National Water and Climate Center
Snow Survey and Water Supply Forecasting Program
and SCAN

Michael L. Strobel, Director
USDA-NRCS National Water and Climate Center
Portland, OR
Manual snow course

Master stations in Utah, Idaho, Ohio, Missouri, and Mississippi.
Manual Snow Surveys

Metal tube inserted into snow and weighed to measure water content.

+300,000 snow course measurements to date
NRCS SNOTEL Network

- SNOTEL network
 - 13 Western States
 - 885 sites (includes SnoLite)
 - More than 16 million observations/year
 - Data transmitted in near real time every hour for most stations
- Snow courses = 1 measurement/month SWE and depth
- SNOTEL = 720 transmissions/month of multiple sensors
- Safety

http://www.wcc.nrcs.usda.gov/snow/
SNOTEL Site - Augmented Data Array

- Snow water content
- Precipitation
- Temperature
- Snow depth
- Relative humidity
- Wind speed/direction
- Solar radiation
- Soil moisture / temperature
Berthoud Summit (335) Colorado SNOTEL Site - 11300 ft

- Air Temperature Average (degF)
- Air Temperature Maximum (degF)
- Air Temperature Minimum (degF)
Mountain Snowpack as of February 1, 2015

Percent of
1981-2010 Median (US)
1981-2010 Average (Canada)
- > 180
- 150 - 180
- 130 - 150
- 110 - 130
- 90 - 110
- 70 - 90
- 50 - 70
- 25 - 50
- < 25

Westwide SNOTEL Current Snow Water Equivalent (SWE) % of Normal
Feb 10, 2015

Current Snow Water Equivalent (SWE) Basin-wide Percent of 1981-2010 Median

Unavailable
- <50%
- 50 - 69%
- 70 - 89%
- 90 - 109%
- 110 - 129%
- 130 - 145%
- > 150%

Prepared by:
USDA Natural Resources Conservation Service
National Water and Climate Center
Portland, Oregon
http://www.nwcrc.usda.gov
Updated: 14 Feb 2015 10:54
Spring and Summer Streamflow Forecasts as of February 1, 2015

Percent of 1981-2010 Average

- > 180
- 150 - 180
- 130 - 149
- 110 - 129
- 90 - 109
- 70 - 89
- 50 - 69
- 25 - 49
- < 25

No forecasts until March

50% exceedance probability forecasts shown. For forecasts at other exceedance probabilities, see individual state reports.

Prepared by: USDA Natural Resources Conservation Service National Water and Climate Center Portland, Oregon
http://www.nwcc.nrcs.usda.gov
Created: 6 Feb 2015 13:50
Soil Climate Analysis Network

- **SCAN** (Soil Climate Analysis Network)
 - 221 sites in 40 States and US Territories
 - Soil-climate monitoring
 - Uses meteor burst telemetry
 - Critical for drought monitoring

- www.wcc.nrcs.usda.gov/scan/
Johnson Farm, Nebraska
SCAN Site
Future Directions

- Further automating of manual snow courses to SNOTEL sites where real-time information is needed to provide water supply forecasts.
- Expansion of SCAN to provide governments, water managers, agricultural producers, businesses and researchers improved information about soil moisture conditions and potential droughts.
- Improving models and computational capacity to provide more frequent and accurate water supply forecasts and assessments of soil moisture.
- Development of simulation modeling capabilities to compliment statistical modeling efforts.
Application of a Physically-Based Distribution Snowmelt and Streamflow Simulation Model in Support of NRCS Water Supply Forecasting

- Develop protocol for distributed model forcing data
- Real-time simulation of snow deposition, melt, and surface water input
- Streamflow simulation
- Application to other basins
- Effects of a warming climate on snow accumulation and melt patterns
Water Balance Modeling

- Soil Ecohydrology Model (SEM) effort with Mark Weltz and Mark Seyfried. Taking a rangeland water balance – plant growth model and hooking it to the data stream that is derived from SNOTEL, SCAN, and RAWS weather stations to allow for real-time tracking of soil moisture and plant growth for on-going drought assessments by modeling interactions of PPT and soil water content (either measured or estimated) / and plant growth.
Potential ARS/NRCS Collaboration

• Soil moisture tools
• Soil moisture trend analysis
• Snowpack trend analysis
• Impacts of climate change on snowmelt/runoff timing
• National Soil Moisture Network
Potential ARS/NRCS Collaboration

• **Fluidless SWE (Snow SCALE) analysis**: Fluidless vs. Fluid. - Determine and quantify differences in measurements. Evaluate performance and recommend design improvements to improve data quality.

• **Design a fluidless precipitation gage**: Design all-season fluidless gage to measure precipitation with minimal power requirements.
Potential ARS/NRCS Collaboration

- **Field note software for snow surveys:** Design software to use with tablet to take field notes and automatically load notes into NRCS database.

- **Metadata database for SNOTEL/SCAN/Snow Survey stations:** Enhance and redesign current Access database using database software to incorporate metadata of stations for access using NRCS web tools.
Potential ARS/NRCS Collaboration

• **Soil Moisture – Temperature network evaluation:** Analysis of existing soil moisture/temperature network and determine priority areas for expansion of data for better special analysis for watershed management nationwide. Focus primarily on larger watersheds such as Missouri basin, Arkansas, etc.

• **SNOTEL air temperature analysis** – determine best ways to remove bias in temperature data that is a result of changes made with sensors, algorithms, sensor locations and electronics.
Initiatives/new efforts

• Interactive map development – Expand and refine interactive point map indicating current climatological and hydrologic conditions for data sites in the NWCC database.
Initiatives/new efforts

• Data quality - Develop a tool to ingest and analyze the Oregon State PRISM group’s quality-controlled SNOTEL ("PRISM-QC") data which was developed under a previous initiative.
Initiatives/new efforts

• Modeling - Continue development of VIPER as our main forecasting tool. Produce a centralized forecast system that allows for a more complete interaction with the NWCC database, ensuring consistent data use and improved storage of forecast information.