Biomass-Bioenergy Crops in the United States: A Changing Paradigm

Jane M-F Johnson1* • Mark D. Coleman2 • Russ Gesch4 • Abdullah Jaradat4 • Rob Mitchell3 • Don Reicosky4 • W. W. Wilhelm3

Abbreviations: C, carbon; CRP, conservation reserve program; GHG, greenhouse gas; N, nitrogen; SOC, soil organic carbon; SOM, soil organic matter; USDA, United States Department of Agriculture; USDOE, United States Department of Energy; WPEC, Woody perennial energy crops

ABSTRACT

The world energy paradigm is changing from one based on petroleum to one based on a mixture of energy platforms. This change is precipitated by a finite petroleum supply, an expanding global demand, and political instability in areas with major petroleum reserves. The mixed energy platform will include an array of renewable energy sources. The agricultural and forestry sectors have the potential to provide several plant-based products. Corn (Zea mays L.) grain for ethanol has long been utilized at least in some locations. Soy diesel is an expanding market. Technology is rapidly advancing to utilizing crop biomass, perennial grasses, woody perennials and forest products for the production of ethanol via a cellulosic platform and/or utilizing pyrolysis to generate syngas and other products/co-products. Emerging specialty crops have potential to supply feedstock as well. Altering fundamental aspects of plant growth, development, and adaptation, woody perennial energy crops expand biomass availability and usage. As this new platform emerges, cellulosic ethanol production brings new concerns: competing uses for crop or crop products, co-products, competition for land base, and management strategies to protect soil, water, and climate resources. As the energy paradigm shifts, the balance among competing needs will be critical to achieve sustainable food, fiber, and energy while protecting the soil resource and the environment. This emphasizes avoiding potential negative environment consequences of new bioenergy technologies and presents strategies on how this may be achieved.

Keywords: bioenergy, ethanol, biodiesel, biomass, herbaceous perennial energy crops, natural resource, renewable energy, soil conservation, woody perennial energy crops

CONTENTS

INTRODUCTION... 2
OPPORTUNITIES TO INCREASE PRODUCTIVITY 3
Enhancing the yield of biomass crops .. 4
Challenges in developing biomass crops 5
FEEDSTOCKS: POTENTIAL BENEFITS AND RISKS 6
Grain ethanol ... 6
Soybean ... 7
Alternative oil-seed crops .. 7
Cellulosic biomass ... 8
Thermochemical co-products ... 9
Feedstock: Annual crops .. 9
Herbaceous perennials for cellulosic feedstock.......................... 11
Switchgrass .. 11
Environmental benefits of perennial grasses 13
Woody perennial energy crops .. 13
WPEC cropping systems ... 14
Hardwoods .. 15
Coppice ... 15
Intensive pine silviculture ... 16
Environmental consequences and benefits of WPEC 16
Off-site soil and nutrient transport 16
Long-term site productivity ... 17
Biodiversity and habitat quality 18
OTHER ISSUES ... 18
Thermochemical co-products, C sequestration and soil quality ... 18
Energy and conservation policy in the United States 19
CONCLUSION .. 20
ACKNOWLEDGEMENTS .. 21
REFERENCES ... 21

Received: 17 March, 2007. Accepted: 20 April, 2007.
INTRODUCTION

The use of fossil fuels has accelerated since the dawn of the Industrial Revolution. Demand has increased dramatically in response to an ever-increasing population and by a higher need for energy by mechanization. The United Nations predicts the world’s population to exceed eight billion by the year 2030 (United Nations 2005). This expanding population is increasing the demands on finite global natural resources: land, clean-fresh water and air, and fossil energy sources. Anthropogenic factors continue to elevate atmospheric CO$_2$ concentration, which on average already exceeds 377 ppm in 2006 (Blasing and Smith 2006) a substantial increase from 280 ppm in 1750 (IPCC 2001). The change in atmospheric CO$_2$ is correlated to the 0.8°C increase in global average surface temperature in the past century, and the current warming rate of about 0.2°C per decade (Hansen et al. 2006). The Intergovernmental Panel on Global Change (IPCC 2001; 2007) recently confirmed that the anthropogenic greenhouse effect is real. Impacts of global climate change include increased sea level (Gregory et al. 2001; Shepherd and Wingham 2007), change in rainfall distribution, increased storm intensity (Lowe et al. 2001; IPCC, 2007), and accelerated species extinction rate (Thomas et al. 2004). Potential impacts were dramatically presented to the general public, in the Academy awarding winning movie by Al Gore ‘An Inconvenient Truth’. This movie received both praise and criticism, but most importantly brought this topic into the mainstream public arena.

There are two fundamental chemistry challenges now facing humanity: too much C (as CO$_2$ and CH$_4$) in the atmosphere, causing global warming and climate change, and too little C in the soil, degrading soil productivity and fertility, and causing environmental concerns. The release or sequestration of C in soils is therefore of prime importance to the global community. Use of C-neutral (causing no net change in atmospheric C concentration) and/or C-negative (causing atmospheric C concentration to decline) fuels and a reduction in energy consumption is needed to solve the global climate change/energy dilemma. Numerous energy alternatives to fossil fuel exist. The new developing energy paradigm will need to be multi-faceted, encompassing multiple renewable energy sources to meet the growing needs. Renewable energy such as biomass, solar, geothermal, wind, ocean thermal and tidal only represents a small percent of the available global energy (Hoffert et al. 2002). Biomass, similar to other renewable energy sources, has a low power density about 0.6 W m$^{-2}$ and alone biomass will not contribute significantly to climate stabilization (Hoffert et al. 2002). However, biomass can be used to produce C-neutral fuels to power the transportation industry (Hoffert et al. 2002). Biomass fuel is C-neutral because they release recently-fixed CO$_2$, which does not shift the C-cycle. Biomass may generate the same amount of CO$_2$ as fossil fuels per unit C, but every time a new plant grows it removes that same CO$_2$ from the atmosphere. In contrast, fossil fuels release ancient C into the atmosphere faster than CO$_2$ is incorporated into organic forms by autotrophic organisms, thus disrupting the C-cycle balance. The benefits of biomass feedstock are reduced when fossil fuels are used to grow the feedstock (i.e., tillage, fertilizer) and used in the conversion process.

The C-cycle is tightly coupled with climate, the water cycle, nutrient cycles, and the production of biomass by photosynthesis on land and in the oceans. A proper understanding of the global C-cycle is critical for understanding the environmental history of earth and its human inhabitants, and for predicting and guiding their joint future. The biological C-cycle is of the utmost importance (Fig. 1) and is differentiated from the fossil C-cycle by the time scale. Fossil C sequestration entails the capture and long-term storage of C of fossil fuels prior to its release to the atmosphere. Fossil fuels (fossil C) are ancient geologically, whereas biofuels are very young geologically and can be effectively managed for improved the C cycling balance; thus, reducing CO$_2$ concentration in the atmosphere. One example of biological C cycling is the agricultural production of biomass for fuel (Fig. 1), which is applicable for herbaceous or woody perennials.

There can be confusion regarding terminology as related to renewable, sustainable, bioenergy, and biomass. Therefore, we felt it was worthwhile to clarify terms early on in this review. The term “renewable” refers to energy platforms of which there is an inexhaustible supply (e.g., sunlight) that can be replaced or replenished, either by natural processes or by human action. The term “renewable fuel” also includes wind, solar, hydro-electric, geothermal, and others. “Bio-” is a Greek prefix meaning “life” or a living organism and is a modifier or a qualifier that expands meanings to form new words, e.g., biology, or biological. In
the context of bioenergy, the prefix “bio-” suggests that the energy platforms were derived from recently living material, and typically excluded fossil fuels (coal, oil, natural gas) even though fossil fuels are derived from ancient plants. “Biofuel” refers to a gas or liquid fuel (e.g., methane and ethanol) made from a broad range of carbonaceous materials such as crop biomass, sugar cane, perennial grasses, woody, wood waste, agricultural waste, fish oils, tar oil, sludge waste, waste alcohol, municipal solid waste, landfill gases, used vegetable oils, and food-processing wastes. We define “biomass” as any organic matter that is available on a recurring basis (excluding old-growth timber), including dedicated energy crops: agricultural food and crop residues (i.e., corn stover), wood and wood wastes and residues, grasses, fibers, and animal wastes, municipal wastes, and other wastes. The term “waste” is a negative and suggests material left over and of little value. However, diverting material from landfills or capturing from landfills transforms “waste” into valuable bioenergy. Many of these materials have intrinsic value for uses beyond converting them into bioenergy. The terms “biomaterial” and “bioproducts” are positive, and emphasize the biological nature of materials have intrinsic value for uses beyond converting them into bioenergy. Many of these materials have intrinsic value for uses beyond converting them into bioenergy. The terms “biomaterial” and “bioproducts” are positive, and emphasize the biological nature of materials that are perceived as economically and socially sustainable do exist even though in the long term they are not environmentally sustainable. The current dependence on fossil fuel is such an example. As we change the energy paradigm, we must address all the environmental, economic, and social components of sustainability to avoid limiting the ability to provide environmental service ranging from water resource, wildlife habitat or food and fiber production. A system that is not socially or economically sustainable will not be adopted even if it is environmentally sustainable. Public policy (e.g., subsidies or tax incentives) and education are methods of changing the economic and social sustainability of processes. However, systems that are perceived as economically and socially sustainable exist even though in the long term they are not environmentally sustainable. The current dependence on fossil fuel is such an example. As we change the energy paradigm, we must address all the environmental, economic, and social components of sustainability to avoid exchanging one non-sustainable system (fossil fuel) for another.

Agriculture and forestry are the primary producers of bioenergy feedstocks. Many recent reports focus primarily on the amount of energy or total biomass available. For example, Berndes et al. (2003) predicted the amount of global energy supplied by biomass by 2050 might range from 100 to 400 EJ yr⁻¹; the wide range is attributed to variability in assumptions concerning land availability and yield. Snasser et al. (2007) projected a global bioenergy potential of 215–1272 EJ yr⁻¹ from surplus agricultural land (i.e., land not needed for the production of food and feed) by 2050 depending on the level of advancement of agricultural technology. They recognize these may be overly optimistic estimates and predicted global potential of bioenergy production from agricultural and forestry residues and wastes to be 76–96 EJ yr⁻¹ by year 2050. A recent report published by the United States Department of Energy (USDOE) and United States Department of Agriculture (USDA) estimated 1.1 billion Mg of biomass could be produced annually, in a sustainable manner, from the agricultural and forestry sector for bioenergy and bioproducts (Perlack et al. 2005). Comparison among reports frequently requires conversion among biomass, energy, and C content (Table 1). The goals of this review are to discuss potential environmental benefits and risks of several important bioenergy feedstocks, to discuss opportunities to increase biomass productivity, to offer a vision for an integrated, sustainable bioenergy system, and to identify major knowledge gaps that are preventing the system from being implemented today, thus, establishing research priorities.

Agronomic and forestry plants convert solar energy into chemical energy by photosynthesis. Agriculture and forestry have a unique opportunity to both provide biomass for energy and to serve as a net sink for CO₂. In addition to the CO₂ captured in the plant biomass, plants transport C below-ground where it is used to grow and maintain roots, and as energy for the soil ecosystem and stored as soil organic C. The current hypothesis is that if managed correctly, bioenergy can provide a C-neutral or even C-negative feedstock. As a society, we are increasing the demands for agricultural and forest products to provide bioenergy. A strategy to minimize competition among competing demands is to increase the total amount of biomass or grain products available.

OPPORTUNITIES TO INCREASE PRODUCTIVITY

The yield of agricultural crops has increased dramatically since the late 1930’s. For conventional crops, the genetic improvements of partitioning of resources into grain and the ability to respond to improved management are primarily responsible for yield increases since the 1930’s (Evans and Fischer 1999; Duvick et al. 2004; Duvick 2005). Use of commercial fertilizer and use of pesticide have also contributed to yield improvement (Ruttan 1982). Evans and Fischer (1999) indicate maximum yield potential of certain crops (e.g., corn) has not yet been realized. The genetic yield potential for corn is estimated at 25 Mg ha⁻¹ (Tollenaar 1983; Tollenaar and Lee 2002). Much of the observed yield increase in corn is attributed to improved tolerance of high plant population as well as improved tolerance of biotic and abiotic stress, rather than to improved yield per plant at low population density (Tokatidis and Kourtabous 2004). Transgenic crops are now providing herbicide-tolerance and insect-resistance, which may also increase yield potential (Duvick 2005). Harvest index for most crops has increased since the 1930’s, but non-the-less total biomass of agronomic crops also increased (Johnson et al. 2006b). Ideally, biomass crops would produce large quantities of biomass containing readily digestible polysaccharides and

<table>
<thead>
<tr>
<th>Material</th>
<th>Volume (Mg)</th>
<th>Mass (kg)</th>
<th>C content (GJ Mg⁻¹)</th>
<th>Energy (GJ Mg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood, dry</td>
<td>1.4 m³</td>
<td>1.0</td>
<td>500</td>
<td>18.22</td>
</tr>
<tr>
<td>Wood, 20% moisture</td>
<td>1.4 m³</td>
<td>1.0</td>
<td>480</td>
<td>15</td>
</tr>
<tr>
<td>Agricultural biomass</td>
<td>6.9³·11 m³</td>
<td>1.0</td>
<td>450</td>
<td>10-17</td>
</tr>
<tr>
<td>Ethanol (pure; average density 0.79 Mg m⁻³)</td>
<td>1262 L</td>
<td>1.0</td>
<td>522</td>
<td>26.7</td>
</tr>
<tr>
<td>Biodiesel (Average density 0.88 Mg m⁻³)</td>
<td>1136 L</td>
<td>1.0</td>
<td>N.A</td>
<td>37.8</td>
</tr>
<tr>
<td>Crude oil</td>
<td>1113 L</td>
<td>1.0</td>
<td>835-890</td>
<td>42-45</td>
</tr>
<tr>
<td>Gasoline</td>
<td>1356 L</td>
<td>1.0</td>
<td>866</td>
<td>43.5</td>
</tr>
<tr>
<td>Petroleum diesel (average density 0.84 Mg m⁻³)</td>
<td>1190 L</td>
<td>1.0</td>
<td>870</td>
<td>42.8</td>
</tr>
<tr>
<td>Coal (bituminous)</td>
<td>1.0 m³</td>
<td>1.0</td>
<td>746</td>
<td>27</td>
</tr>
<tr>
<td>Natural gas</td>
<td>1.0 m³</td>
<td>1.0</td>
<td>0.49</td>
<td>34.6</td>
</tr>
</tbody>
</table>

†Baled corn stover (Perlack and Turhollow 2002), other straw (FAO 2004).
tailored composition with value-added chemicals (AEWC 2004; Ragauskas et al. 2006). As a prerequisite, biomass crops must have a sustained capacity and efficiency to capture and convert available solar energy into harvestable biomass with minimal inputs and minimal environmental impact (Sims et al. 2006). Conventional food crops (i.e., corn, soybean [Glycine max (L.) Merr.], wheat [Triticum ssp.] have a number of disadvantages as biomass crops (Heaton et al. 2004); most are annual, requiring large inputs of energy in cultivation, planting, chemical inputs and harvesting each year (Hulsbergen et al. 2001), which limits their ability to reduce GHG emission (Farrell et al. 2006). Near and midterm goals for advancing biomass bioenergy include improvement of conventional crops and cropping practices, and the development of a new generation of bioenergy crops that 1) maximize total annual biomass production per unit area; 2) are sustainable while minimizing inputs; 3) are environmentally sound; and 4) maximize the amount of biofuel product per unit of biomass (conversion efficiency) (Kern 2002). The remainder of this section will expand on these goals.

Enhancing the yield of biomass crops

Biomass yield can be defined as the amount of fixed C ha\(^{-1}\) yr\(^{-1}\). Achieving the maximal yield of dedicated biomass crops is a significantly different goal than maximizing the seed yield of most annual agronomic crop species, where typically, the maximum number of reproductive or storage organs is the prime component limiting yield. The yield of a dedicated biomass crop, like it is for a forage crop, is a function of the total number of cells per unit area multiplied by the mean amount of accumulated C per cell. Thus, biomass yield can be enhanced by increasing the number of cells ha\(^{-1}\) yr\(^{-1}\), the amount of accumulated C per cell, or both (Kern 2002; Rae et al. 2004). At the core of the complex system is the problem of achieving either type of enhancement. The real need is to maximize photosynthetic CO\(_2\) fixation to support C accumulation in both grain and biomass (NAS 2000; Larson 2006; Long et al. 2006).

Numerous plant traits can be targeted to enhance plant biomass production, including increased photosynthesis, optimized photoperiod response, optimized plant architecture, biotic resistance, abiotic tolerance, floral sterility, regulated dormancy, delayed leaf senescence, greater C allocation to stem diameter instead of height growth, optimal nitrogen (N) acquisition and nutrient use efficiency, and less extensive root system to maximize aboveground biomass (Kern 2002; Sims et al. 2006; Long et al. 2006; Ragauskas et al. 2004). However, management may not be desirable to divert biomass to aboveground organs, due to the value of root C for maintaining soil organic carbon (SOC) (Johnson et al. 2006a).

One potential limitation on biomass yield is efficiency of light interception and the efficiency with which intercepted light is converted into biomass. Currently, it is estimated that less than 2% of sunlight is initially captured (Ragauskas et al. 2006). Improvements in photosynthesis have had varying degrees of success, as have attempts at genetically modifying the light reactions (van Camp 2005; Ragauskas et al. 2006).

Total photosynthetic capacity can be improved by improving light intercept efficiency (\(e_L\)) at the plant or canopy level. Interception efficiency depends on the duration, size, and architecture of plant canopy (Ceulemans and Issebrands 1996; Madakadze et al. 1999). A crop that can maintain optimum canopy architecture throughout the growing season will absorb the largest proportion of incident radiation (Kern 2002) thereby, enhancing the total photosynthetic capacity (van Camp 2005). The major factor determining \(e_L\) in temperate regions is the crop’s ability to develop leaves rapidly at the start of the growing season. The complete canopy cover needed to maximize \(e_L\) also minimizes the availability of light to weeds and their competitiveness, thereby maximizing biomass yield. Maximizing biomass yield requires conversion of the photosynthetic cover crops into a rotation as discussed above increases \(e_L\) on a field level by extending the length of time a plant is producing photosynthetic. Evergreen woody perennial energy crops (WPEC) like Pinus and Eucalyptus species also are also favorable by maximizing seasonal use of sunlight.

Understanding the mechanisms underlying the source-sink regulation in plants is needed to force plants to store more C per unit leaf area than they would for normal regular growth and development purposes. For example, short rotation poplar (Populus ssp.) appear to accumulate more C per unit leaf area following defoliation (e.g., harvest of biomass) than they normally would without any changes in plant architecture (Rae et al. 2004; Larson 2006). When the mechanisms underlying the source-sink regulation are understood, plants can be developed that exhibit significantly larger rates of net photosynthetic CO\(_2\) fixation and larger amounts of total accumulation of C ha\(^{-1}\) yr\(^{-1}\). Therefore, a high-priority long-term research goal is to understand mechanisms that regulate net photosynthetic CO\(_2\) fixation. A complementary approach (Seki et al. 2003) is to identify factors that regulate plant growth and duration. Different plant species vary widely in growth rates, suggesting that growth rates are under genetic control and, therefore, subject to genetic modification. Several genes have been identified in functional genomics screens that cause significant increase growth rates in different types of plants (NAS 2000; Mahalakshmi and Ortiz 2001). Plants typically invest considerable energy in making reproductive structures, and if flowering can be delayed or prevented, this energy may be transferred into increasing the overall plant biomass (Ragauskas et al. 2006). Taking advantage of this genetic variability may create new opportunities to develop highly productive biomass crops.

The amount of biomass that can be produced per unit land area and per unit of investment of other resources, mainly N and water, will determine, to a large extent, the economic yields and energy efficiency of current and future biomass crops (Madakadze et al. 1999). Nutrient use efficiency can be optimized by: 1) maximizing of energy flow into biomass via photosynthesis per unit of N invested in the photosynthesis apparatus; 2) maximizing the amount of N and other nutrients translocated out of the photosynthetic source tissues upon their senescence to sink tissues (i.e., storage organs or new photosynthetic tissue); and 3) maximizing nutrient uptake from the soil; which will help minimize both nutrient inputs and loss to the environment (Hulsbergen et al. 2001; Tilman et al. 2006). With low maintenance perennial biomass species, N availability could become the most limiting factor and could become more pronounced as production capacity increases out of the photosynthetic capacities of individual plants continues to increase (Drake et al. 1997; Long et al. 2006). As discussed in the herbaceous and WPEC sections, management of dedicated biomass crops likely would include fertilizer application.

A substantial proportion of biomass crops may be grown on marginal lands that have suboptimal in water availability, soil quality, or both, to minimize adverse effects on food and water production (AF 2003; Tilman et al. 2005). Water availability is a major limiting factor to plant productivity in large parts of the United States (USGS 2006). Irrigation requires significant energy inputs while placing a demand on diminishing fresh water resources. However, in areas near large metropolitan areas, the potential to use gray water from sewage treatment processes may be a way to reap significantly more biomass production from low quality water and land resources. Recent progress in understanding the mechanistic basis of plant
drought, salt, and cold tolerance has raised the possibility of modifying plants to enhance productivity under drought and other stresses (Seki et al. 2003; Flowers 2004; Tester and Bacic 2005; Sims et al. 2006). Plants with C₄ photosynthesis (e.g., corn, switchgrass and Miscanthus) typically require less water per unit of CO₂ fixed than do C₃ plants (e.g., wheat and soybean), because C₄ plants can achieve higher carbon fixation without being thus reducing water loss (Vogel and Jung 2001; Kern 2002; Long et al. 2006). This adaptation using genetic engineering to transfer C₄ photosynthetic machinery to C₃ plants has been attempted with rice (Oryza sativa L.; Matsuda et al. 1998; Jiao et al. 2002). Long et al. (2006) elaborate on the potential and complexity of this transition, concluding that the possibility for success is remote. Different plants exhibit widely different abilities to survive extended periods of drought, indicating that it is possible to develop drought-tolerant biomass crops (Mahalakshmi and Ortiz 2001; Tester and Bacic 2001). Unfortunately, drought tolerance or avoidance mechanisms generally result in reduced productivity because of the direct linkage between exchange of CO₂ and water vapor through the stomata and reduced rate of photosynthesis if stomatal openings close to reduce evaporation from the leaf. Reduced evaporation from leaves generally elevates leaf temperature, increasing the negative impact of drought on yield. Conservation of water is generally a survival mechanism, not a means to maximum productivity. A priority in dedicated energy crops is to understand mechanisms by which plants survive drought and other abiotic stresses and adapt this knowledge to improving biomass energy crops.

Physiological knowledge of the processes of abiotic stress tolerance, especially in perennial grasses, are still developing, and it is clear that significantly more effort needs to be invested to both complement and guide breeding and genetic programs. The possibilities for increasing tolerance to these stresses are enormous (Seki et al. 2003). Although it is notable that the actual production of transgenic plants with demonstrably improved abiotic stress tolerance has been slow (NAS 2000), more progress can be gained by exploiting further the synergies of interfacing of physiological and molecular genetic research. Step changes in tolerance may arise from the introduction of de novo characteristics that are apparently absent from a particular gene pool. However, as is frequently the case, a physiological adaptation to tolerate stress is accompanied by a growth and/or yield penalty. Novel solutions (Su and Wu 2004) to avoid this outcome would be to drive expression of the new genes in response to stress by an inducible promoter. Genomics, proteomics, and metabolomics are being used to improve our understanding of and ability to manipulate the lignin biosynthesis pathway (Vogel and Jung 2001; Casler et al. 2002; Seki et al. 2003; Dubcovsky 2004; Pedersen et al. 2005). Currently, corn stover is pre-treated to convert lignocellulose to sugars, but transgenic technologies may provide in planta alternatives to pretreatment. Altering cell-wall composition to increase cellulose and decrease lignin content could improve productivity of biomass crops, especially if used as sugar platform feedstock, especially if cellulose eventually can be broken down into glucose molecules efficiently, because we possess far greater knowledge of converting glucose to ethanol than the 5-C sugars in hemicellulose. For example, down regulation of lignin synthesis increased the subsequent digestibility; thus, releasing more sugar for fermentation (Casler et al. 2006). Eventually the development of a comprehensive physiological cell-wall model incorporating structural properties with biophysical aspects and knowledge about the proteins involved will help in developing highly productive biomass species whose cell walls are optimized for conversion to biofuels. Therefore, a systems-level understanding of model plants will facilitate improvement of plant cell-wall composition in biomass crops dedicated to conversion into biofuels (Mahalakshmi and Ortiz 2001) without compromising plant viability (Himmel et al. 2007).

Co-regulation of lignin and cellulose biosynthesis, alteration in lignin structure and in plant cell wall structure could yield important advantages. Advances in plant sciences and genetics are providing researchers with the tools to develop the next generation of biomass crops having increased yield and utility tailored for modern biofuelary operations. However, developing cellulosic ethanol biorefinery is critical in determining the profitability of the cellulosic ethanol biorefinery (Sheehan et al. 2002).

Progress is needed to answer the three key questions: 1) What controls the synthesis and architecture of the plant cell wall; 2) how can we manipulate cell wall structure in biomass crops; and 3) can we identify key traits affecting biomass yield and conversion efficiency and target them for selection and improvement? The organization and interactions among the many polymers of the cell wall are constructed for physical strength and resistance to biotic and abiotic attacks, and therefore, constitutes a barrier to easy and efficient bio-conversion to a usable liquid biofuel (Himmel et al. 2007). Screening large populations to identify useful genetic variants to be used as sources for breeding is a slow and time-consuming process, especially for biomass crops which are not fully domesticated. However, populations of C₄ perennials such as big blue stem (Andropogon gerardii Vitman) can be improved for anaerobic fermentation characteristics in grazing animals in as little as three breeding cycles (Mitchell et al. 2005; Vogel et al. 2006). Development of markers or DNA polymorphism indicative of desired traits will facilitate this process; thus, allowing breeders to monitor plants for a trait that can be difficult to recognize due to tissue-specific or developmental-stage-specific expression. Using modern molecular genomic applications of modern molecular genomics tools microarrays, single nucleotide polymorphism and comparative databases are being used to support tree breeding and gene transfer efforts enhancing physiological understanding of ecological adaptations (Wullschleger and di Fazio 2003; Lorenz et al. 2006; Pavy et al. 2007).

Challenges in developing biomass crops

Some of the challenges in developing biomass crops include, but are not limited to (1) better understanding of gene regulation and control of plant metabolic pathways; (2) improving gene modification through functional genomics; (3) developing new screening systems; (4) improving biotechnological method for gene stacking, organelle transformation and meiotic transmission; (5) expanding knowledge of C flow at the molecular level; (6) identifying mechanisms of gene switching; (7) developing broad bioinformatics (Mahalakshmi and Ortiz 2001; Kern 2002; AEWG 2004); (8) developing agronomics to effectively and efficiently plant, grow, and harvest; and (9) designing cropping systems with a group of grain and energy crop in a sequence that maintains feedstock supply, grower profitability, efficient energy services, and sustains soil quality.

Many potential biomass crops require significantly enhanced breeding, testing, and selection to incorporate desired traits and adaptability across a wide range of environments in multiple geographical regions (Casler et al. 2002; Kern 2002). The first step in plant breeding for bio-based renewable energy is to identify useful genetic variation for (1) biomass yield and composition; (2) water, N, and radiation use efficiency; (3) tolerance to abiotic stresses; and (4) resistance to biotic stresses, such as drought, temperature extremes, and salinity. Selection of appropriate crop species and genotypes suited for specific geographical regions may be possible. In the United States, some long-term breeding of switchgrass and poplar has produced large yield gains and these crops are poised to make a large contribution to biofuel production (Heilman and Stettler 1985; Pedersen et al. 2005). The second step is to develop methods to correlate desired traits with DNA polymorphisms.
or markers in order to facilitate selection; this would lead, for example, to accelerated domestication of potential wild biomass species, and to eliminating many years of expensive breeding steps to develop more highly productive plants amenable for processing to biofuels (NAS 2000; Mahalakshmi and Ortiz 2001; Dubcovsky 2004). In addition to targeted breeding, many of these potential biomass crops will require reproductive control (i.e., self-fertility) in the field, either to ensure parentage or prevent gene flow to wild populations (Heaton et al. 2004). This is less of an issue for WPEC when they are vegetatively propagated as discussed above; however, many of the same reproduction control issues exist for trees as for herbaceous species.

Many features considered ideal for herbaceous biomass crops are characteristics of invasive weeds, particularly perennial C_4 grasses. A consideration in adapting these grasses for use as dedicated biomass crops is to ensure that the species can be contained as a crop and will not become a problem. Some highly productive perennial grasses such as Miscanthus × giganteus have been studied intensively in Europe and are thought not to exhibit invasive characteristics (Madakadze et al. 1998; Vogel and Jung 2001; Heaton et al. 2004). All candidate biomass crops should be studied for potential invasiveness at diverse locations within the United States and provide insights into insects and diseases that might threaten productivity.

Because of the limited breeding experience to date, advances in biomass crop yield and quality can be expected over the next few decades (BTAC 2002). Improved genetic material and management of dedicated biomass crops likely also will improve production. Recently, genetic resources have been developed expanding the understanding of fundamental biological processes responsible for stress tolerance, productivity, symbiotic interactions, and synthesis of biochemical components such as cellulose and lignin in woody species (Stettler et al. 1996; Villar et al. 1996; Wu et al. 1997; Martin et al. 2004; Busov et al. 2005; Wullschleger et al. 2005; Tuskan et al. 2006). A major step in the development of genetic resources is the mapping of the Populus trichocarpa genome (Tuskan et al. 2006). This is only the third plant genome to be mapped, second to Arabadopsis thaliana L., a model plant with a minimal genome, and rice, arguably the most commercially important crop plant on a worldwide basis. Having the poplar genome provides opportunities to understand the genetic basis of perennial growth habit and the molecular controls over maturation and wood formation among other significant traits of woody plants (Tuskan et al. 2006). These significant traits for a major WPEC species means it is possible to select and develop energy crops for growth, environmental stress tolerance, process compatibility, or unique chemical components required in biorefineries. In combination, the accumulated information on the biology, culture, operations, economics, and genomics of woody crops provides a significant foundation on which to build a bioenergy market.

FEEDSTOCKS: POTENTIAL BENEFITS AND RISKS

Grain ethanol

Cropland represents about 20% of the total land area in the United States (Lubowski et al. 2002). In 2005, the majority of agronomic crops was harvested from about 96.2 million ha; with corn, bean (soybean and dry edible (Phaseolus L.), and small grains representing 87% of this acreage (USDA- NASS 2006; Fig. 2). Corn and soybean are major grain crops in the United States and are currently used for commercial production of biofuels (i.e., ethanol and biodiesel) for the transportation sector. These crops are heavily subsidized, and are being touted along with wheat as the agricultural feedstocks of choice for biofuels. Therefore, considerably more attention and research has focused on corn and soybean as biofuel sources (Pimental and Patzek 2005; Herrera 2006; Hill et al. 2006) than alternative or newly developed crops. However, corn and soybean are primary food-crops, which are vitally important to world food security; thus, considerable debate has ensued as to whether it is feasible or even ethical to divert arable land and or food-crops to energy production (Pimental and Patzek 2005). There is still debate over the energy efficiency and environmental ramifications of using high input, highly valued food-crops as an energy source (Hill et al. 2006). Apparent disparities among published energy balance estimates for grain ethanol production have been attributed to divergent allocation of energy used in production among ethanol and co-products (Sheehan et al. 2002) with net energy balances ranging from negative (Pimentel and Patzek 2005) to positive (e.g., Shapouri et al. 2002; Kim and Dale 2005). Farrell et al. (2006) recently reanalyzed six reports comparing energy efficiency and environmental impacts. They concluded grain ethanol has small a positive energy balance, such that 5 to 26% of the energy is truly renewable. A healthy debate over the assumptions, allocation of energy and consumption help identify both real drawbacks and potential benefits of this energy platform. By today’s standards for any biofuel to be a viable and sustainable substitute for petroleum, it must be economical to produce large quantities without depleting food supplies, provide more energy than is used to produce it, and provide environmental benefits such as reduction of greenhouse gas (GHG) emissions.

The ethanol industry is expanding at an unprecedented rate. In 2005, the United States produced 44.5% and Brazil produced 45.2% of the world’s ethanol (32.7 billion L yr⁻¹) (Worldwatch Institute 2006). World wide, sugarcane (Saccharum officinarum L.) is the primary feedstock for ethanol production with corn grain as close second (Worldwatch Institute 2006). Ethanol production from sugarcane results in the co-product bagasse and from corn grain it is distiller’s grain with solubles, either wet or dry. Perlack et al. (2005)
estimated about half of the distiller’s grain with solubles are used as animal food. In addition, both can as serve as feedstock for gasification and/or cellulosic ethanol production (Perlack et al. 2005; Marris 2006). In Brazil bagasse is used as fuel for distillation and cogeneration of electricity, producing a surplus of power (Dias de Oliveira et al. 2005). Life-cycle analysis indicated that production of electricity from sugarcane bagasse has a net energy return of only about 25%, while that for biodiesel from soybean is considerably higher at around 93% (Hill et al. 2006). The higher energy return for soydiesel is partly due to the greater energy content of the fuel, but largely the result of lower inputs for feedstock production (e.g., fertilizer inputs, energy, and equipment). For biodiesel production, feedstock accounts for about 80% of the operating cost (Demirbas 2006). Naturally, reducing input costs and energy for feedstock production will result in a more economical fuel with a larger net energy return.

Soybean

Soybean production can accentuate soil erosion and loss of SOC. Soil erosion following a soybean crop is usually greater compared to corn (Moldenhauer and Wischmeier 1969; Oschwald and Siemens 1976; Siemens and Oschwald 1976, 1978; Lafren and Moldenhauer 1985). Soybean-associated soil erosion is attributed to less surface biomass, a less stable soil surface populated with smaller aggregates, which are more susceptible to dispersion and surface sealing (Oschwald and Siemens 1976; Siemens and Oschwald 1976, 1978; Fahad et al. 1982). After tillage, the soil surface tends to be rougher with more clogs following corn or cereal than following soybean. In addition, soybean biomass contributes less C to SOC compared to corn (Layese et al. 2002). Exacerbating this issue, the soybean rhizosphere induces a positive priming effect accelerating SOC decomposition, which is not observed with other crops (Fu and Cheng 2002; Cheng et al. 2003). The primary effect may be a result of the relatively low C:N ratio of soybean biomass compared to soil organic matter (SOM) or non-legume crop biomass. Generally decomposition of organic material in the soil system is N limited. From an environmental standpoint alternative management practices such as diversifying rotations and including cover crops could minimize C depletion and soil erosion during the soybean phase of the rotation.

The remainder of this section introduces potential alternative and newly developed oilseed crops that could substitute for soybean as a biodiesel source with associated economic, social, and environmental benefits these crops may offer. It is not the intent of this section to provide an exhaustive list of such crops, but merely to highlight some viable options and the advantages they have over high valued food-crops.

Alternative oil-seed crops

Several species from the mustard family (Brassicaceae) could serve as viable candidates as alternative sources of biodiesel. Oilseed rape (Brassica napus L.) is presently a major source of biodiesel in Europe (Demirbas 2006). Brassicaceae species have advantages over soybean that include higher seed oil content and an ability to be grown in harsh climates with fewer agricultural inputs. Some Brassicaceae species (e.g., crambe (Crambe abyssinica) and lequerella (Lequerella fendleri (S. Wats.))) are grown primarily for industrial purposes (e.g., lubricants and plasticizers) rather than food uses (Carlson et al. 1996; Salywon et al. 2005). The seed oil content of soybean is typically around 20% (wt. oil/wt. seed), whereas potential alternatives like oilseed rape, crambe, and camelina (Camelina sativa L.) commonly have 30 to 40% seed oil contents (BfEL 2006). Crambe is an oilseed crop that is widely adapted to conditions in the Midwest region of the United States where seed yield were about 1400 kg ha⁻¹ (Carlson et al. 1996). Camelina recently entered commercial production, and grows quite well in the northern United States with yields around 1700 kg ha⁻¹ (Putnam et al. 1993). Currently neither crop is grown widely in the United States. However, both are being developed for industrial uses and therefore, will not directly compete with soybean or other edible-oil crops. Importantly, production costs and agricultural inputs for crambe and camelina are lower than high-valued food-crops (Carlson et al. 1996; Putnam et al. 1993). Their seed yields tend to be lower than...
soybean, but their higher seed oil content results in greater oil yields on a per hectare basis. Camelina seed oil has recently been shown to make a satisfactory biodiesel with lower productions costs than oilseed rape (Fröhlich and Rice 2005). It is important to note that these newly developed, less domesticated crops may not be as widely adapted to various climates in the United States nor may they currently produce enough of yields of interest to soybean, which have benefited from decades of intense genetic manipulation from both private and public sectors.

Pennycress (Thlaspi arvense L.) is an annual plant considered to be a weed in the United States, whose seed oil content ranges from 20 to 38% (Hondelmann and Radatz 1984) and could serve a dual role as both a cover crop and biodiesel source. In the upper Midwest, pennycress can be autum seeded, it emerges in late winter to early spring, sets seed and can be harvested late May to early June (pers. comm., Terry Isbell, USDA-Agricultural Research Service (ARS)-National Center for Agriculture Utilization Research, Peoria, IL). This leads to the interesting possibility that pennycress could act as a cover crop in early spring to reduce soil erosion, and yet it could be harvested in time to allow planting and harvesting of a warm, short-season crop such as soybean or even short-season corn.

Alternatively, virtually any plant can be converted to biodiesel, some may have fatty acids with more desirable physical and chemical characteristics. For instance, seed oil of castor bean (Ricinus communis L.) and Lesquerella, another member of the Brassicaceae, have very high levels of hydroxylated fatty acids that when methyl esterified impart greater lubricity than soybean or oilseed rape methyl esters (Goodrum and Geller 2005). Castor bean was once grown commercially in the United States, but now castor bean oil is imported (Brigham 1993). Average irrigated castor bean yields are 900-1000 kg ha⁻¹ with report of 1300 kg ha⁻¹ for open-pollinated varieties and exceptional yields of up to 5,000 kg ha⁻¹ (Duke 1983). Lesquerella is a potential new industrial crop that can be produced in warm, semiarid climates; yields have been as high as 1800 kg ha⁻¹ in experimental plots and about 900 kg ha⁻¹ in farm-scale trials located in the semiarid southwestern United States (Dierig et al. 1996).

Another prospect for industrial and energy applications is Cuphea spp. (plant family Lythraceae). Over the past two decades, breeding efforts with the species Cuphea viscosissima Jacq. and C. lanceolata W.T. Aiton resulted in a new crop (Knapp 1993; Knapp and Crane 2000), which recently was cultivated in the Midwest for commercial use (Gesch et al. 2006). Seed yields in small plot trials of PSR23 averaged 15 000 kg ha⁻¹ and on-farm trials were as high as 744 kg ha⁻¹ (Gesch et al. 2006). Cuphea is different than all traditional oilseed crops grown in the United States because its seed storage oil is mostly composed of saturated small- and medium-chain triglycerides (C4:0-C12:0) without sacrificing biodegradability of biodiesel by adding low-biodegradable additives. Because Cuphea is a rich source of medium-chain triglycerides, it is also being studied for efficient conversion to jet engine biofuel (pers. comm., Ted Aulich, Energy and Environmental Research Center, University of North Dakota).

Use of alternative oilseed crops for biodiesel may have some important advantages over heavily tilled soybean. Many oilseed alternatives such as those mentioned in the previous paragraph can be grown on marginal lands with fewer agricultural inputs than soybean or other food crops. Fewer production inputs translate into less leaching and run-off of pollutants, greater reduction in GHG emissions, and possibly a lower costing product to consumers, provided they do not increase the risk of erosion and sufficient yield to make a difference. Furthermore, diversifying agricultural systems with new and alternative crops and lengthening crop rotations will help to reduce insect and weed pests, as well as diseases, again resulting in fewer inputs; thus, improving soil and water quality. Suplementing soybean with alternative oilseeds for biodiesel will lessen the likelihood of depleting food supplies, but undoubtedly there will be some competition for agricultural land, which may be better used for food production. A related issue to resolve is the impact of biomass harvest on soil quality (an issue addressed in other sections of this review).

Lastly, why isn’t the United States more actively pursuing alternatives to soybean or other food-use oilseed crops for biodiesel production? A most likely answer is that farmers who produce new and alternative crops, do not receive subsides or crop insurance. Most research dollars have been spent on development and improvement of food-use, rather than industrial crops. Until policies and societal attitudes change, barring catastrophic events, it likely that these crops will continue to take a backseat to corn and soybean.

Cellulosic biomass

Sources of cellulosic biomass are numerous: woody biomass crops and lumber industry wastes, forage crops, industrial and municipal wastes, animal manure, and crop residues. Without proactive policies (FAO 2004; Perlack et al. 2005), crop rotation practices, especially corn stover, is thought to be available in sufficient quality to support commercial-sized cellulosic ethanol production (di Pardo 2000; Hettenhaus et al. 2000). Wheat is also considered primary feedstock (Nelson 2002). There are regionally important feedstocks such as sugarcane bagasse in Louisiana, rice (Oryza sativa L.) straw in California (di Pardo 2000), and perennial grass straw from grass seed production fields in the Pacific Northwest. Cellulosic biomass, especially these regional feedstocks account for only a small percentage of the total biomass feedstock, but collectively can positively impact on fuel needs for the nation (di Pardo 2000). In addition they will be important early feedstocks because they are already collected as a part of current cultural practices. As such, a significant cost in the cellulosic ethanol feedstock chain, collection and staging, is eliminated.

The energy industry speaks of two general methods, or...
platforms, for converting feedstock into fuel or other products. The platforms are: 1) the sugar platform that utilizes enzyme hydrolysis and produces various chemical and lignin products and 2) the thermochemical platform that includes various kinds of incomplete combustion.

The sugar platform is a series of processes to transform cellulosic feedstock to sugars (hence the name) that are amenable to yeast fermentation to produce ethanol from grain. Major steps are pretreatment and conditioning, enzymatic hydrolysis, and multi-sugar fermentation (Sheehan et al. 2002; USDOE 2006). In the pretreatment step, feedstock is chemically or mechanically modified to initiate release of cellulose and hemicellulose from the lignocellulosic matrix of cell walls. Enzymatic hydrolysis releases constitutive simple sugars; glucose from cellulose and 5-C sugars like xylose from hemicellulose (Sheehan et al. 2002; USDOE 2006). The resulting mixture of simple sugars is fermented to produce ethanol or other products butanol and plastic precursors, polyactic acid and 3-hydroxypropionic acid.

The thermochemical platform involves processes such as gasification, co-firing, slow pyrolysis, and fast pyrolysis, and flash pyrolysis (Demirbas and Arin 2002; Yaman 2004). Direct combustion (burning) is an age-old method of converting biomass into heat, but the efficiency is only about 10%, the primary byproducts are CO₂ and ash, which presents a disposal challenge. Gasification, pyrolysis, and related thermochemical technologies greatly improve the energy efficiency compared to combustion (Goldberg 1985).

Thermochemical co-products

The thermochemical technologies provide an opportunity to control the quality of the resulting fuels and at the quality of the resulting ash or char; such that the char retains value as fuel or as a soil amendment. Modern-day pyrolysis is degradation of biomass by heat in the absence of oxygen, which results in the production of char, liquid (BioOil), and non-condensable gases (http://www.dynamotive.com/) (Fig. 3). The feedstock characteristics, rate of heating, temperature and residence time during pyrolysis can be manipulated to control the proportions of gas, BioOil and char produced (http://www.dynamotive.com/). The char and BioOil are considered products by the industry, while the non-condensable gases are recycled and supply a major part of the energy required by the process (http://www.dynamotive.com/). BioOil is considered a clean burning, GHG-neutral fuel that will initially be used to replace fossil fuels to generate power and heat in stationary gas turbines, diesel engines and boilers replacing natural gas or coal (http://www.dynamotive.com/). Char is a solid fuel that can be used in kilns, boilers and the briquette industry. The properties of the char depend strongly on the properties of the feedstock material and the pyrolysis conditions (http://www.dynamotive.com/).

The sugar and thermochemical platforms are not mutually exclusive. The unfermented material remaining after cellulosic ethanol production has a high concentration of lignin (Sheehan et al. 2002). Johnson et al. (2004) demonstrated that the addition of this high lignin material to soils increased humic acid concentration and increased the percentage of water-stable aggregates. However, life-cycle analysis indicate this high lignin byproduct more likely will used to generate electricity or used as feedstock for a thermochemical platform improving the economic and energetic balance for cellulosic ethanol (Sheehan et al. 2002).

Soil quality and sustainability issues will be similar regardless of which bioenergy platform is utilized. Guidelines and best management practices will be necessary to protect the soil from erosion, prevent loss of SOM, and retain habitat and other environmental services. The next section will address benefits and potential concerns for annual, herbaceous perennials and wood perennial feedstocks.

Feedstock: Annual crops

Corn stover is viewed as the most readily available biomass feedstock (Nelson 2002; Perlack et al. 2005). In 2005, corn was harvested from about 33 million ha in the United States, with a national average grain yield of 9.3 Mg ha⁻¹, which corresponds to about 7 Mg ha⁻¹ dry stover or nearly 230 Tg of stover produced across the country (Table 2). As a result, corn stover has attracted attention as a bioenergy feedstock. However, not all of this biomass can or should be harvested due to soil quality concerns. Under continuous corn, removal of stover and grain has shown negative effects on SOC of Mollisols in Iowa (Larson et al. 1972; Robinson et al. 1996), Indiana (Barber 1979), Michigan (Vitosh et al. 1997), Wisconsin (Vanotti et al. 1997), and Minnesota (Bloom et al. 1982; Huggins et al. 1998). Removal of crop residues affects soil nutrient content and availability and soil water relations. Barnhart et al. (1978) showed that continued removal of corn silage from an Iowa soil resulted in decreased SOM and total N content when compared with plots where grain only was removed. Similarly, Reicosky et al. (2002) found that 30 years of autumn moldboard plowing reduced the soil C both when only grain was harvested and when silage was harvested; they suggested soil C would decrease irrespective of residue management if the soil were moldboard plowed. Hooker et al. (2005) also found that within a tillage treatment, residue management had little effect on SOC in the surface soil layer (0-5 cm); however, no till combined with stover return maintained greater SOC compared with moldboard plowed treatments.

CROP biomass on the soil surface protects the soil against erosion. Wind and water erosion preferentially transport organic-rich surface horizons; thus, eroding soil and transporting C (Chiacek et al. 1993; Fryrear 1995; Gregorich et al. 1998; Lal 2003). Larson et al. (1978) reported that harvesting crop biomass could directly remove substantial amounts of N and result in additional N loss due to accelerated soil erosion. Loss of N over time would eventually reduce fertility levels. Continued crop biomass removal for biofuels raises concerns about the long-term productivity and sustainability (Wilhelm et al. 2004; Johnson et al. 2006b). Removal of crop biomass even in the absence of tillage leaves the soil surface exposed and more susceptible to erosive forces (Wilson et al. 2001).

Above and below ground crop biomass provide the organic input for building SOM (Johnson et al. 2006a). Soil organic matter is responsible for many of the characteristics associated with highly productive soils (Doran et al. 1998; Janzen et al. 1998; Doran 2002). SOM improves soil aggregation and aggregate stability (Tisdall and Oades 1982; Gollany et al. 1991; Tisdall 1996; Six et al. 1998), which subsequently impacts soil infiltration, water-holding capacity (Gollany et al. 1992), penetration resistance, and soil tilth. Soil organic matter also impacts chemical properties including pH, nutrient availability and cycling, cation exchange capacity and buffer capacity (Tisdall et al. 1986).

Primarily, organic inputs to soil including C are from the unharvested aboveground, belowground biomass and rhizodeposition from cash crop plants and cover crops, and other organic inputs (e.g., animal manure). Total corn root-
derived C (C in root biomass plus that in rhizodeposition) contributes 1.5 times to over 3 times more C to SOC than shoot-derived C (Balesdent and Balabane 1996; Allmaras et al. 2004; Wilts et al. 2004; Hooker et al. 2005). Hooker et al. (2005) attributed the difference to dissimilar C cycling rates of shoot and root material. Wilhelm et al. (2004) noted a critical caveat that even though a larger percentage of root C is incorporated into SOC, it does not negate the importance of shoot biomass in building and maintaining SOC. Despite the importance of roots to the formation of SOC, there is very little information on total biomass (above and belowground) needed to maintain or build SOC; most studies include only aboveground biomass (Johnson et al. 2006a).

Johnson et al. (2006a) estimated the minimum amounts of biomass input necessary to prevent loss of SOC based on literature values from long-term field-studies (Fig. 4). These estimates need to be improved to better account for climatic and soil type effects. They are, however, the first published estimates of minimum biomass input required to maintain productivity (that is, SOC) and provide general guidelines to the cellulosic ethanol industry. It is critical to note these guidelines are stated as absolute amount of bio-

Table 2 Harvested area and 2005 yield averages for three most common agronomic crops in the United States, harvest index used to calculate dry biomass yield, minimum biomass input to prevent loss of soil organic C, estimated total biomass produced and potentially harvestable biomass based on preserving SOC.

<table>
<thead>
<tr>
<th>Crop (Zea mays L.)</th>
<th>Harvested area</th>
<th>Grain yielda</th>
<th>Harvest Indexa</th>
<th>Biomass Yieldb</th>
<th>Minimum Biomass Inputsb</th>
<th>Total Biomass</th>
<th>Potentially Harvestable Biomassb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn (Zea mays L.)</td>
<td>32.81</td>
<td>9.27</td>
<td>0.53</td>
<td>6.95</td>
<td>5.25</td>
<td>228</td>
<td>57.5</td>
</tr>
<tr>
<td>Soybean [Glycine max (L.) Merril]</td>
<td>28.90</td>
<td>2.69</td>
<td>0.46</td>
<td>2.75</td>
<td>3.6</td>
<td>79</td>
<td>0</td>
</tr>
<tr>
<td>Wheat (Triticum ssp.)</td>
<td>20.30</td>
<td>2.61</td>
<td>0.45</td>
<td>2.27</td>
<td>3.6</td>
<td>56</td>
<td>0</td>
</tr>
</tbody>
</table>

1United States yield based on USDA-NASS (2006) reports; corn yield 15.5% moisture, soybean and wheat at 13% moisture.

2Johnson et al. (2006a). Harvest index = grain / (grain + aboveground biomass).

3Aboveground biomass = [grain * Harvest index] / harvest index

4Based on Johnson et al. (2006a), assumes continuous corn and reduced tillage (chisel or no till), continuous soybean; and continuous wheat (no fallow).

5(Biomass yield - minimum biomass input) * harvested area = potentially harvestable biomass.

6Table 2 Harvested area and 2005 yield averages for three most common agronomic crops in the United States, harvest index used to calculate dry biomass yield, minimum biomass input to prevent loss of soil organic C, estimated total biomass produced and potentially harvestable biomass based on preserving SOC.

Fig. 4 Estimates of corn (Zea Maize L.) stover that could be harvested without reducing SOC, based on Johnson et al. (2006a, 2006b). The y-intercept indicates the minimum amount of stover that must remain on the field (during the corn phase of a corn-soybean rotation). This scenario assumes that 2.4 Mg ha⁻¹ of soybean [Glycine max (L.) Merr.] biomass remained on the field during the soybean phase of the corn-soybean rotation. Reduced tillage data estimated from studies reported in Johnson et al. (2006a), which were chisel plowed or no tillage.
cut). Their results indicated harvesting stover (including the cobs) at a height of approximately 40 cm above the soil (normal cut) would be best for farmers and ethanol producers because of faster harvest speed and higher quality cellulosic ethanol feedstock, as well as retaining more biomass on the soil for erosion control than the low-cut scenario. Unfortunately, the mass of stover removed (5.09 Mg ha–1 in pre-pass, normal-cut system) is only about 20% of the amount of biomass in the field Johnson et al. (2006a, 2006b) estimated necessary to replenish SOC under the conservation tillage-corn-soybean rotation system used in the investigation.

Corn and wheat have dominated the discussion for agricultural biomass feedstock for cellulosic or pyrolysis feedstock (e.g., Nelson 2002; Perlack et al. 2005). Other small grains like barley (Hordeum vulgare L.), rye (Secale cereale L.) oat (Avena sativa L.), and soybean straw may also contribute. In the Midwest and Great Plains regions of the United States these crops have the advantage over corn stover as being harvested earlier and drier compared to full-season corn. Thus, there is a longer time period to harvest a drier product. Many of the environmental issues with soybean and small grain straw harvest are similar to corn stover. A minimum amount of biomass needs to be returned to protect the soil from erosion (Graham et al. 2007) and from loss of SOC (Johnson et al. 2006a, 2006b). In both cases the amount of biomass needed depends on several variables including climate, crop rotation, soil type, slope, and other management factors (Johnson et al. 2006a, 2006b; Graham et al. 2007). Soybean and small grain produce less biomass compared to corn (Johnson et al. 2006a) and soybean appear to exacerbate soil erosion (e.g., Moldenhauer and Wischmeier 1969; Laflen and Moldenhauer 1985) and loss of SOC (Fu and Cheng 2002; Cheng et al. 2003).

Wu et al. (2004) investigated forage and large biomass soybean cultivars for enhanced production of crop biomass without reducing grain yield. Grain yields of the experimental high biomass lines were 2 to 10% less and biomass was at least 20% more compared to conventional lines (Wu et al. 2004). These researchers were optimistic that grain yield of large biomass soybeans could be increased to be competitive with conventional lines. In a preliminary field trial located in West Central Minnesota, with experimental line 97NYCZ 26-1 a maturity group II forage soybean, (courtesy T. Devine, USDA-ARS, Beltsville, MD), had a grain yield of 2.1 Mg ha–1 and 4.3 Mg ha–1 biomass; group I soybeans in an adjacent field averaged 3.4 Mg ha–1 grain yield (Johnson, unpublished data). Typically group I soybeans are planted in this part of Minnesota (Hicks et al. 2003). Soybean biomass was primarily of stems, as most of the leaves had senesced prior to harvest. The removal of small grain or soybean biomass from the field could be compensated at least partially by the inclusion of cover crops in the rotation.

Cover crops can provide ground cover between harvesting the primary cash crop and the next planting season. Both legumes and nonlegume species may be used, depending on the cropping systems. The incorporation of cover crops into the rotation can help manage N fertility, reduce erosion risk, suppress weeds, and increase organic C inputs (Singer 2005). Reviews by Reicosky and Forcella (1998) and Danbey et al. (2001) discussed the positive impacts of cover crops in cropping systems and their limitations. Briefly, cover crops extend the amount of time photosynthesis occurs, which allows for more C influx (Baker et al. 2006). First, cover crops from wind and thermal energy of raindrops and slowing surface wind speed; and improve N management either by scavenging N or by legume contributing N. The drawbacks of cover crops range from allelopathic effects of some cover crops, competition for moisture in drier climates, and keeping soil colder in cold climates (Reicosky and Forcella 1998). Thus, use of cover crops has been most common in warmer, wetter climates (Danbey et al. 2001). Additional field operations to plant a cover crop during the busy harvest season may be a limitation for some producers.

Erosion prevention and C sequestration benefits associated with cover crop use makes their use in conjunction with harvesting biomass appealing; provided that the added complexity to scheduling equipment and manpower to accomplish additional tasks is not limiting. Preventing soil loss from erosion, and increasing the influx of C to the soil by adding the biocarbon to the system, builds SOM and improves soil quality (Dabney et al. 2001). Cover crops in conjunction with conservation tillage practices sequester more C than conservation tillage alone (Causarano et al. 2006). The C input from cover crops was linearly related to soil C concentration (Kuo and Jellum 2002), which is consistent with others who reported linear increases in soil C with increased C inputs (Larson et al. 1972; Paustian et al. 1997; Follett et al. 2005). The question remains can cover crops provide sufficient biomass to prevent erosion? 5% loss of SOM in a biomass removing system. There is not a simple answer to this question. There are several interactions such as: 1) the amount of cash crop biomass produces and harvested, 2) tillage management, 3) grain crop rotation, 4) topography, and 5) climatic regime.

Herbaceous perennials for cellulosic feedstock

Herbaceous perennials such as alfalfa (Medicago sativa L.), Bermuda grass [Cynodon dactylon (L. Pers.)], Miscanthus, napiergrass (Pennisetum purpureum Schumach.), reed canarygrass (Phalaris arundinacea L.), and switchgrass (Panicum virgatum L.) have been evaluated for use as dedicated bioenergy feedstocks in the United States. Although none of these species represent a “one-size-fits-all” bioenergy feedstock, each has the potential to be grown feedstock in different regions. Regardless of the species, production of any energy crops require an understanding of the agronomic practices for stand establishment, fertility management, weed control, harvest and storage procedures, and growing season precipitation requirements in rainfed production systems. Legume energy crops such as alfalfa can be grown in a cropping system with corn to provide two agricultural benefits: biomass for energy conversion and biologically-fixed N to increase subsequent crop (e.g., corn) yields.

The USDOE identified switchgrass as the model species for herbaceous perennial feedstocks after considerable evaluation of potential feedstocks (Vogel 1996). Additionally, on January 31, 2006, the President of the United States in his State of the Union Address said, “We must also change how we power our automobiles. We will increase our research in better batteries for hybrid and electric cars, and in hydrogen production from water using renewable energy. We will continue our work on hydrogen fuel cells. We will support additional research in cutting-edge methods of producing ethanol, not just from corn, but from wood chips and stalks, or switchgrass. Our goal is to make this new kind of ethanol practical and competitive within six years” (http://www.whitehouse.gov/news/releases/2006/01/20060131-10.html).

In his 2007 State of the Union Address, the President reiterated his position by saying, “It’s in our vital interest to diversify America’s energy supply. ... the way forward is through technology. We must continue investing in new methods of producing ethanol ... using everything from wood chips to grasses, to agricultural wastes” (http://www.whitehouse.gov/stateoftheunion/2007/index.html). Consequently, this section will focus on switchgrass as the model perennial grass for bioenergy production. We will consider various approaches used to grow herbaceous energy crops, discuss environmental benefits of these cropping systems, and the advantages associated with herbaceous energy crops.

Switchgrass

The USDOE considers switchgrass a viable bioenergy feedstock because it is broadly adapted and has high yield potential on marginal croplands (Vogel 1996, 2004). This perennial C4 grass is native to North America except for the areas west of the Rocky Mountains and north of 55° north latitude (Vogel 2004). It can be grown very successfully in...
many of these areas even though it is not native. Switchgrass will be productive in most rain-fed production systems east of the 100th Meridian. Switchgrass is self-incompatible (requiring pollen from different plant to produces seed) and polymorphic (having a wide array of morphological characteristics (e.g., height, leaf size, tendency to tiller)) with distinct lowland and upland ecotypes (Martinez-Reyna and Vogel 2002; Vogel 2004). Lowland ecotypes are found on flood plains and other areas that receive run-on water, whereas upland ecotypes occur in areas that are not subject to inundation (Schmer 2004). Chromosome counts of mitosis in all evaluated plants from lowland ecotypes were tetraploids, whereas plants from upland ecotypes were either octaploids or tetraploids (Hultquist et al. 1996; Vogel 2004). Lowland and upland tetraploids are capable of inter-mating and producing true hybrid offspring (Martinez-Reyna et al. 2001). These hybrids are promising sources for high-yielding bioenergy feedstocks.

The economic viability of growing switchgrass for bioenergy hinges on establishing an adequate stand in the seeding year. Weed competition is the major reason for switchgrass stand failure (Vogel 2004). Acceptable switchgrass production can be delayed by one or more years because of competition from weeds and poor stand establishment (Schmer et al. 2006); however, establishment is improved if weeds are controlled with herbicides (Vogel 2004). Several herbicides have been identified for controlling broadleaves and grasses in switchgrass (Martin et al. 1982; Bahler et al. 1984; Masters et al. 1996; Vogel 2004), which has enabled switchgrass to be fully established within one year of planting (Masters et al. 1996). Vogel and Masters (2001) reported a stand frequency (occurrence frequency of the seeded plant species per unit area) of 50% or greater indicated a successful stand, whereas stand frequency from 25 to 50% were marginal to adequate, and stands with less than 25% frequency indicated a partial stand. A study conducted on 12 farms in Nebraska, South Dakota, and North Dakota found switchgrass fields with stand frequency of 40% was considered the threshold indicative of successful establishment needed to support biomass harvesting in subsequent years (Schmer et al. 2006). Typically, biomass is not harvested in the establishment year (Schmer et al. 2006). Successful switchgrass establishment and persistence requires the roots to develop a symbiotic relationship with arbuscular mycorrhizal fungi (Brejda et al. 1998). Most cultivated soils in the United States Central Great Plains contain adequate arbuscular mycorrhizal fungi for symbiosis, but degraded and sandy soils may be mycorrhizal deficient (Brejda 1996).

Meeting the fertility requirements for switchgrass is important for optimizing biomass production and maintaining quality stands. Nitrogen is the primary fertilizer input required by switchgrass. Although switchgrass can tolerate low fertility conditions, it responds to N fertilization with increases in dry matter production, crude protein concentration, in vitro dry matter digestibility, and C storage (Rehm et al. 1976; Perry and Baltensperger 1979; George et al. 1990; Sanderson et al. 1999a; Ma et al. 2001; Vogel et al. 2002).

The amount of applied N required by switchgrass is a function of the yield potential of the site, productivity of the cultivar, and other management practices (Vogel et al. 2002). The optimum N rate for ‘Alamo’ switchgrass man-aged for biomass yield in Texas was 168 kg N ha⁻¹, and biomass production averaged 14.5 and 10.7 Mg ha⁻¹ yr⁻¹ at the Stephenville and Beeville, TX locations, respectively (Muir et al. 2001). Biomass production declined over time without applied N, and was sustainable only with the application of at least 168 kg N ha⁻¹ yr⁻¹. In Alabama, Ma et al. (2001) reported switchgrass yields increased to a maximum of 12.0 Mg ha⁻¹ as N rate increased up to 224 kg N ha⁻¹, the highest rate of N application in the study.

In general, as N rate increases, switchgrass biomass increases. However, an important concern is the fate of the soil-applied N and its potential to leach from the switchgrass root zone and become a groundwater contaminant. In Nebraska and Iowa, biomass yields of “Cave-in-Rock” switchgrass increased as N rate increased from 0 to 300 kg N ha⁻¹ (Fig. 5), but residual soil N increased when more than 120 kg N ha⁻¹ was applied (Vogel et al. 2002). They reported biomass production was optimized with the application of 120 kg N ha⁻¹, the point at which N application approximately offset N removed with the harvested biomass (Vogel et al. 2002). They concluded that N fertilizer recommendations in this region should be based on anticipated biomass yield, and approximately 10 to 12 kg ha⁻¹ yr⁻¹ of applied N is needed for each Mg ha⁻¹ yr⁻¹ of biomass yield (Vogel et al. 2002). Phosphorus (P) may be important for switchgrass growth, but limited response to fertilizer P is often reported (Brejda 2000). Muir et al. (2001) reported ‘Alamo’ switchgrass had no response to applied P when harvested for biomass at two locations in Texas. Switchgrass had no response to applied P in low P soils in Iowa (Hall et al. 1982). However, research in Nebraska by Rehm (1984) and Rehm et al. (1976) suggested switchgrass might respond to applied P, if P availability from the soil is low.

Maximizing dry matter production is the primary ob-

![Fig. 5 Switchgrass (Panicum virgatum L.) N response curve developed from first harvest ‘Cave-in-Rock’ switchgrass grown in 1994 and 1995 at Mead, NE and Ames, IA. (Vogel et al. 2002).](image-url)
jective when harvesting biomass for feedstocks. In general, a single harvest during the growing season maximizes switchgrass biomass recovery. For example, Sanderson et al. (1999a; 1999b) harvested several switchgrass strains once or twice per growing season at five locations for four years in Texas. They concluded that ‘Alamo’ was the best-adapted commercially available switchgrass cultivar for biomass production in conjunction with that harvesting in autumn maintained stands and maximized biomass production. Yields ranged from 8 to 20 Mg ha\(^{-1}\) yr\(^{-1}\), and SOC increased by 42% from 11.1 to 15.8 g kg\(^{-1}\) in the upper 30 cm of soil between 1992 and 1996, indicating that switchgrass grown for bioenergy has good potential for storing soil C (Sanderson et al. 1999b). In Nebraska and Iowa, Vogel et al. (2002) conducted an intensive harvest management study consisting of either one or two harvests per year. Optimum biomass yields of ‘Cave-in-Rock’ switchgrass were attained with a single harvest during anthesis (R3 to R5; Vogel et al. 2002). Biomass yields ranged from 10.5 to 12.6 Mg ha\(^{-1}\) yr\(^{-1}\), and quality stands were maintained throughout the three-year study. In South Dakota, Conservation Reserve Program (CRP) lands dominated by switchgrass, Mulkey et al. (2006) recommended applying 56 kg N ha\(^{-1}\) in the spring and harvesting once after a killing frost to maintain a stand with optimized biomass production. In North Dakota, Frank et al. (2004) applied 67 kg N ha\(^{-1}\) in the autumn and harvested at the soil level for a three-year average biomass yield of 6.4 and 9.1 Mg ha\(^{-1}\) for ‘Dacotah’ and ‘Sunburst’, respectively. Maturity of switchgrass biomass influences biomass quality and the potential glucose recovery for ethanol fermentation (Dien et al. 2006). These studies indicate that a single annual harvest will optimize efficiency; harvest timing needs to be considered for stand maintenance and optimizing cellulose ethanol yield.

Environmental benefits of perennial grasses
Growing perennial grasses can protect soil, water and air quality, provide fully sustainable production systems, sequester C, create wildlife habitat, increase landscape and biological diversity, and return marginal farmland to production. Growing switchgrass for bioenergy feedstock may increase wildlife habitat, increase farm revenues, and increase C sequestration (Sanderson et al. 1996; McLaughlin and Walsh 1998; McLaughlin et al. 2002). Switchgrass root density (Mg root ha\(^{-1}\)) in the surface 15 cm is twice that of alfalfa, more than 3-fold greater than corn, an order of magnitude greater than soybean and roughly two orders of magnitude greater than cuphea (Johnson et al. 2007). Frank et al. (2004) reported soil C\(^{\text{m2 \ yr\(^{-1}\)}}\) and switchgrass in the United States northern Great Plains have the potential to store significant quantities of soil C. Liebig et al. (2005) reported that switchgrass stored 12 Mg ha\(^{-1}\) more C in the 30 to 90 cm depth than croplands in a paired field experiment in North Dakota, South Dakota, and Minnesota. Lee et al. (2007) reported that switchgrass grown in South Dakota CRP stored soil C at a rate of 2.4 to 4.0 Mg yr\(^{-1}\) in the 0-30 cm depth and 1.01 kg C storage varied by N form. In addition to increasing SOC, the perennial habit of switchgrass increases the residence time of C stored in living material, especially belowground.

Perennial herbaceous energy crops provide several challenges. A stable and consistent feedstock supply must be available year-round to the ethanol plant. For the producer, perennial herbaceous energy crops must be profitable, their market fitted into existing farm management, they must be easy to store and deliver to the ethanol plant without loss of quality. Extension efforts are needed to provide to producers with agronomics and best management practices for growing perennial herbaceous energy crops. Perennial herbaceous energy crops have potential for improvement, and present a unique opportunity for cultural and environmental change on the agricultural landscape. There are numerous environmental benefits to perennial herbaceous cropping systems that can improve agricultural land use practices including stabilizing soils and reducing soil erosion, improving water quality, increasing, and improving wildlife habitat, and storing C to mitigate GHG emissions. All of these benefits can be achieved, provided agronomic, genomic, and operational aspects of perennial herbaceous cropping systems are fully developed and accepted by farmers. We speculate that herbaceous perennial energy crops may be superior to energy crops, have greater energy density both above and below ground and feedstock availability. Annuals likely would be harvested in autumn and perennial grasses could be harvested in early spring, while they are dry, similar to when native prairies typically are burned. This may help reduce need for feedstock storage by providing feedstock at different times during the year. The quality of switchgrass in the spring compared to autumn harvest needs to be ascertained.

Woody perennial energy crops
Biomass can be produced from fast growing trees using intensive management practices. Here we use the term woody perennial energy crops (WPEC) to distinguish them from herbaceous perennial energy crops. The woody biomass produced from these perennial energy crops is easy to store and handle, has high density and low ash content, and mixes well with other woody feedstock such as forest harvest residues or mill waste.

Intensive tree plantation management uses improved genetic stock, competition control, fertilization, and even irrigation to enhance productivity. Although such practices are common in agriculture, they have recently been adopted for tree culture. In traditional forestry, naturally regenerated or planted seedlings are expected to out-compete other vegetation and grow to the extent resources within the site provide. Growth rates of WPEC trees are fast enough to allow rotation time between planting and harvesting within three to ten years compared to several decades for traditional silviculture (Lemus and Lal 2005). There are clear advantages of producing biomass for energy or even traditional woody products using short-rotation intensively-managed woody crop systems. There are also positive and negative environmental consequences for WPEC systems. There is public concern that adopting wood as an alternative energy source will result in greater harvesting of native forested lands with significant loss of ecosystem services and declining biological diversity. However, there is a large knowledge base on which to build productive and sustainable woody feedstock system. Growing regimes for WPEC can focus biomass production on marginal lands and provide numerous environmental advantages for agricultural landscapes while simultaneously relieving pressure on natural and managed forestlands.

Wood is an obvious alternative energy source. Prior to the widespread adoption of coal and petroleum energy, wood, and charcoal supplied virtually all of the energy consumed in the United States (EIA 2006a). Wood still plays a significant role today, even though it is considered an alternative energy source for home heating and industrial drying. In 2006, wood provided over 80% of the renewable energy used in the United States, with 40% used for domestic and other commercial uses (EIA 2006b). In the decades leading up to the Arab oil embargo, there was recognition that intensive forest management practices could vastly improve forest productivity (Scheirer 1945; McAlpine et al. 1966; Ek and Dawson 1976; McMinn and Nutter 1981; Dickmann 2006). Work supported largely through the USDA Forest Service conducted intensive management, to demonstrate both the genetic potential of select forest tree species and the positive consequences of agronomic practices. Foresters and the wood products industry recognized that a greater proportion of our energy supplies could be derived from wood as an alternative to fossil fuels and promoted woody biomass as a source for power and liquid fuels (Dickmann 2006).

Many promising wood energy conversion technologies emerged from alternative energy programs (e.g. Reed and Lerner 1973). The USDOE Short Rotation Woody Crops
Program, which was later named the Bioenergy Feedstock Development Program supplied necessary funding for greater development of short-rotation woody cropping systems and eventually focused on poplar (Populus spp.) and willow (Salix spp.) as model tree species, while other tree species were also considered (Kszos et al. 2001). Numerous reports and summary publications are available describing the program’s activities in genetic selection and improvement, developmental, research, and communications between government, academic, and industrial researchers, including International Energy Agency (http://www.ieabioenergy.com/), the International Poplar Commission (http://efore.ucl.ac.be/ipc/), the International Union of Forest Research Organizations (IUFRO; http://www.iufro.org/), and the SRWC Operations Working Group (http://www.woodycrops.org/) (Dickmann 2006).

In the remainder of this section we will summarize the major approaches used to grow WPEC in North America, with some international examples of applications, and discuss the environmental benefits of these cropping systems.

WPEC cropping systems

Woody perennial energy crops, also known as short rotation woody crops involve several different approaches based on the type of tree grown. The types considered here include large-stature widely-haired hardwoods; low-stature, densely-spaced coppice culture; and intensively managed pine. Successful implementation of each of these types of woody crops includes common agronomic features of improved genetic material, high quality planting stock, effective competition control, and adequate water and nutrient supplies (Dickmann and Stuart 1983; Standiford and Ledig 1983; Willebrand et al. 1993; Borders and Bailey 2001; Stanturf et al. 2001). Pest control is also beneficial to susceptible varieties; however, most effective pest control strategies involve deployment of resistant varieties, which contribute to a superior genotype’s production potential (Coyle et al. 1993; Borders and Bailey 2001; Stanturf et al. 2002). Genetic selection and breeding strategies used to increase productivity for some woody crop species in the genus Populus and willow other woody crops such as pines and eucalyptus do not demand large quantities of nutrient resources for a given amount of productivity due to the on-site recycling of nutrients. Annual N supply requirements range up to 170 to over 200 kg N ha\(^{-1}\) yr\(^{-1}\) for highly productive (>20 Mg ha\(^{-1}\) yr\(^{-1}\)) poplar (Heilmann et al. 1996). Woody perennial energy crops species with modest production rates (<10 Mg ha\(^{-1}\) yr\(^{-1}\)) require less than 120 kg N ha\(^{-1}\) yr\(^{-1}\). Much of the annual nutrient requirement of WPEC, including poplar, can be supplied by sites having moderate quality (Heilman et al. 1997) or can be added on lower quality sites. Little or no response to fertilization is common in forestry experiments due to adequate site availability and internal cycling of acquired nutrients (Binkley 1986; Hansen et al. 1985). Higher yields are expected on productive farmland without fertilizer, especially when high nutrient containing leaves remain on site greater than 1 year. Marginal farmlands however require some regular, low-rate fertilizer addition to achieve maximum production especially for those trees with high nutrient demand such as poplars. Fertilization rates of 30 to 50 kg N annually can achieve 80% to more than a 3-fold growth increases if applied annually (Heilmann and Xie 1993; Jokela et al. 2004; Coleman et al. 2006). Proportionally more fertilizer will be necessary as production rates increase. Application rate expected for poplar species is usually 5 to 10 kg N ha\(^{-1}\) yr\(^{-1}\); however variation in frequency varies from one per rotation to once per irrigation cycle (Binkley 1986; Allen et al. 1990; van Miegroet et al. 1994; Stanturf et al. 2001). Higher rates are applied when fertilization occurs only once or twice during the rotation, but the capacity of the site to retain high nutrient amounts is important to consider avoiding off-site transport by run-off or leaching. Supplying fertilizer with irrigation rather than diluting nutrients in irrigation water has been practiced since 1986 in all treatments (Ingestad 1987). The low nutrient concentrations provide significant improvements to site nutrient retention while supporting greater yields (van Miegroet et al. 1994). Identifying critical nutrient demand periods during the rotation may avoid the high cost of multiple split application or the consequences of off-site transport. Commonly, fertilizer is applied at planting and at mid-rotation. Fertilization at planting that is applied directly in the planting hole achieves the best results (van den Driessche 1999) because more is
available to the crop rather than the competition. During establishment, nutrient requirements are met by root exploration of the site and any applied fertilizer provides minimal benefit. Mid-rotation demand is greatest at the time of canopy closure and intra-specific root competition. Small annual applications at canopy closure achieve greater growth response compared to an equivalent amount applied in a single application (Stanton et al. 2006; Willebrand et al. 2002). Plantation-growth rates can be maintained in humid climates by planting drought-resistant trees (Coleman et al. 2004a), and poorly drained sites will support high productivity rates if soil aeration is not restricted during the growing season (Stanturf et al. 2001; Stanton et al. 2002; Eisenbies et al. 2006). The most effective approach to meeting WPEC moisture requirements is to match the genotype to the climate. For instance both *Eucalyptus* and *Populus* have drought-tolerant clones (e.g., Gebre et al. 1998), which can be selected, bred, or inserted to produce genotypes appropriate for a wider range of climatic conditions.

Although all woody crops have similar characteristics including improved genetic material, effective weed control, and requirement for sufficient nutrient and water supplies, there are unique differences among cropping systems. The following sections describe the major woody cropping systems appropriate for energy feedstock production.

Hardwoods

Hardwoods grown in short rotation culture are commonly raised to large stature trees. Appropriate species are included within poplar, *Eucalyptus*, sycamore, maple (*Acer*), alder (*Alnus*), and locust (*Robinia*), among others. Production rates for large-stature hardwoods range from 5 to over 20 Mg ha\(^{-1}\) (Skolmen 1983; Perlock et al. 1995; Coyle and Coleman 2005; Dickmann 2006). Although the site quality and management treatments control average productivity, the piece size and the rotation length required to reach the site-carrying capacity is largely determined by tree-spacing (Steinbeck and Nwoboshi 1980; Heilman and Peabody 1981; Bernardo et al. 1998). The target piece size depends on the desired product. Hardwoods spaced at lower densities (70 to 150 trees ha\(^{-1}\)) achieve larger stature before inter-tree competition slows growth after 10 to 15 years. Large individual tree size allows multiple products including energy wood, pulp chips, and solid wood products. Such a multi-product approach is used to maximize profit from each rotation and energy wood is only one product component of this type of cropping system.

Hardwoods grown at higher density (1500-2000 trees ha\(^{-1}\)) will result in faster site occupation and shorter rotations. At close spacing, trees reach the site-carrying capacity and reach maximum annual growth rates at six to eight years, which result in smaller individual trees. These smaller trees are appropriate as energy or pulpwood. The minimum size for this cropping system is determined by operational constraints. Trees smaller than 10-cm diameter can not be harvested efficiently with conventional felling and bunching equipment (Col-Stokes et al. 2003b) and pulp mills are unwilling to accept smaller material because pulp yield is small and the fiber tensile strength is low compared to older wood (Francis et al. 2006). Higher density plantings are possible and they are described under coppice culture below.

Propagation of hardwoods can be accomplished through bare-root nursery production of favorable seed sources, or mixed seed sources, and vegetative propagation using greenwood cuttings from hedge orchards or by using hardwood cuttings from stool-beds. Rooting of hardwood cuttings in nurseries is also used on sites where rooting in the field is unfavorable. Traditional propagation involving bare-root nursery stock is well established for both forestry and horticultural applications (Williams 1976; Duryea et al. 1984). Establishment of low-density hardwood stands includes using bare-root or containerized nursery stock for *Populus*, *Alnus* and *Betula* species, sweet gum, maple, and locust. However, individual seedlings can be costly and significantly increase establishment cost as planting density increases. Poplar species are easily propagated using dormant stem cuttings (FAO 1979b; Dickmann and Stuart 1983; Stanturf et al. 2001). Stem cuttings taken from ramets grown in stool-beds can be produced in large quantities and at low cost, consequently lowering establishment costs. Rooting of greenwood cuttings is also possible for high-value, genetically improved stock material although they can be expensive to produce. Vegetative propagation allows for the maintenance of any genetic gains achieved through selection, breeding, and gene insertion. This advantageous propagation characteristic is one of the most important features favoring *Poplar* spp. for WPEC.

Coppice

Coppice culture involves stump respouting following removal of aboveground stems. Hardwood trees such as willow (*Salix*), *Eucalyptus*, poplar, locust, elm (*Alnus*), sycamore, birch (*Betula*) will initiate new shoots from dormant buds when induced by wounding (Sennery-Forss et al. 1992). Coppice WPEC have been well developed using willow (Willebrand et al. 1993; Volk et al. 2006). Average production rates for coppice willow range from 10 to 24 Mg ha\(^{-1}\) yr\(^{-1}\) (Perlock et al. 1995; Kopp et al. 2001). Low-stature shrub willow is planted in densely-spaced (10,000-20,000 trees ha\(^{-1}\)) dual-row plantings that allow machinery to move over coppice stools for harvest and treatments. The stem portion is removed at 3-4 year harvest intervals. After harvest, herbicide and fertilizer are applied and the shoots are allowed to regrow. Vigorous growth is achieved, often exceeding growth from the initial planting rotation, and high production is maintained for up to 25 years. Low-density large-stature trees harvested with conventional forestry equipment will coppice successfully, especially *Eucalyptus* in tropical climates. However, the capacity of dormant buds is suppressed as trees age (Sennery-Forss et al. 1992), which results in lower production from coppicing with longer rotations. There is also strong sensitivity to the season of harvest, and the requirement for year-round harvest and the desire to replace old genotypes with more favorable ones has discouraged the use of coppice regeneration in poplar (Stanton et al. 2002).

Worldwide willow coppice culture is a well-established WPEC production system. Shrub willow is grown on over 15,000 ha in Sweden and 1,750 ha in the United Kingdom where some plantings are near district-heating and combined heat and power facilities for fuel supplies (pers. comm., N.E. Nordh representative from Sweden and K. Borremans representative from the United Kingdom, pers. comm. respectively presented at the International Energy Association Task 30 meeting, 8 Nov. 2004, Charleston, SC). Research in New York state has established nearly 300 ha (Volk et al. 2006). This research program has demonstrated the advantages for power production by co-firing coppice-willow biomass with coal at two separate facilities, documenting reductions in chemical and particulate pollutants. Similar efforts developing willow coppice are occurring in other countries including United Kingdom, Canada, and New Zealand (Mitchell et al. 1999; Sims et al. 2001; Bullard et al. 2002; Labrecque and Tedorescu 2005). Costs for producing biomass using willow-coppice culture are becoming competitive with fossil fuels by considering the most productive cropping schemes (Willebrand et al. 1993; Bullard et al. 2002) and improvements in harvesting efficiency (Culshaw and Stokes 1995). Willow has proved effective in cleaning contaminants from polluted soil and water (Mirk
et al. 2005), for stream bank stabilization (Lee et al. 2000), and as living snow fences (Volk et al. 2006).

Numerous Eucalyptus species have been investigated for growth in coppice culture as WPEC and other uses throughout the world (FAO 1979a; Standiford and Ledig 1983; Whitesell et al. 1992; Sims et al. 2001; Wildy and Pate 2002; Little and Gardner 2003). For instance, Brazil nut tree growing at a ha of Eucalyptus using native southern yellow pine grows at a rate of 10 tons dry weight per year. The Brazilian Eucalyptus plantations are harvested as many as three times in rotations of 5 to 8 years before re-planting is required. The Australian representative, B. George to the International Energy Association Task 30 meeting (8 Nov., 2004, Charleston, SC) noted during his presentation that the Narrogan Integrated Malac Process Plant in Western Australia has demonstrated the use of coppiced oil mallee (E. kochii) for multiple products including oil extracts, energy, and charcoal production. In the United States, significant efforts in Florida and California have considered Eucalyptus species for energy production (Standiford and Ledig 1983; Rockwood et al. 2006), and the Hawaiian forest inventory includes over 6,000 ha of short-rotation coppice E. grandis (Martin and Nakamura 2001) much of which has been targeted toward energy production (Whitesell et al. 1992).

Sycamore (Platanus occidentalis) has shown promise for coppice culture in an early demonstration of WPEC growing system known as silage sycamore (McAlpine et al. 1966; Steinbeck et al. 1972). This pioneering effort demonstrated that closer spaced trees, even though individually smaller, would maintain greater biomass than wider spaced trees of larger individual size (Dickmann 2006). P. occidentalis has good growth potential (Coyle and Coleman 2005; Davis and Trettin 2006); however, widespread use is hindered due to bacterial leaf scorch disease that occurs after three to five years following planting (Henneberger et al. 2004).

Intensive pine silviculture

There are 12 million ha of pine plantations growing in the southeastern United States (Conner and Hartsell 2002) and 0.65 million ha planted annually (Siry 2002). Productivity of managed southern pine plantations currently ranges from 11 to 18 Mg ha\(^{-1}\) yr\(^{-1}\) (Stanturf 1983; Whitesell et al. 1992; Sims et al. 2001; Wildy and Pate 2002; Little and Gardner 2003). For instance, Brazil nut tree growing at a ha of Eucalyptus using native southern yellow pine grows at a rate of 10 tons dry weight per year. Years of 168 to 224 kg ha\(^{-1}\) N plus 28 kg ha\(^{-1}\) P provides growth gain of 30% compared to no fertilizer (Fox et al. 2006). Forest operations involve equipment and techniques that are highly developed for efficient site preparation, planting, treating, and harvesting. This technology is designed for the existing state of the resource base and product requirement, but is also capable of adapting to a changing resource base such as WPEC plantations (McKeand et al. 2001; Wildy and Pate 2002).

This shift away from low input forestry to intensive forestry including standard agronomic techniques, elite genotype stock, effective site preparation, competition control, fertilization, and irrigation demonstrates the capacity for hardwoods, coppice and pines to meet energy production demands. Additionally, understanding of impacts resulting from past practices has made the forestry community acutely aware of environmental impacts of land management (Carter and Foster 2006). This fact and the emerging understanding of forest technology to supply environmental services have developed a wealth of information on the environmental impacts and opportunities of WPEC.

Environmental consequences and benefits of WPEC

To understand the consequences and benefits of WPEC, it is important to compare environmental impacts relative to other land uses (Runney and Mann 1994). In the case of WPEC, the comparisons must be made relative to both forests and agricultural systems because woody crops are intensive forestry operations that apply agricultural methods. They are likely to be located on the margins between agriculture and forestry. We will compare WPEC with working forests that are managed for commodity production and not natural undisturbed old-growth. Although there are significant ecological and physiological distinctions between naturally occurring old-growth forest and second-growth plantations (Bond and Franklin 2002), the opportunity presented by WPEC is to focus production of forest products in agricultural areas and not to replace natural forests. Concentrating wood production at the margins between agricultural and forestlands preserves both high-value agricultural land for food production and natural forests for social and ecological services. The appropriate comparisons to assess environmental impacts of WPEC are then with management practices of both adjacent agricultural and working forestlands.

Off-site soil and nutrient transport

Woody perennial energy crops have potential to both retain soil nutrients and nutrient pathways through soil stabilization by the perennial root system, but allow off-site transport during harvest and crop reestablishment phases. Soil stabilization has long been recognized as a favorable characteristic of tree plantings (Carter and Foster 2006). Tree root systems are concentrated in the upper surface layers (Gale and Grigal 1987) where they hold and protect soil from the action of wind and water. Tree plantings have been used as shelter belts to prevent soil erosion and to trap sediment (Lowrance et al. 2002; Brandle et al. 2004). There are obvious soil protection advantages of using widely-spaced long-rotation perennial crop plants that remain in place for several years protecting the soil. There are also advantages of using coppice crops that do not require site preparation and soil disturbance for more than two decades.

Problems with erosion and off-site transport occurred in earlier forestry operations raised concerns about the sustainability of forest operations. Rapid revegetation and the development of best management practices avoided erosion and runoff and improved adjacent surface water quality (Fox 2000; Carter and Foster 2006). Memories of early land use practices and continued concerns over forest harvest impacts on stream quality and fish habitat lead to continued public concern over intensive forestry management practices. However, proper management can avoid such problems and even reduce nutrient losses using the stabilization and
filtering capacity of perennial tree root systems.

Woody crops also compare favorably to agronomic and herbaceous energy crops in most instances studied. Woody perennial energy crops stands have been shown to protect against loss of nutrients compared to corn or switchgrass (Tolbert et al. 2000; Nyakatawa et al. 2006). Soil erosion from WPEC is generally lower than row crops (Ramney and Mauney 1996; former proper siting and establishment, as till WPEC when compared to no-till or previously established switchgrass, due to lack of adequate soil cover (Nyakatawa et al. 2006). Stream banks having riparian buffers consisting of willow and poplar trees decreased erosion more than 70% relative to stream banks running through unprotected cropland (Zaines et al. 2004).

The tree root system is an effective filter for plant nutrients and organic compounds moving in ground water or applied to the soil surface (Stanton et al. 2002; Mirck et al. 2005). Although species and genotypes of Poplar and Eucalyptus can display high nutrient use efficiency, when provided with high nutrient availability they are capable of acquiring large amounts of nutrients, increasing internal concentrations, and growing proportionally (Jaia and Inges-tad 1984; Coleman et al. 1998). In fact, poplar and willow have frequently been used for stream bank protection and as riparian buffers (Lee et al. 2000; Schultz et al. 2000; Volk et al. 2006). Poplar trees planted as riparian buffers maintain greater rooting density to a greater depth than corn or soybean planted in the same position relative to the stream (Tufekcioglu et al. 1998). Nutrient accumulation by hardwoods such as poplar and willow from soil is high compared to other trees (Heilmann et al. 1996; Pregitzer and Friend 1996), but even southern pines show high nutrient accumulation rates (Adegghi et al. 2005) that place large nutrient demands on site. This high rate of nutrient uptake is due to relatively high root length densities as well as high ion uptake rates (BassiriRad 2000). Conifer trees typically have coarser roots and lower rooting density than deciduous hardwoods (Bauhus and Messier 1999; Coleman et al. 2000; Pregitzer et al. 2002). Low root length density yet with equally high nutrient acquisition demonstrates that fast growing conifers have higher uptake per unit root length than hardwoods and indicates that they may have a greater dependence on mycorrhizal associations (Bauhus and Messier 1999). Regardless of the mechanisms and symbiotic relationships, this capacity for high rates of nutrient accumulation in both hardwoods and conifers is an advantage for nutrient removal.

Further evidence for WPEC to maintain or improve water quality can be found by using fast growing woody crops as contaminant removers or decomposition of harmful organic compounds. Many WPEC have been used for filtering nutrients from effluent, landfill leachates or irrigation runoff water (Schultz et al. 2000; Aronsson and Perttu 2001; Licht and Isembands 2005; Zalesny et al. 2006). Use of contaminated effluent or other sources of reclaimed water provides dual environmental services, when those sources provide water and nutrient resources to support WPEC growth (Hannay et al. 1990; Laughton et al. 1990; Myer et al. 1996; Falkiner and Polglase 1999; Snow et al. 1999; Moffat et al. 2001; Zalesny et al. 2006). Trees have also been used to extract heavy metals and other contaminants from former industrial sites, commercial spills and other types of soil contaminants (Wang et al. 1999; Hammer et al. 2003; Robinson et al. 2003; Vervaeke et al. 2003; Sebastiani et al. 2004; Kuzovkina and Quigley 2005; Laureysens et al. 2005; Vercruysse et al. 2005; Vercruysse et al. 2005). Given the capacity of trees to degrade harmful organics and to sequester toxic metal compounds there is large potential for use of WPEC to improve site quality over abandoned or marginal farmland, and to reclaim former industrial acres to produce renewable and sustainable energy (Licht and Isembands 2005). Properly managed WPEC can have important protective benefits in the agricultural landscape and restorative benefits on contaminated lands.

Long-term site productivity

Maintenance of site productivity involves retention of soil and nutrients and building of the soil quality by additions of organic matter. Losses of soil and nutrients from WPEC mainly occur during harvesting and reestablishment. Building of soil quality results from the development and growth of the WPEC stand. Site quality must be maintained through proper siting, tillage, and management (Fig. 1). Proper site preparation and rapid reestablishment of the next crop is critical for soil protection including maintenance of SOM, soil physical properties such as porosity and bulk density (Fox 2000). Forestry site preparation practices such as, shearing and raking residual organic matter into piles is known to degrade site quality (Carter and Foster 2006). Shear and pile site preparation, still common today, can displace nutrient rich topsoil resulting in lower productivity. Such problems may be avoided by leaving previous vegetation during harvesting to decrease the need to pile debris, followed by chemical suppression of competing vegetation and burning. These steps have proven to be an effective means to maintain productivity of the site quality at minimal expense (Fox 2000; Carter and Foster 2006).

Concern has also been expressed over degrading site quality by nutrient removal at harvest, especially when whole-tree harvesting for bioenergy feedstocks compared to stem only harvest for solid wood and pulp products (Fox 2000; Carter and Forest 2006). Meta analysis of research studies showed there is an 18% increase in soil C and N resulting from stem-only harvesting, while there is a 6% decline with whole-tree harvesting (Johnson and Curtis 2001). There are no detectable limits on subsequent rates of forest productivity (Mann et al. 1988; Fox 2000). In the case of WPEC more frequent removals will occur than on longer rotation forest management. Fertilizer amendments exceed aboveground removals because much of the biomass grown is returned to the soil by deciduous ephemeral tissue having high nutrient content (see below). The cycling of this tissue helps to maintain and even enhance soil nutrient levels. Consequently, if the nutrient content of WPEC are properly managed to achieve productivity goals during crop rotations there will be positive impacts on soil quality and any removal during harvest will not impact site productivity.

Organic material is deposited on sites growing operational forests and WPEC through aboveground litterfall, root turnover, and residual stump material after harvest. Annual leaf litter fall of WPEC can be as much as one quarter of annual above ground production (Davis and Trettin 2006) and belowground production of woody plants is equal or greater than that of grass (Vogt 1991) with the average fine root having a residence time commonly less than a year (Eissensstat and Yanai 1997). The deposited organic matter from above and belowground result in greater detritus deposition, which supports a diverse belowground ecosystem that includes abundant microbes and mesofauna (Colesman et al. 1992) similar to as discussed above in respect to annual crops. However, since SOM is used as an essential nutrient source by an important belowground ecology, the amount of C added to the soil as organic matter or labile C compounds are equivalent to the amount of C lost through soil respiration (Raich and Nadelhoffer 1989; Giardina and Ryan 2002). Disturbance of plant inputs during stand establishment can result in declines in SOM content (Grigal and Bergson 1998) and have negative impacts on soil quality unless vegetation inputs are rapidly restored. There is a large addition of labile C in soft hardwoods and pine, if the stump and roots are left in place, at the autotrophic input from the new crop increase as part of the biological C-cycle (Fig. 1). These simultaneous processes provide managers with an organic matter reserve during conversion. Organic matter may actually accumulate over successive rotations. Carbon in soils growing WPEC has been shown to increase relative to agricultural fields (Hansen 1993; Tolbert et al. 2002); although, this has been
difficult to consistently document (Garten 2002; Coleman et al. 2004b). Yet, there is great potential for C sequestration using WPEC. Biomass crops used for energy production will not only offset fossil fuel C emissions, but fields used to grow energy crops can also be C sinks.

Biodiversity and habitat quality

Establishment of tree crops creates structure on the landscape that is used for cover, foraging and breeding habitat for wildlife. Woody perennial energy crops were shown to have wildlife populations equivalent to less intensive forest plantations and greater than adjacent agricultural fields (Sage and Robertson 1996; Twedt and Portwood 1997; Londo et al. 2005). The edge structure of woody crop plantations is favored by raptors (Moser and Hilpp 2003). Small mammal populations are greater in young poplar plantations is favored by raptors (Moser and Hilpp 2003). Small mammal populations are greater in young poplar plantations is favored by raptors (Moser and Hilpp 2003). Small mammal populations are greater in young poplar plantations is favored by raptors (Moser and Hilpp 2003). Small mammal populations are greater in young poplar plantations is favored by raptors (Moser and Hilpp 2003). Small mammal populations are greater in young poplar plantations is favored by raptors (Moser and Hilpp 2003). Small mammal populations are greater in young poplar plantations is favored by raptors (Moser and Hilpp 2003). Small mammal populations are greater in young poplar plantations is favored by raptors (Moser and Hilpp 2003). Small mammal populations are greater in young poplar plantations is favored by raptors (Moser and Hilpp 2003). Small mammal populations are greater in young poplar plantations is favored by raptors (Moser and Hilpp 2003). Small mammal populations are greater in young poplar plantations is favored by raptors (Moser and Hilpp 2003).

Establishment of tree crops creates structure on the landscape that is used for cover, foraging and breeding habitat for wildlife.

Faster growing poplar plantations have higher diversity and greater breeding bird counts than slower growing oak (*Quercus*) reforestation sites, and the rapid establishment of structure in poplar creates rapid increases in bird populations compared to adjacent agricultural fields (Twedt et al. 2002). Providing the structure of multi-aged stands across the agricultural landscape will enhance diversity relative to an agricultural landscape consisting of row crops and hay fields.

Intensively managed forests have a number of favorable ecological characteristics that maintain or enhance site conditions relative to old-field conditions. These characteristics include soil stabilization, organic matter inputs, filtering by the root systems and development of aboveground structure for wildlife habitat. Harvesting operations disrupts these favorable conditions and care must be taken to minimize negative environmental consequences. Most notably off site transport and excessive loss of SOM. Reestablishment practices that minimize soil disturbance and retain debris to protect soil will minimize impacts during stand conversion. These soil impacts and habitat shifts during harvesting can also be minimized by maintaining a variety of WPEC stands with each of the age classes so that the area disturbed during any year is a fraction of the total land base.

OTHER ISSUES

Thermochemical co-products, C sequestration and soil quality

Another aspect of biomass for bioenergy is the production of by-products or co-products. This section will discuss uses of by-products or co-products formed. Co-products are differentiated from by-products in that co-products have intrinsic value either as energy or for C sequestration. The wet or dry solubles after grain ethanol fermentation are used as animal feed; any excess could be biomass feedstock (Perlack et al. 2002). The high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005), the high lignin by-product of cellulosic fermentation likely will be thermochemical feedstock (Sheehan et al. 2005). There are a variety of products and terms that will be defined before continuing this discussion. Generally, the term black C applies to various carbonaceous products of incomplete biomass combustion, including char, charcoal, and soot (Goldberg 1985). The chemical properties of these materials vary tremendously along this continuum from the fly ash, a by-product of direct combustion of fossil or biomass fuels, which is trapped by electrostatic precipitators to char that is biologically active. We here-after refer to biologically active char as bio char.

Fossil-fuel fly-ash has little nutrient value as a soil amendment. Palumbo et al. (2004) reviewed prospects for enhancing C sequestration and reclamation of degraded lands with fossil-fuel combustion by-products. Degraded lands are often characterized by acidic pH, low levels of key nutrients, poor soil structure, and limited moisture-retention capacity. Land application of fly-ash may change soil pH and nutrient availability. Fly-ash varies greatly in elemental composition and pH ranges from 4 to 11 (Furr et al. 1977). Some ash materials have been considered for soil amendments in agricultural production systems because these ashes contain a broad spectrum of elements, both essential and toxic (Davison et al. 1974; Furr et al. 1977). Numerous plant response studies have been conducted evaluating various forms of ash as a soil amendment (Lehmann et al. 2003b, 2006), in general it contributed phosphorus but few other nutrients. For example, amending soil with sewage-sludge incinerator ash provided plant-available phosphorus (Bierman et al. 1995).

In contrast to the relatively limited value of fly-ash; biochar can act as a soil conditioner enhancing plant growth by supplying and, more importantly, retaining nutrients and by providing other services such as improving soil physical, chemical and biological properties (Glaser et al. 2002; Lehmann et al. 2003b, 2006; Lehman and Rondon 2006). A key advantage of bio char with respect to soil ecosystem functions is that is more efficient in improving soil fertility and nutrient retention than un-charred organic matter (Sombroek et al. 1993; Lehman and Rondon 2006). The longevity of bio char in ecosystems is an important question since only a long half-life will ensure a relevant amount of C sequestration. Bio char from biomass-pyrolysis contains a significant amount of highly adsorbent elementary C. Therefore, it can be combined with N and other plant nutrients to form a slow-release fertilizer (Day et al. 2002, 2003). A char-NH4HCO3-combined fertilizer is probably the best product that could maximally enhance sequestration of C into soils while providing a slow-release fertilizer for plant growth (Lee et al. 2003); thereby, decreasing leaching and run-off potential and possible reduction of N2O. The highly active bio char adsorbs pesticides and other potential pollutants (Lehmann et al. 2006). Proper management of the bio char can favorably affect the C cycle once we understand how to create the ideal bio char properties, which optimize its benefits.

There are challenges related to using bio char as soil amendment. Bio char like ash or char in general, has a low density making transport and application a challenge. Existing equipment for spreading and incorporating fertilizer is designed for higher density compounds little affected by wind during surface application. The low density of the bio char may require application and a slurry form or partial incorporation to minimize wind losses. In addition to physical limitations, depending on the feedstock it can be highly alkaline. Ash/char remaining after pyrolysis of corn stover has a pH 10 (Johnson et al. 1998) and high pH is detrimental to plant growth. In addition, high pH (10-12) can solubilize existing SOM (Stevenson 1994). Clearly, there are knowledge and technical issues to resolve prior to commercial utilization of bio char as a soil amendment.

Studying the Amazon dark earth soils may provide insight on utilization of bio char. Amazonian dark earths (Terra Preta de Indio or Indian Black Earth) refer to certain dark soils in the Brazilian Amazon region and in other South American countries. It is thought these soils were established by pre-Columbian Indians from 500 to 2500 years ago, but abandoned after the invasion of Europeans (Smith 1980; Woods et al. 2000). These soils have an elevated C content that has persisted for hundreds of years after the sites were abandoned. Amazonian dark earths have high C contents of up to 150 g C kg-1 soil in comparison to the surrounding soils with 20-30 g C kg-1 soil (Smith 1980; Glaser et al. 2001). Additionally, organic matter enriched soil can be as deep as 1-2 m (average 40-50 cm) compared to 10-20 cm in the surrounding soil (Smith 1980; Glaser et al. 2001). Therefore, the total C stored in these soils can be one order of magnitude higher than in adjacent soils. The reason for the high stability of the soil C is currently under discussion; however, so-called black C is considered probable reason for the high stability (Glaser et al. 2001). Based on the similarity of the black C in the Amazonian dark earths to...
charcoal, Smith (1980) suggested that these soils were generated through accumulation or purposeful application of organic C from incomplete combustion.

In addition to their high SOC contents as mentioned above, Amazonian dark earths are characterized by high P contents reaching 200–400 mg P kg⁻¹, and higher cation exchange capacity, pH and base saturation than surrounding soils (Smith 1980; Sombroek et al. 1993; Glaser et al. 2001; Lehmann et al. 2003a, 2003b; Liang et al. 2006). Thus, these soils are highly fertile (Lehmann et al. 2003a, 2003b).

Important lessons can be learned from the recalcitrance of black C and its effects on the biogeochemistry of soils. Given the apparent ubiquity of black C established by several authors (Schmidt and Noack 2000; Skjemstad et al. 2002; Fawles 2007), refinements of global C models and sequestration estimates may be necessary. Further, the potential for enhancing sequestration by active management of black C or bio char could be established with important linkages to energy production and land use.

The feedstock and pyrolysis conditions can be manipulated to produce biologically active char or bio char. Perhaps we can learn how to create Amazonian dark earth soils, which sequester C and are highly productive. Generation of bio char may require sacrificing some of the energy co-product. Therefore, the developing industry and we as a society are challenged value co-products for there ability to sequester C – thus improve soil quality beyond their energy value.

Energy and conservation policy in the United States

In view of the emerging need for renewable bioenergy, United States agriculture will have to respond to new economic drivers and take advantage of new technological advances. Much of the current legislation with respect to renewable fuels places emphasis on developing techniques and efficiencies. The Renewable Fuels for Energy Security Act of 2001, the Reliable Fuels Act, the Fuels Security Act of 2005, and the 2005 Energy Policy Act place emphasis on technical and engineering aspects developing renewable fuels. The 2005 Energy Policy Act provides cellulosic ethanol incentives to reach a goal of 946 million L of ethanol in 2013. Grant programs for research and credit-trading programs are part of this legislation.

Existing legislation in the United States needs to be further developed and integrated with resource conservation programs to address the long-term life-cycle analysis of the biological C-cycle. Two primary areas of concern are CO₂ emissions from fuel utilization and soil C retention or sequestration for sustainable production systems. These two areas are intimately linked and enhanced through C management. A sustainable biofuel production system needs these policies to be linked with existing United States conservation programs summarized in Table 3. The USDA and United States Forest Service programs provide incentives and support voluntary actions by private landowners targeting GHG emission and C sequestration through a portfolio of beneficial conservation programs. Many of these programs are focused on protecting our soil, water, and air resources for agricultural production. However, since the role of feedstock production for biofuels as part of the C-cycle is now being relegated to agriculture and agroforestry, the emphasis on resource conservation cannot be overlooked. Much of the current emphasis is on soil erosion and water quality control. The concern for air quality and increased CO₂ emissions is rapidly increasing with potential long-term ramifications related to global climate change. The increase in CO₂ emissions from fossil fuel can be partially offset by C sequestration practices, which maintain soil and environmental quality. The biological C-cycle must be managed to reduce CO₂ emissions and for food, fiber and biofuel production. The C-cycle impacts all of us and requires careful management of the C captured by crops that produce food and fiber for human and animal consumption. The linkage of renewable fuel legislation and resource conservation becomes even more critical as production and use expands across the country.

There is a strong need to assess the impact of bioenergy crops on existing SOM pools and how they may impact current and potential C sequestration. Policies are needed to be put together as a management tool to match crops such as biofuels and the bio char utilized for the benefit of mankind. Modeling by Rokityanskiy et al. (2007) indicated that C sequestration policy can make a significant contribution to the global portfolio of efficient climate mitigation policies, dependent upon carbon prices. Regulatory approval of bio char as a fertilizer or soil amendment is necessary to improve the economics of the bioenergy production systems. Tax incentives or C credits for farmers that use char or produce char as a soil amendment may provide the necessary incentives. Encouraging the promotion of purchasing biofuels (renewable fuels) with tax credits or other incentives can enhance the development through renewable fuel standards. There is a need to develop process standards for the co-products of biofuel production, such as chars, that can be used to enhance environmental quality. The same set of standards can be utilized to control GHG emission emphasizing balance between energy production and CO₂ emission. Research is urgently needed to determine the commercial potential of pyrolysis co-products for biological C sequestration.

There is a need to establish soil quality standards for crop residue removal that will enable maintenance of C in the soil for sustainable production and environmental quality (Wilhelm et al. 2004; Johnson et al. 2006a). There is a critical need to balance biomass feedstocks for energy production and soil sustainability. Government policies are needed to coordinate research programs to develop a research agenda that allows a balanced land and water use for bioenergy and human food production without jeopardizing soil and water resources.

Policy is a crucial component in bringing this new technology to market and addressing related high priority socioeconomic issues. National sustainability criteria are needed so that the public incentives bring about environmentally sustainable production and utilization of biofuels to replace our dependence on imported fossil fuels. The national policies must provide an integrated approach to addressing the social, technical, environmental, and political issues associated with biofuel production and utilization. The potential social and environmental impacts of biofuels suggest that large-scale use of biofuels carries significant ecological risks, especially indiscriminate use of agricultural crop biomass. Government incentives could be used to minimize competition between food and fuel crops and to discourage expansion onto environmentally sensitive lands. On the other hand, biofuels have the potential to increase energy security, create new economic opportunities in rural areas, and reduce local pollution and GHG emission. The common commodity that links bioenergy production and ecosystem sustainability is C. Care must be taken to conserve our valuable resources and must be explicitly managed for ecosystem sustainability that must be emphasized in existing and new policies.

Soil C is the foundation of soil quality essential for a sustainable global biofuel/bioenergy and food production systems. Soil quality is the foundation of our life, economy, and environment. To strengthen bioenergy crops’ impact on soil quality, it is critical that the C sink must become long-lasting. Policy must focus on establishing permanent or indefinite C sinks, preventing C losses, and agreeing on C measures. Society needs to recognize that the benefits of C sequestration justify the cost. A systematic assessment of the roles of bioenergy crops in the C-cycle is important to valuing the potential of SOC sequestration (Lemus and Lal 2005). The potential for pyrolysis bio char to meet these requirements, as a high-grade soil amendment needs to be fully evaluated and considered in policy development. While the bioenergy...
Now we must balance aspects of renewable energy production with sustainable agricultural practices. For example, to provide a sustainable long-term source of biomass feedstock needs to reflect what is available in a region. The source of biomass feedstocks that should be harvested. Perennial bio-resources as bagasse, cull fruits and vegetables, food processing wastes, saw dust, used vegetable oils just to name a few. The first source of biomass energy should be those materials that have been satisfied. High inputs of pesticides and herbicide, limited belowground biomass also limits the amount of these feedstocks that should be harvested. Perennial biomass crops (grasses and woody) have several advantages over annual crops. First, perennials typically need fewer inputs (fertilizer or herbicide), thus cause fewer off-site consequences. Second, their perennial nature results in annual inputs of leaf litter and more belowground biomass compared to annual crops to build SOC. Third, tillage is reduced or eliminated reducing oxidation of soil C and risk of carbon loss.

CONCLUSION

A paradigm shift is underway altering how energy is consumed and produced. Corn-grain ethanol alone cannot and will not solve the foreign energy dependency issues in the United States. However, it may serve as a portion or interim bridge at least on a regional level. The source of biomass feedstock needs to reflect what is available in a region. The first source of biomass energy should be those materials that would otherwise be put in landfills. This includes such materials as bagasse, cull fruits and vegetables, food processing wastes, saw dust, used vegetable oils just to name a few. Agricultural biomass (stover, straw) only should be harvested for bioenergy once the needs for protecting soil needs have been satisfied. High inputs of pesticides and herbicide, limited belowground biomass also limits the amount of these feedstocks that should be harvested. Perennial biomass crops (grasses and woody) have several advantages over annual crops. First, perennials typically need fewer inputs (fertilizer or herbicide), thus cause fewer off-site consequences. Second, their perennial nature results in annual inputs of leaf litter and more belowground biomass compared to annual crops to build SOC. Third, tillage is reduced or eliminated reducing oxidation of soil C and risk of

Table 3 A portfolio of beneficial Government conservation programs that point to C-cycle management.

<table>
<thead>
<tr>
<th>Program*</th>
<th>Primary Objective</th>
<th>Role of Carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC, Agriculture Conservation Program</td>
<td>Initiated in an effort to reduce soil loss and agricultural contributions to water pollution from both runoff and direct discharge, program provides cost-share funds for approved practices that provide long-term and community-wide benefits.</td>
<td>Carbon improves soil physical properties to enhance water infiltration and minimizing runoff carrying potential pollutants.</td>
</tr>
<tr>
<td>CRP, Conservation Reserve Program</td>
<td>Provides technical and financial assistance to eligible farmers and ranchers to address soil, water, and related natural resource concerns on their lands in an environmentally beneficial and cost-effective manner.</td>
<td>Soil carbon sequestration and reduced CO₂ emissions for enhanced environmental quality.</td>
</tr>
<tr>
<td>CSP, Conservation Security Program</td>
<td>A voluntary program that provides financial and technical assistance to producers who advance the conservation and improvement of soil, water, air, energy, plant and animal life, and other conservation purposes on Tribal and private working agricultural lands.</td>
<td>Soil C sequestration and reduced CO₂ emissions involving energy considerations for improved soil conservation.</td>
</tr>
<tr>
<td>WRP, Wetlands Reserve Program</td>
<td>A voluntary program offering landowners the opportunity to protect, restore, and enhance wetlands on their property, to achieve the greatest wetland functions and values, along with optimum wildlife habitat.</td>
<td>Carbon is the primary energy source for the smaller fauna in the wildlife habitat and the anaerobic conditions serve to sequester more C than agricultural landscapes.</td>
</tr>
<tr>
<td>WHIP, Wildlife Habitat Enhancement Program</td>
<td>A voluntary program for people who want to develop and improve wildlife habitat primarily on private land, provides both technical and financial assistance to establish and improve fish and wildlife habitat.</td>
<td>Carbon is the primary energy source for the smaller fauna at the start of the predatory food chain.</td>
</tr>
<tr>
<td>CREP, Conservation Reserve Enhancement Program</td>
<td>A voluntary program to farmers to improve water quality and wildlife habitat by offering financial incentives, cost-share and rental payments by restoring riparian buffers, filter strips and wetlands through the installation of approved conservation practices.</td>
<td>Carbon contributes to numerous beneficial conservation practices, such as minimizing runoff and maximizing infiltration, to reduce agricultural runoff and pollutant transport.</td>
</tr>
<tr>
<td>EQIP, Environmental Quality Incentive Program</td>
<td>A voluntary outreach program effort jointly designed to sponsor and encourage the use of methane recovery (biogas) technologies at the confined animal feeding operations that manage manure as liquids or slurries, technologies reduce methane emissions while achieving other environmental benefits.</td>
<td>Carbon is the primary element in methane and is part of the biological C-cycle; C properly managed in manures can reduce GHG emissions.</td>
</tr>
<tr>
<td>GRP, Grassland Reserve Program</td>
<td>A voluntary program allowing landowners the opportunity to protect, restore, and enhance grasslands on their property.</td>
<td>Carbon provided by the root systems perennial species enhances soil quality and provides conservation benefits on land marginal for crop production.</td>
</tr>
<tr>
<td>USDA 2002 Farm Bill Section 9600 Rural Development Renewable Energy Systems and Energy Efficiency Improvements</td>
<td>This program currently funds grants and loan guarantees to agricultural producers and rural small business for assistance with purchasing renewable energy systems and making energy efficiency improvements.</td>
<td>The chemical bonds of the C compounds (biomass) used in renewable energy systems provide useful energy and carbonaceous byproducts with near zero net emissions of CO₂.</td>
</tr>
<tr>
<td>USDA/DOE/EPA AgSTAR</td>
<td>A voluntary outreach program effort jointly designed to sponsor and encourage the use of methane recovery (biogas) technologies at the confined animal feeding operations that manage manure as liquids or slurries, technologies reduce methane emissions while achieving other environmental benefits.</td>
<td>Carbon is the primary element in methane and is part of the biological C-cycle; C properly managed in manures can reduce GHG emissions.</td>
</tr>
<tr>
<td>Federal Farm Bill 2007</td>
<td>To be determined.</td>
<td>Speculation: More emphasis on greenhouse gas reduction and resource conservation.</td>
</tr>
<tr>
<td>SIP, Stewardship Incentive Program</td>
<td>Provides technical and financial assistance to encourage non-industrial private forest landowners to keep their lands and natural resources productive and healthy.</td>
<td>**</td>
</tr>
</tbody>
</table>
erosion. Fourth, perennial species provide wildlife habitat, adding an additional ecosystem service.

Energy conservation and conservation of natural resources (soil, water and air) are critical. Assume for a moment that ethanol from either grain or biomass is as thermodynamically efficient as possible. There is a finite amount of land available to support an expanding population with food and fiber needs. Now that land will also need to support bioenergy feedstocks. Our insatiable energy appetite must be curbed. While it is painful to pay the higher prices for gasoline, higher prices do have the benefit of making people think about their driving habits and alternative fuels. When the cost of heating/cooling a home goes up, the cost motivates consumers to become more energy efficient. These changes put the poorest members of society at risk, because the choice may be among heat, food, or medicine. And, as a society we must accept the fact that the resources of our planet are finite and there are global consequences of failing to do so. Severity of the consequences increases the longer we wait to take action toward sustainable energy use.

Scientists have a moral and social responsibility to educate the general public, including policy-makers, of the benefits and risks associated with the paradigm shift. Research must provide the science in a manner that is truthful, clear, understandable, and unbiased. Debate on the economics and environmental balance are useful in identifying the ‘truth’ and testing the validity of our assumptions. The time to protect our planet is now.

Based on the present energy usage rate of the United States, our petroleum addiction is not likely to be overcome by any one alternative fuel, at least in the near future. The solar energy supply to the earth has essentially boundless potential, in human timeframes. Unfortunately, its energy received is diffuse and we need concentrated forms. Agriculture and forestry are ways to capture and concentrate the ultimate supply. It is our challenge to do the concentrating effectively. Conservation and efficient energy use are not merely ideological concepts, but are inevitable for survival. Nevertheless, bioenergy can and will help to make a significant reduction in our dependence on petroleum both foreign and domestic. The linkage of various renewable technologies such as solar, hydro, geothermal, and harnessing wind energy to generate hydrogen to make ammonia to fuel transportation is one way to reduce our dependence on petroleum. Many of these technologies can be integrated to minimize GHG emissions, improve energy use efficiency, and provide food and fuel for a growing global population.

ACKNOWLEDGEMENTS

Thanks to B. Burmeister for proof-reading.

The article cited was prepared by USDA employees as part of their official duties. Copyright protection under U.S. copyright law is not available for such works. Accordingly, there is no copyright protection under U.S. copyright law for such works. In the event that the material of an article appears is itself copyrighted does not affect the material of the U.S. Government, which can be freely reproduced by the public.

REFERENCES

BEF (2006) Seed Oil Fatty Acids Database, Federal Centre for Nutrition and Food (BEF), Germany, Available online: http://www.bagf.de/sola/

Carter MC, Foster CD (2006) Milestones and milestones: A retrospection on

Biomass-energy crops in the United States. Johnson et al.

Reed TB, Lerner RM (1973) Methanol: A versatile fuel for immediate use: methanol can be made from gas, coal, or wood. It is stored and used in existing equipment. *Science* 182, 1299-1304

Singer JW (2005) Small grain cover crops for corn and soybean. Iowa State University, University Extension. Available online: http://www.extension.iastate.edu/Publications/PB1515

Steinbeck K, Nwoboshi LC (2013) Methanol: A versatile fuel for immediate use: methanol can be made from gas, coal, or wood. It is stored and used in existing equipment. *Science* 182, 1299-1304

Steinbeck K, Nwoboshi LC (2013) Methanol: A versatile fuel for immediate use: methanol can be made from gas, coal, or wood. It is stored and used in existing equipment. *Science* 182, 1299-1304

Vogt K (1991) Carbon budgets of temperate forest ecosystems. Tree Physiology 9, 697-709

Wildy DT, Pate JS (2002) Quantifying above- and below-ground growth responses of the western Australian oil mallee, Eucalyptus kobina subsp plenissima, to contrasting defoliation regimes. Annals of Botany 90, 185-197

