson, W.D., and J.A. Cherry. 1995. In situ denitrification of septic-

system nitrate using reactive porous media barriers: Field trials. Ground

Water 33:99-111.

* a bioreactor trench containing coarse sawdust reduced very high NO,
concentrations (57-62 mg N L™) to much lower concentrations (2—25 mg
N L1)



Research to optimize design and
determine efficacy

Carbon Source
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*Bioreactors are as cost effective for
removing NO; as wetlands




Demonstration Projects and Training

*Demonstration projects are a
useful and often necessary tool
to show potential users that
the technology will work under
their local conditions.

*The projects can also be used
as training exercises for
farmers, technical service

providers, and contractors.

*Monitoring data can be used
to refine interim Practice
Standard




Develop Conservation Practice Standard

eDevelopment of an Interim
Conservation Practice Standard
can provide information to
Technical Service Providers and
NRCS personnel

*The Interim Standard can
serve as basis for cost sharing
the practice

*The Interim Standard needs to
be revised within 3 yr of
issuance.

*The Final Conservation
Practice Standard can be
further modified by individual
states for local conditions.

Interim |A-747 - 1

NATURAL RESOURCES CONSERVATION SERVICE
CONSERVATION PRACTICE STANDARD

DENITRIFYING BIOREACTOR
(Ac.)
INTERIM CODE 747

DEFINITION

A structure containing a carbon source installed
to intercept subsurface drain (tile) flow or ground
water, and reduce the concentration of nitrate-
nitrogen.

PURPOSE

To improve water quality by reducing the nitrate-
nitrogen content of subsurface drain flow and
ground water.

CONDITIONS WHERE PRACTICE
APPLIES

This practice applies to sites where there is a

Use a medium for the carbon source that is
reasonably free from dirt, fines, and other
contaminants.

This does not preclude the planned addition of
inoculants to improve the function of the
bicreactor. Inert materials such as gravel may
be mixed with the carbon source to provide the
required bioreactor volume and flow rate along
with the required amount of reactive carbon.

Do not subject the bioreactor to pressure greater
than needed to provide gravity flow through the
system.

Use geotextile lining for the bottom, sides, and
top of the bioreactor as needed to prevent the
migration of soil particles into the bioreactor,
based on the soils and geology of the site.




FGD gypsum filter - 15t generation

120 tons of FGD gypsum (5 truck loads)




P Removal by filtration




Dissolved P loads in 17 storm events

1 P that bypassed filter
(total = 21 kg)

M P removed by filter
(total = 2.5 kQ)

Dissolved P (KG)




P removal by gypsum filter for April 18, 2007
Storm event: 3.31 inches of rain in 30 hrs.

P entering ditch
8.22 kg
P entering filter P bypassing filter
0.66 kg 7.56 kg

$
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P not removed by filter ‘ P entering Manokin R.
0.15 kg 7.71 kg

P removed by filter
0.51 kg




P transport processes In Coastal Plain soils
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FGD gypsum “curtain” - 2nd generation
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Treatments:

 Bare soil (control)

» Fescue

« Fescue plus water treatment *
residuals (3 rates)
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Average Infiltration Rate (sec)
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Average Plant Weight (g)
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Fast Track

Based on the results of this study, the
municipality of Boise, ID Is going forward
with construction of the engineered
wetland to treat storm runoff.



Liquid manure appllcatlon
trials — no- t||| corn
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Broadcast application
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Shallow disk Injection

30 in (adjustable)

41in
Shallow Disk
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High pressure injection




Aerator w/banded manure
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Rock Springs Trials (2006-2007 average)
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Data courtesy C. Dell, USDA-ARS



Ammonia: more manure on the surface, more
ammonia emitted
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Odor — similar (but not identical) to ammonia
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Phosphorus: more on the surface, more dissolved
phosphorus in runoff
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Producers use these
results to choose the
manure applicator that
IS best suited for their
AR soll conditions and
S”W disk  management objectives.
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Conclusion

e |n some cases, conventional conservation
practices alone cannot meet
environmental goals.

e Innovations in conservation are needed In
order to advance agroecosystem services
while intensifying production.

Questions?
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