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Abstract A study was undertaken to develop a user-friendly software tool (ValT) for validation of predictive mod-

els based on the acceptable prediction zones (APZ) method. ValT was developed in Excel and was

demonstrated using a newly developed growth model for Salmonella and chicken skin. The model pro-

vided acceptable predictions when the proportion (p) of residuals in the APZ was ≥0.70 and there were

no local prediction problems. The pAPZ were 0.97 for dependent data (n = 360), 0.93 for interpolation

data (n = 160) and 0.88 for extrapolation data (n = 180) to kosher chicken skin. There were no local pre-

diction problems, and all sets of data satisfied the test data criteria of the APZ method. Thus, the model

was successfully validated for interpolation and for extrapolation to kosher chicken skin. It is hoped that

the new software tool will make it easier to validate models using the APZ method.
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Introduction

Predictive models (de Oliveira Elias et al., 2018; Estilo
& Gabriel, 2018; Jia et al., 2019; Kuroda et al., 2019)
are valuable tools for food safety because they provide
real-time predictions of changes in pathogen number
in response to changes in intrinsic and extrinsic factors
without the need for expensive and time-consuming
microbiological tests (McKellar & Lu, 2004). Predic-
tive models are also valuable because they can make
predictions for scenarios that were not investigated but
that fall within the ranges of independent variables
used to develop them (Bhaduri et al., 1994; Baranyi
et al., 1996). The information provided by predictive
models can help support decisions aimed at protecting
consumers from microbial hazards associated with
food leading to a reduction in food-borne illness (Pani-
sello & Quantick, 1998; Tamplin, 2018).

Proper validation of models is important because it
provides users with confidence that predictions are reli-
able (Ross, 1996). The first step of model validation is
to compare model predictions to the data used to
develop them (Zwietering et al., 1994). This usually
involves statistical measures of goodness of fit as well
as graphical comparisons of observed and predicted
values to look for systematic prediction bias (te Giffel
& Zwietering, 1999). The second step of model

validation is to compare model predictions to data not
used to develop them to assess the ability of the model
to interpolate (Oscar, 2005b). The third step of the val-
idation process is to test the ability of the model to
extrapolate to independent variables not included in
model development to see how broadly the model can
be applied (Martino et al., 2005).
Validation of models involves calculation of perfor-

mance metrics for prediction bias and accuracy (Ross,
1996) and use of criteria for model performance (Ross
et al., 2000). In addition, it is important to have crite-
ria for test data to ensure that comparisons of
observed and predicted values are valid and that the
evaluation of model performance is accurate, and
unbiased. The acceptable prediction zones (APZ)
method (Oscar, 2005b) for validation of predictive
models has criteria for test data and model perfor-
mance as well as a metric (proportion of residuals in
the APZ or pAPZ) for prediction bias and accuracy
(Oscar, 2005b). Although the APZ method is being
used in the field of predictive microbiology to evaluate
models, its criteria for test data are not being used and
its criteria for model performance are not being cor-
rectly used because they are complex (Min & Yoon,
2010; Li et al., 2011; Ostergaard et al., 2014; Mohr
et al., 2015). Therefore, the current study was under-
taken to develop a user-friendly software tool (ValT)
for proper validation of models using the APZ
method. The main advantages are calculation of pAPZ
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and provision of decision trees to organise and inte-
grate criteria for test data and model performance into
an objective decision about model validation. The
decision is objective because it is based on well-defined
criteria that are science-based and the same result is
obtained regardless of who performs the evaluation.
The main drawback of ValT is that it is not com-
pletely automated, and thus, false answers can be
entered by accident or on purpose. The new software
tool (ValT) was demonstrated using a new model
(multiple-layer feedforward neural network) for
growth of Salmonella Typhimurium DT104 on chicken
skin. Although it was not demonstrated in this study,
the APZ method and by inference ValT can and has
been used to evaluate models for other pathogens like
Listeria monocytogenes (Abou-Zeid et al., 2009) and
Campylobacter spp. (Oyarzabal et al., 2010).

Materials and methods

Software tool

The validation software tool (ValT) was developed in
Excel (version 2016, MicroSoft Corporation, Red-
mond, WA) and was based on the test data and model
performance criteria of the acceptable prediction zones
(APZ) method (Oscar, 2005a; Oscar, 2005b). It con-
sisted of eight spreadsheets: (i) table of contents; (ii)
dependent data input; (iii) decision tree for dependent
data (Fig. 1); (iv) interpolation data input; (v) decision
tree for interpolation data (Fig. 2); (vi) extrapolation
data input; (vii) decision tree for extrapolation data
(Fig. 3); and (viii) array of APZ values for partially
acceptable residuals.

Users enter independent variable, observed and pre-
dicted values into spreadsheets 2, 4 and 6. Formula in
these spreadsheets then calculate residuals, assign indi-
vidual APZ values (0–1) and generate a code for
counting prediction cases as a function of independent
variable levels and combinations. Spreadsheets 3, 5
and 7 contain decision trees with questions for test
data and model performance criteria and validation,
and pivot tables for test data and model performance.
Decision trees integrate criteria for test data and
model performance into an objective decision about
model validation where answers of ‘yes’ lead to valida-
tion and a single answer of ‘no’ leads to model failure.
Questions about criteria are answered by users,
whereas as questions about validation are answered by
ValT. The software works on the honor system
because it is not fully automated.

Criteria for test data

The criteria for test data depend on the type of data being
evaluated (Oscar, 2005b). The criteria for dependent data

are (i) used for model development; (ii) even spacing of
values for independent variables; (iii) minimum of four
prediction cases per combination of independent vari-
ables; and (iv) same number of prediction cases per com-
bination of independent variables. The criteria for
interpolation data are (i) not used for model development;
(ii) obtained with the same methods (same strain(s), same
previous growth conditions, same inoculum size, same
food matrix and same enumeration method) as dependent
data; (iii) values of independent variables that are inter-
mediate to those used in model development; (iv) mini-
mum of two prediction cases per combination of
independent variables; and (v) same number of prediction
cases per combination of independent variables. The crite-
ria for extrapolation data are (i) not used in model devel-
opment; (ii) obtained with the same methods as
dependent data except for the new independent variable
being evaluated; (iii) obtained using the same experimen-
tal design as dependent data except for the new indepen-
dent variable being evaluated; (iv) minimum of two
prediction cases per combination of independent vari-
ables; and (v) same number of prediction cases per combi-
nation of independent variables.

Criteria for model performance

Criteria for model performance are the same for all
types of data (Oscar, 2005a). An APZ value (Y) is
assigned to each residual (X) for calculation of the
proportion (p) of residuals (observed – predicted) in
the APZ (pAPZ) as follows:

Y ¼ 0 if X� � 2

Y ¼ 1Xþ 2 if X[ � 2 and\� 1

Y ¼ 1 if X� � 1 and � 0:5

Y ¼ �2Xþ 2 if X[ 0:5 and \1

Y ¼ 0 if X� 1

where pAPZ = ΣYi/n where i was the ith APZ value
(Y), and n was the number of residuals (X).
Special prediction cases occur when the observed or

predicted number is zero, for which the logarithm is
undefined. To include these cases in the calculation of
pAPZ, a value of �0.01 log is entered in ValT for the
observed or predicted value that was zero and an APZ
value was assigned as follows:

Y ¼ 0 if O ¼ �0:01 log and P� 0 log or O� 0 log

and P ¼ �0:01 log

Y ¼ 1 if O ¼ �0:01 log and P ¼ �0:01 log

where O was the observed log count, and P was the
predicted log count. Any negative value could be used
here without affecting the result. The value of �0.01
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log was used because it is the convention used in Com-
Base for samples with zero pathogens, for which the
logarithm is undefined (Baranyi & Tamplin, 2004).
ComBase is an internationally used microbial mod-
elling database.

Finally, a local prediction problem occurred when
pAPZ < 0.70 for a single level of an independent vari-
able or when pAPZ < 0.70 for three consecutive com-
binations of independent variables (Oscar, 2018a).

Model validation

A model is classified as validated in the APZ method
when it satisfies all criteria for test data and model
performance for dependent data and independent data
for interpolation (Oscar, 2005b). Predictions of models
that fail validation for dependent data are not reliable.
Thus, validation for interpolation requires validation
for dependent data. Likewise, predictions of models
that fail validation for interpolation are not reliable.
Thus, validation for extrapolation requires validation
for interpolation. A model that fails validation can be
repaired by further data collection, interpolation of
missing data, data pruning and(or) use of other models
(Oscar, 2005a). Thus, all models can in theory pass
this validation process.

Case study

To demonstrate ValT, published log count data
(Oscar, 2009b) for growth of Salmonella Typhimurium
DT104 on chicken skin as a function of time (0–8 h)
and temperature (10 °C–50 °C) were used to develop a
new model (multiple-layer feedforward neural network
with two hidden layers of two nodes each). The new
model was developed in Excel using NeuralTools (ver-
sion 7.6, Palisade Corporation, Ithaca, NY) as previ-
ously described (Oscar, 2018a). The ability of the
model to predict dependent data, independent data for
interpolation and independent data for extrapolation
to kosher chicken skin was evaluated using ValT.

Results

Predictive model

The model for growth of Salmonella Typhimurium
DT104 on chicken skin is shown in Fig. 4. A tempera-
ture from 10 °C to 50 °C is entered, and then, the
model predicts the growth curve from 0 to 8 h. For
example, in Fig. 4, a temperature of 39 °C was entered
and then the model predicted that Salmonella Typhi-
murium DT104 would grow on chicken skin from an

Figure 1 Screenshot of the validation software tool (ValT) for dependent data. T, temperature; t, time, pAPZ, proportion of residuals in the

acceptable prediction zones.
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initial log count of 0.79 at 0 h to a final log count of
6.40 at 8 h.

Dependent data

The data used in model development and their pre-
dicted growth curves are shown in Fig. 5. These
data satisfied all criteria for test data as indicated by
answers of ‘yes’ to questions 1–4 in the decision tree
for dependent data (Fig. 1). The overall pAPZ for
dependent data (n = 360) was 0.97 (Fig. 6A),
whereas the range of pAPZ was 0.95–1.00 for indi-
vidual times, 0.93–1.00 for individual temperatures
and 0.80–1.00 for individual combinations of time
and temperature (Fig. 1). The maximum number of
consecutive combinations of time and temperature
with pAPZ < 0.70 was zero. Thus, the model satis-
fied all criteria for model performance as indicated
by answers of ‘yes’ to question 5–7 in the decision
tree for dependent data (Fig. 1). Because the data
and model satisfied all the test data and model per-
formance criteria, the answer to question 8 in the
decision tree was ‘yes’ indicating that the model was
validated for dependent data.

Interpolation data

Because the model was validated for dependent data,
the answer to question 1 in the decision tree for interpo-
lation (Fig. 2) was ‘yes’ indicating that the model could
be evaluated for interpolation. The data used to evalu-
ate the model for interpolation and their predicted
growth curves are shown in Fig. 7. These data satisfied
all criteria for test data as indicated by answers of ‘yes’
to questions 2–6 in the decision tree for interpolation
(Fig. 2). The overall pAPZ for interpolation data
(n = 160) was 0.93 (Fig. 6B), whereas the range of pAPZ
was 0.82–1.00 for individual times, 0.76–1.00 for indi-
vidual temperatures and 0.51–1.00 for individual combi-
nations of time and temperature (Fig. 2). The maximum
number of consecutive time and temperature combina-
tions with pAPZ < 0.70 was two. Thus, the model satis-
fied all criteria for model performance as indicated by
answers of ‘yes’ to questions 7–9 in the decision tree for
interpolation (Fig. 2). Because the data and model satis-
fied all test data and model performance criteria of the
APZ method, the answer to question 10 in the decision
tree for interpolation was ‘yes’ indicating that the model
was validated for interpolation.

Figure 2 Screenshot of the validation software tool (ValT) for interpolation data. T, temperature; t, time, pAPZ, proportion of residuals in the

acceptable prediction zones.
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Extrapolation data

Because the model satisfied all test data and model
performance criteria for interpolation, the answer to
question 1 in the decision tree for extrapolation
(Fig. 3) was ‘yes’ indicating that the model could be
evaluated for extrapolation. The data used to evaluate
the model for extrapolation to kosher chicken skin
and predicted growth curves are shown in Fig. 8.
These data satisfied all criteria for test data as indi-
cated by answers of ‘yes’ to questions 2–6 in the deci-
sion tree for extrapolation (Fig. 3). The overall pAPZ
for the extrapolation data (n = 180) was 0.88 (Fig. 6c),
whereas the range of pAPZ was 0.79–1.00 for individ-
ual times, 0.70–1.00 for individual temperatures and
0.23–1.00 for individual combinations of time and
temperature. The maximum number of consecutive
time and temperature combinations with pAPZ < 0.70
was two. Thus, the model satisfied all criteria for
model performance as indicated by answers of ‘yes’ to
questions 7–9 in the decision tree for extrapolation
(Fig. 3). Because the data and model satisfied all crite-
ria for test data and model performance, the answer to

question 10 in the decision tree for extrapolation was
‘yes’ indicating that the model was validated for
extrapolation to kosher chicken skin.

Discussion

Although there is general agreement that validation of
models in predictive microbiology is important, there
is no consensus as to what this means. A goal of the
APZ method and ValT is to bring clarity to the term
‘validated model’ through development and integration
of criteria for test data and model performance that
lead to an accurate, unbiased and objective decision
about model validation. Without stated criteria that
are well-defined and science-based, the decision about
model validation would be subjective (authors’ opin-
ion). The criteria in the APZ method are well-defined
and based on statistical principles and analysis (Oscar,
2005a; Oscar, 2005b). They have been vetted by the
scientific peer-review process many times (Oscar,
2005a; Oscar, 2005b; Oscar, 2006; Oscar, 2007; Abou-
Zeid et al., 2009; Oscar, 2009a; Oscar, 2009b; Oyarza-
bal et al., 2010; Oscar, 2011a; Oscar, 2011b; Oscar,

Figure 3 Screenshot of the validation software tool (ValT) for extrapolation data. T, temperature; t, time, pAPZ, proportion of residuals in

the acceptable prediction zones.
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2013; Oscar, 2014; Oscar, 2015; Oscar, 2017a; Oscar,
2017b; Oscar, 2018a; Oscar, 2018b). Thus, they pro-
vide a proper evaluation and validation of predictive
models for food-borne pathogens that is objective
because the result is the same regardless of who per-
forms the evaluation using these criteria. Proper vali-
dation of models is important because it provides
users with confidence that predictions are reliable. This
is especially important when models are used to make
important food safety decisions that impact public
health.

The APZ method was first developed and applied to
secondary models that predict lag time and growth
rate as a function of independent variables (Oscar,
2005b). The prediction error used in the APZ method
for lag time and growth rate is the relative error. Sub-
sequently, the APZ method was expanded to include
models that predict log counts as a function of time,
temperature and other independent variables using the
residual as the prediction error (Oscar, 2005a). The
test data criteria in the APZ method are similar for all
types of models, whereas the APZ are specific for each
type of model. When the APZ method is applied to
models that predict log counts as a function of time, it
is important to realise that the models are being evalu-
ated for how well they predict log counts in all phases
of the pathogen life cycle.

A model is classified as validated in the APZ method
when it satisfies all criteria for test data and model per-
formance for dependent data and independent data for

interpolation (Oscar, 2005b). Validation for extrapola-
tion is optional but important because it saves time
and money by identifying conditions for which new
models are not needed (Oscar, 2011b; Oscar, 2013;
Oscar, 2015; Oscar, 2018a). In the present study, a
new model (multiple-layer feedforward neural network)
for growth of a low initial number (0.85 log) of Sal-
monella Typhimurium DT104 on chicken skin as a
function of time (0–8 h) and temperature (10 °C
50 °C) was successfully validated for dependent data,
for interpolation and for extrapolation to kosher
chicken skin. Thus, the new model can be used with
confidence to make predictions within the ranges of
time and temperature used to develop it and a new
model for kosher chicken skin is not needed. How well
the model predicts growth of other inoculum sizes and
serotypes remains to be determined. The current model
passed validation indicating that the criteria were not
too rigorous. In theory, all models should be able to
pass this validation process.
The criteria for test data in the APZ method are

important because they ensure that comparisons of
observed and predicted values are valid (not con-
founded) and that the evaluation of model perfor-
mance is accurate and unbiased. To accomplish this, it
is important to collect validation data using the same
methods as used to collect data for model development
so that valid (not confounded) comparisons can be
made between observed and predicted values (Oscar,
2005b). It is also important that observed and

Figure 4 Screenshot of the predictive model for growth of Salmonella Typhimurium DT104 on chicken skin as a function of time (0–8 h) and

temperature (10 °C–50 °C)
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predicted values be evenly distributed throughout the
prediction region of the model so that the evaluation
of model performance is not biased (Oscar, 2018a).
Likewise, it is important that each combination of
independent variables be sufficiently replicated so that
the evaluation of model performance is accurate.
Enough replication in the APZ method is four
observed values for dependent data and two observed
values for independent data. Too many or too few
data (uneven distribution) in one or more parts of the
prediction region of the model can bias the evaluation
of model performance, whereas too little data can
result in an inaccurate evaluation of model perfor-
mance and a false conclusion about model validation.

The first validation method in the field of predictive
microbiology to have criteria for model performance
was the bias factor (Bf) and accuracy factor (Af)
method (Ross, 1996). The Bf is the antilog of the mean
log ratio of predicted and observed values, whereas Af

is the antilog of the mean absolute log ratio of pre-
dicted and observed values. A Bf of 1.0 indicates no
average prediction bias, whereas an Af of 1.0 indicates

perfect agreement between predicted and observed
values. In this method, a model provides predictions
with acceptable bias when Bf is between 0.7 (fail –
safe) and 1.15 (fail – dangerous) and a model provides
predictions with acceptable accuracy when Af is
<1.0 + 0.15x, where x is the number of independent
variables in the model (Ross et al., 2000). These met-
rics and criteria are the most widely used in the field
of predictive microbiology for model validation; yet,
they were not used in ValT for the following reasons.
First, Bf and Af are average values. Thus, they can

be affected by outliers (Delignette-Muller et al., 1995)
resulting in a biased and inaccurate evaluation of
model performance and a false conclusion about
model validation. This is especially true for small sets
of data. In contrast, pAPZ is a proportion that is not
affected by outliers because each prediction case con-
tributes equally to its final value (Oscar, 2005b).
Second, when least squares regression methods are

used to fit models to data, Bf is always 1.0 for depen-
dent data (Baranyi et al., 1999; Oscar, 2005b). Thus,
Bf is not an informative metric for assessing goodness

Figure 5 Growth curves for Salmonella Typhimurium DT104 and chicken skin incubated at (a) 10 °C; (b) 15 °C; (c) 20 °C; (d) 25 °C; (e)
30 °C; (f) 35 °C; (g) 40 °C; (h) 45 °C; or (i) 50 °C. Open symbols are observed log counts, and solid lines are predicted log counts for data

used in model development.
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of fit. In fact, the Bf and Af method was developed for
external evaluation of models and thus is not intended
for internal evaluation or validation (Ross, 1996). In

contrast, pAPZ can be any value from zero to one,
even for dependent data. Thus, it provides information
about whether prediction bias for dependent data is
acceptable or not (Oscar, 2005b).
Third, Bf does not detect some forms of systematic

prediction bias because it is an average value (Ross,
1996). In contrast, pAPZ can detect all forms of predic-
tion bias because it is a proportion and not an average
value (Oscar, 2005b). Therefore, it determines whether
systematic prediction bias is acceptable or not.
Fourth, the Bf and Af method overestimates perfor-

mance of models that predict log counts because it
takes the log of a log ratio of observed and predicted
values (Oscar, 2009a). In contrast, the APZ method
does not overestimate performance of models that pre-
dict log counts because it uses residuals to compare
observed and predicted values (Oscar, 2005a).
Fifth, as the denominator of Bf or Af approaches a log

count of zero, small differences between observed and
predicted values are inflated (Oscar, 2009a), whereas as
the denominator of Bf or Af approaches larger log
counts like ten, large differences between observed and
predicted values are deflated resulting in a systematic
bias in the calculation of these metrics (Oscar, 2014). In
contrast, in the APZ method, as observed or predicted
values approach a log count of zero or a larger log count
like ten, the calculated residual is not inflated or deflated
(Oscar, 2009a). Thus, the APZ method provides an unbi-
ased evaluation of prediction error.
Sixth, criteria for Bf and Af are based on opinion (Hu

et al., 2018) rather than a statistical analysis of data.
Thus, they are arbitrary. In contrast, criteria for model
performance in the APZ method are based on a statisti-
cal analysis of experimental error associated with log
counts (Oscar, 2005a). Thus, they are not arbitrary.
Seventh, special prediction cases involving observed

or predicted values of zero are not and cannot be
included in calculation of Bf and Af (Oscar, 2005b). In
contrast, special prediction cases are included in the
calculation of pAPZ as described above.
Eighth, there are no criteria for test data in the Bf

and Af method (Ross, 1996). In contrast, the APZ
method has criteria for test data that ensure that the
comparisons of observed and predicted values are
valid and that the evaluation of model performance is
accurate and unbiased (Oscar, 2005b).
Ninth, the criterion for an acceptable value of the

Af is dependent on the number of independent vari-
ables (Ross et al., 2000). Thus, as a model gets more
complex by addition of independent variables (x), the
value for an acceptable Af increases from 1.15 (x = 1)
to 1.3 (x = 2) to 1.45 (x = 3) to 1.6 (x = 4). . . until an
inaccurate model is considered accurate. In contrast,
the APZ method has criteria for model performance
that are fixed and do not change as a function of the
number of independent variables (Oscar, 2005a; Oscar,

Figure 6 Acceptable prediction zones analyses for (a) dependent

data; (b) independent data for interpolation; and (c) independent

data for extrapolation to kosher chicken skin.
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2005b). Thus, the APZ method informs (pAPZ < 0.70)
when a model has become too complex to provide reli-
able predictions.

Tenth, the Bf and Af method does not evaluate
models for local prediction problems. In contrast, the
APZ method evaluates models for local prediction
problems (Oscar, 2014; Oscar, 2018a). It is important
to evaluate a model for its performance in different
phases of the life cycle because higher model perfor-
mance is expected when bacterial numbers are small
and not changing in lag phase and lower model perfor-
mance is expected when bacterial numbers are rapidly
changing in exponential phase or are of greater magni-
tude in stationary phase (Oscar, 2006; Oscar, 2018b).

Eleventh, in a head-to-head comparison, the APZ
method outperformed the Bf and Af method at detect-
ing prediction problems in secondary models for lag
time and growth rate (Oscar, 2005b).

Twelfth, if a method cannot validate a model for
dependent data, then it cannot reliably validate a model
for independent data (Oscar, 2005b). In other words, if
a method cannot perform internal validation, then it

cannot reliably perform external validation. Thus, the
Bf and Af method (Ross, 1996) is not a reliable method
for validating models in the field of predictive micro-
biology because it cannot perform internal validation,
has no criteria for test data and has arbitrary criteria for
model performance. Yet, it is the most widely used and
accepted method for validation of models in the field
of predictive microbiology (McKellar & Lu, 2004). In
contrast, the APZ method can perform both internal
and external validations of models using science-based
and objective criteria for test data and model perfor-
mance (Oscar, 2005a; Oscar, 2005b). Yet, it is not as
widely used and accepted as the Bf and Af method. The
scientific basis for this situation is not clear.
These are twelve reasons why the APZ method

(Oscar, 2005a; Oscar, 2005b) and not the Bf and Af

method (Ross, 1996) is used in ValT to validate mod-
els for predictive microbiology. Once ValT is pub-
lished, it will be made available at: www.ars.usda.gov/
nea/errc/PoultryFARM. It is hoped that ValT will
make it easier for predictive microbiologists to prop-
erly develop and validate models using the APZ

Figure 7 Growth curves for Salmonella Typhimurium DT104 and chicken skin incubated at (a) 12.5 °C; (b) 17.5 °C; (c) 22.5 °C; (d) 27.5 °C;
(e) 32.5 °C; (f) 37.5 °C; (g) 42.5 °C; or (h) 47.5 °C. Open symbols are observed log counts, and solid lines are predicted log counts for interpo-

lation data not used in model development.
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method. Ultimately, a shift from the Bf and Af method
(Ross, 1996) to the APZ method (Oscar, 2005a; Oscar,
2005b) in the field of predictive microbiology will ben-
efit the food industry and regulatory agencies by pro-
viding models that are properly developed and
validated using objective and science-based criteria for
test data and model performance. This will allow users
of predictive microbiology models to use them with
greater confidence to make important food safety deci-
sions that impact public health.
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