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Abstract

Cross-contamination of ready-to-eat (RTE) salad vegetables with Salmonella from raw

chicken followed by growth during meal preparation are important risk factors for

human salmonellosis. To better predict and manage this risk, a model (general regres-

sion neural network) for growth of a chicken isolate of Salmonella Newport (0.91 log)

on Romaine lettuce (0.18 g) at times (0–8 hr) and temperatures (16–40�C) observed

during meal preparation was developed with Excel, NeuralTools, and @Risk. Model

performance was evaluated using the acceptable prediction zones (APZ) method. The

proportion of residuals in the APZ (pAPZ) was 0.93 for dependent data (n = 210) and

0.93 for independent data (n = 72) for interpolation. A pAPZ ≥0.70 indicates accept-

able model performance. Thus, the model was successfully validated for interpolation

and can be used with confidence to predict and manage this important risk to public

health.

1 | INTRODUCTION

Chicken is an important source of human salmonellosis cases in the

United States and throughout the world (Majowicz et al., 2010).

Important risk factors are undercooking of raw chicken, cross-

contamination of ready-to-eat (RTE) food with Salmonella from raw

chicken, and growth of Salmonella following cross-contamination dur-

ing meal preparation (Luber, 2009). Salad consisting of fruit

(e.g., tomatoes) and vegetables (e.g., lettuce) is an RTE food that is

often prepared and served with chicken. On occasion, consumers pre-

pare RTE salad fruit and vegetables with unwashed utensils

(e.g., cutting board) used to prepare raw chicken for cooking leading

to cross-contamination, growth, and exposure to and illness from Sal-

monella of chicken origin (Zhu et al., 2017).

Models that predict growth of Salmonella on salad vegetables

(e.g., leafy greens) are valuable tools for helping assess and manage

this risk to public health (Koseki & Isobe, 2005). However, it is impor-

tant to validate these models so users are confident that predictions

are reliable (Ross, 1996). Validation involves comparison of model pre-

dictions to data used to develop the model (dependent data) and data

not used to develop the model (independent data). In addition, valida-

tion requires application of criteria that ensure comparisons of

observed and predicted values are accurate and unbiased, and that

ensure the evaluation of model performance is objective (Oscar,

2005b). Thus, the present study was undertaken to develop and vali-

date a model for growth of a chicken isolate of Salmonella Newport

on Romaine lettuce at times and temperatures observed during meal

preparation. The data and model address an important data and model

gap in risk assessments for Salmonella and chicken that are used as

the scientific basis for new food safety regulations aimed at protecting

public health.

2 | MATERIALS AND METHODS

2.1 | Materials

The chicken isolate of Salmonella Newport that was used to develop

and validate the model was obtained from the author's culture collec-

tion (Princess Anne, MD). Buffered peptone water (BPW) was from

Microbiology International (Frederick, MD), Rappaport Vassiliadis

(RV) broth and xylose lysine tergitol four (XLT4) agar were from

Becton Dickinson (Sparks, MD), and novobiocin (N) was from Alfa

Aesar (Ward Hill, MA).
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Romaine lettuce was from a local retail store (Salisbury, MD). Let-

tuce pH was measured with a pH spear (Oakton Instruments, Vernon

Hills, IL) and was 6.10 ± 0.20 (mean ± standard deviation; n = 72).

Software applications used to graph, model, and analyze data

were Excel 2016 (MicroSoft Corp., Redmond, WA), NeuralTools 7.6

and @Risk 7.6 (Palisade Corp., Ithaca, NY), and Prism 8.3 (GraphPad

Software, San Diego, CA).

2.2 | Experimental designs

A 5 × 7 full factorial design of time (0, 2, 4, 6, and 8 hr) and tem-

perature (16, 20, 24, 28, 32, 36, and 40�C) was used for model

development where each combination (n = 35) was replicated

once in six separate storage trials for a total of 210 most proba-

ble number (MPN) values for model development. A 4 × 6 full

factorial design of time (1, 3, 5, and 7 hr) and temperature

(18, 22, 26, 30, 34, and 38�C) was used for model validation

(interpolation) where each combination (n = 24) was replicated

once in three separate storage trials for a total of 72 MPN values

for model validation.

2.3 | Inoculation culture

Five microliters of a frozen (−80�C), thawed, and resuspended stock

culture of Salmonella Newport was added to 0.7 ml of BPW in a

1.5 ml polystyrene, micro-centrifuge tube. Stationary phase cells, as

determined by a predictive model (Oscar, 2018b), were obtained by

incubating the culture for 96 hr at 22�C.

2.4 | Lettuce preparation and inoculation

A cork borer (#4) was used to cut circular portions (0.18 ± 0.04 g) of

Romaine lettuce from a detached leaf. Portions were placed in 1.5 ml

tubes and stored overnight at 4�C before inoculation with Salmonella

Newport.

The stationary phase culture of Salmonella Newport was serially

diluted (1:10) in BPW. Lettuce portions (4�C) were spot inoculated on

their surface with 5 μl of the 10−6 dilution for an initial MPN of 0.91

± 0.35 log per portion.

2.5 | Storage trials

Inoculated samples were incubated in a heating and cooling block

(ThermoStat Plus, Eppendorf, Hamburg, Germany) equilibrated to the

test temperature. A single storage trial consisted of four temperatures

and five (model development) or four (model validation) sampling

times. One storage trial was conducted per week. One lettuce sample

per temperature was removed at each sampling time and 0.7 ml of

cold (4�C) BPW was added to stop growth of Salmonella Newport.

Samples were vortexed for 1 min at 3,000 rpm (Digital Disruptor

Genie, Scientific Industries, Bohemia, NY) to recover Salmonella New-

port into BPW for enumeration.

2.6 | Most probable number

The MPN of Salmonella Newport on lettuce portions at each sampling

time was determined using a 6 (replicate) × 16 (dilution) assay with an

enumeration range from 0 to 16 log per portion (Oscar, 2018a). The

assay had three steps: (a) serial dilution (1:10) followed by nonselective

growth in 0.9 ml BPW (24 hr, 40�C); (b) transfer (10 μL) followed by

selective growth in 1 ml RVN broth (24 hr, 42�C); and (c) drop plating

(2 μl) followed by selective growth on XLT4 agar (24 hr, 40�C). All steps

were performed by a robotic pipettor (SoloPlus, Hudson Robotics,

Springfield, NJ). The first two steps were in 96-well, deep-well (2 ml)

plates. Salmonella-positive wells produced black colonies on XLT4 agar.

The MPN was calculated by the method of Thomas (1942).

2.7 | Model development and simulation

Missing data (n = 13) were interpolated within individual growth cur-

ves using the two-phase linear model (Buchanan, Whiting, & Damert,

1997). Next, the dependent variable (MPN) and independent variables

(time and temperature) were arranged into four columns of an Excel

spreadsheet: (a) tag (train or test); (b) temperature (�C); (c) time (hr);

and (d) MPN (log). NeuralTools was then used to develop a general

regression neural network (GRNN) model as described in a previous

study (Oscar, 2009). Dependent data (n = 210) were used to develop

(train) the model, whereas independent data (n = 72) were used to val-

idate (test) the model for interpolation.

The predict function of NeuralTools was used to predict MPN

(log) as a function of time (0–8 hr) and temperature (16–40�C). The

distribution function of @Risk was used to define pert distributions

(minimum, most likely, maximum) for time and temperature, which

were used to make stochastic predictions of growth (log increase).

The model was simulated with @Risk settings of Latin Hypercube

sampling, Mersenne Twister, 1,000 iterations, and a seed of one. Sim-

ulation results were filtered to remove no growth (log increase <0.3)

events and the Best Fit option of @Risk was used to identify the best

fitting distribution to the filtered results using Akaike's Information

Criterion.

2.8 | Model performance and validation

Model performance was evaluated using the test data and model

performance criteria of the acceptable prediction zones (APZ)

method (Oscar, 2005a, 2018a). A prediction was considered fully

acceptable (Y-value = 1) when the residual (observed – predicted)

was in an APZ from −1 log (fail-safe) to 0.5 log (fail-dangerous),

whereas a prediction was considered partially acceptable (Y-value
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>0 but <1) when the residual was in an APZ from > −2 to < −1 log

(fail-safe) or from >0.5 to <1 log (fail-dangerous). The value (Y)

assigned to a residual (X) was:

Y =0 ifX ≤ −2

Y =X +2 ifX > −2 to< −1

Y =1 ifX ≥ −1 to≤0:5

Y = −2X +2 ifX >0:5 to<1

Y =0 ifX ≥1:

For example, if X = −2.2 then Y = 0, if X = −1.6 then Y = −1.6

+ 2 = 0.4, if X = −0.6 then Y = 1, if X = 0.3 then Y = 1, if X = 0.8 then

Y = −2 * 0.8 + 2 = 0.4, and if X = 1.2 then Y = 0 and the proportion of

residuals in the APZ (pAPZ) = ΣY/n = (0 + 0.4 + 1 + 1 + 0.4 + 0)

� 6 = 0.47.

A model provides predictions with acceptable bias and accuracy

when the overall pAPZ ≥0.70 and there are no local prediction prob-

lems. A local prediction problem occurs when pAPZ <0.70 for an indi-

vidual level of an independent variable (e.g., 6 hr) or when pAPZ

<0.70 for three consecutive combinations of independent variables. A

model was classified as validated when it satisfied all criteria for

dependent data (Figure 1) and all criteria for independent data for

interpolation (Figure 2).

3 | RESULTS

3.1 | Growth of Salmonella

Growth of Salmonella Newport on Romaine lettuce was observed and

increased as a function of time and temperature for dependent data

(Figure 3) and for independent data (Figure 4) for interpolation. During

8 hr of incubation, growth (≥0.3 log increase) was observed at tempera-

tures of 20�C (Figure 3b), 22�C (Figure 4b), 24�C (Figure 3c), 26�C

(Figure 4c), 28�C (Figure 3d), 30�C (Figure 4d), 32�C (Figure 3e), 34�C

(Figure 4e), 36�C (Figure 3f), 38�C (Figure 4f), and 40�C (Figure 3g) but

not at temperatures of 16�C (Figure 3a) or 18�C (Figure 4a). The time for

0.3 log of growth or lag time ranged from 7.1 hr at 20�C (Figure 3b) to

1.2 hr 40�C (Figure 3g). Total growth during 8 hr of incubation ranged

from 0.42 log at 20�C (Figure 3b) to 4.42 log at 40�C (Figure 3g).

3.2 | Model simulation

Growth curves in Figures 3 and 4 were obtained using the model

shown in Figure 5. The model also made stochastic predictions of

F IGURE 1 Screenshot of the decision tree (dependent data) and acceptable prediction zones (APZ) analysis for development of a model
(general regression neural network) for growth of Salmonella Newport on Romaine lettuce as a function of time (t) and temperature (T) where
pAPZ is the proportion of residuals in the APZ
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growth by random sampling of pert distributions for time (0, 2, and

8 hr) and temperature (16, 22, and 40�C; Figure 5). For the iteration

shown in Figure 5, the model predicted the growth curve for the

randomly selected temperature of 30.6�C and it predicted the

amount of growth (0.73 log) for the randomly selected time

of 3.9 hr.

After 1,000 model iterations, results were filtered to remove no

growth events (<0.3 log increase) and incidence and extent of growth

were determined. Incidence of growth was 18.7% (187/1,000),

whereas extent of growth ranged from 0.3 to 2.34 log with a mean of

0.71 log. The best fitting distribution for extent of growth was the

BetaGeneral (Figure 6), whereas a discrete distribution can be used to

simulate incidence of growth events. These distributions can be used

together in a risk assessment to simulate the variability and uncer-

tainty of the incidence and extent of Salmonella growth on Romaine

lettuce following cross-contamination from raw chicken during meal

preparation (Oscar, 2004b).

3.3 | Model performance and validation

Fitness of data for evaluating model performance was evaluated

using decision trees with a series of “yes” or “no” questions per-

taining to criteria of the APZ method. An answer of “yes” indicated

that the data met the criterion, whereas as an answer of “no” indi-

cated that the data did not meet the criterion. The dependent data

met all criteria for test data as indicated by answers of “yes” to

Questions 1–4 in Figure 1. Likewise, the independent data for inter-

polation met all criteria for test data as indicated by answers of

“yes” to Questions 2–6 in Figure 2. Thus, both sets of data were

found to provide an accurate and unbiased evaluation of model

performance.

Model performance was evaluated using decision trees with three

“yes” or “no” questions pertaining to criteria for model performance in

the APZ method. One question was for overall performance and two

questions were for local performance and they were the same for

both sets of data. For dependent data (n = 210), overall pAPZ was

0.93, pAPZ for individual times ranged from 0.88 to 0.98, pAPZ for

individual temperatures ranged from 0.84 to 0.99, and maximum num-

ber of pAPZ <0.70 for consecutive combinations of time and tempera-

ture was one (Figure 1). Thus, answers to Questions 5–7 in Figure 1

were “yes” indicating that model performance was acceptable for

dependent data.

For independent data (n = 72) for interpolation, overall pAPZ was

0.93, pAPZ for individual times ranged from 0.84 to 1.00, pAPZ for

individual temperatures ranged from 0.78 to 1.00, and maximum num-

ber of pAPZ <0.70 for consecutive combinations of time and tempera-

ture was two (Figure 2). Thus, answers to Questions 7–9 in Figure 2

F IGURE 2 Screenshot of the decision tree (independent data) and acceptable prediction zones (APZ) analysis for validation (interpolation) of
a model for growth of Salmonella Newport on Romaine lettuce as a function of time (t) and temperature (T) where pAPZ is the proportion of
residuals in the APZ
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(a) (b)

(c) (d)

(e)

(g)

(f)

F IGURE 3 Growth of Salmonella Newport on Romaine lettuce as a function of time and temperature for dependent data where MPN is the
most probable number
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were “yes” indicating that model performance for interpolation was

acceptable.

Because all test data and model performance criteria for depen-

dent data (Figure 1) and all test data and model performance criteria

for independent data (Figure 2) were satisfied, the model was classi-

fied as validated for interpolation. Thus, it can be used with confi-

dence to predict growth of a low initial number (0.91 log) of

Salmonella Newport on Romaine lettuce as a function of time (0–8 hr)

and temperature (16–40�C).

4 | DISCUSSION

Cross-contamination of RTE salad vegetables with Salmonella from

raw chicken followed by growth during meal preparation are impor-

tant risk factors for human salmonellosis. Oscar (2017) quantified nat-

ural cross-contamination of RTE cooked chicken with Salmonella from

raw chicken during simulated meal preparation. When raw chicken

was properly stored (6 hr at 4�C) before meal preparation, 10% of

RTE cooked chicken portions were cross-contaminated with low

(a) (b)

(c) (d)

(e) (f)

F IGURE 4 Growth of Salmonella Newport on Romaine lettuce as a function of time and temperature for independent data (interpolation)
where MPN is the most probable number
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(0–0.2 log) numbers of Salmonella from unwashed utensils (i.e., cutting

board, knife, and hands) used to prepare raw chicken for cooking.

Consequently, based on these results, the current model was devel-

oped with a low initial number (0.91 log) of a single chicken isolate of

Salmonella Newport.

Oscar (2017) also quantified natural cross-contamination of RTE

cooked chicken with Salmonella from raw chicken that was improperly

stored (72 hr at 15�C) before meal preparation. He found that 52% of

RTE cooked chicken portions were cross-contaminated with 0.3–6.2

log of Salmonella from unwashed utensils used to prepare raw chicken

for cooking. How well the current model predicts growth of higher ini-

tial numbers of Salmonella on Romaine lettuce was not investigated

but could be (Oscar, 2007) because the APZ method has criteria for

validation of models for extrapolation (Oscar, 2013, 2018a). Validation

for extrapolation is important because it saves time and money by

identifying independent variables (e.g., initial number) for which new

models are not needed (Oscar, 2005b). In addition, it provides model

users with confidence that predictions made outside the range of

independent variables used to develop the model are reliable.

Recently, a model (multiple-layer feed forward neural network)

for growth of the same strain of Salmonella Newport (0.85 log) on

Roma tomato portions (0.14 g) incubated at times (0–8 hr) and tem-

peratures (16–40�C) observed during meal preparation was developed

and validated (interpolation) using the APZ method (Oscar, 2018a).

This model was also validated for extrapolation to other serotypes of

Salmonella (e.g., Montevideo, Thompson, Hadar, Heidelberg, and Typ-

himurium var 5-) using the APZ method. Thus, the current model can

be improved by validating it for extrapolation to other serotypes and

if serotypes are found that grow differently than Salmonella Newport,

the model could be expanded to include these serotypes as was done

F IGURE 5 Screenshot of a model (general regression neural network) for growth of Salmonella Newport on Romaine lettuce as a function of
time and temperature

F IGURE 6 Best-fit distribution for
growth (≥0.3 log increase) of Salmonella
Newport on Romaine lettuce for the time
and temperature scenario shown in
Figure 5
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in a previous study (Oscar, 2009). In general, most serotypes of Salmo-

nella have similar growth kinetics (Oscar, 1998, 2000) but a few, such

as Enteritidis (Oscar, 2003), Kentucky (Oscar, 2009), and 8.20:–:z6

(Oscar, 2018a), grow slower

The APZ method is being used by other researchers to evalu-

ate model performance. Mishra, Guo, Buchanan, Schaffner, and

Pradhan (2016) used it to evaluate performance of models for

growth of Salmonella and Listeria monocytogenes on leafy greens.

Luo, Hong, and Oh (2015) used it to evaluate performance of

models for growth of Listeria monocytogenes on RTE ham and sau-

sages. Li et al. (2011) used it to evaluate performance of models

for thermal inactivation of Listeria innocua in poultry products. Min

and Yoon (2010) used it to evaluate performance of models for

growth of Salmonella Typhimurium and Staphylococcus aureus on

cooked pork. Mohr et al. (2015) used it to evaluate performance

of models for growth of Clostridium perfringens during the cooling

of cooked, uncured and cured poultry and meat products. Although

the model performance criteria of the APZ are based on

established performance standards (Oscar, 2005b) and a statistical

analysis of experimental error associated with bacterial enumera-

tion (Oscar, 2005a), these studies are important because they con-

firm that the APZ method is now an accepted validation method in

the field of predictive microbiology.

Predictive models for pathogen growth are often developed

with a mixture of strains (Buchanan & Phillips, 1990; Gibson,

Bratchell, & Roberts, 1988) with the assumption that the fastest-

growing strain will predominate and result in a “fail-safe” model.

However, without information about growth of individual strains in

the cocktail it is not possible to validate this assumption. Thus, it is

possible that the model could be “fail-dangerous” instead. A way to

avoid this issue is to develop a model with a single strain, like was

done in this study, and then validate the model for extrapolation to

other strains as was done in previous studies (Oscar, 2015, 2018a).

In addition, a model developed with a single strain can be expanded

to include other strains that growth differently. In fact, models that

predict pathogen growth (Oscar, 2009) or dose–response (Oscar,

2004a) as a function of strain prevalence and variation are valuable

tools for risk assessment.

The previous history of the strain used to develop a model

(Buchanan & Klawitter, 1991; Hawkins et al., 2019) is important for

accurate prediction of pathogen behavior in the next step of the

farm-to-table chain. Thus, it is important to use a previous history

that is relevant to the step in the risk pathway that is being simu-

lated by the model. In the current study, the strain used for model

development was grown to stationary phase at 22�C, which is a

temperature that is commonly observed in the kitchen or meal prep-

aration environment. In addition, stationary phase cells were used to

simulate the likely physiological state of cells transferred from raw

chicken to utensils during meal preparation. Thus, the previous his-

tory used in the current study was designed to simulate a scenario

that is likely to occur in the real-world during meal preparation.

Although a previous study (Oscar, 1999) showed that previous tem-

perature (22–34�C) does not alter subsequent growth of Salmonella

Typhimurium on RTE cooked chicken over a range of temperatures

(22–34�C), the current model could still be improved by evaluating

it for extrapolation to other previous life cycle phases and tempera-

tures and then expanding it to include other life cycle phases and

previous temperatures if needed.

Growth of Salmonella on lettuce has been investigated and

modeled by other researchers. Veys, de Oliveira Elias, Sampers, and

Tondo (2016) investigated growth of a five-strain mixture of Salmo-

nella on lettuce (10-g portions) stored at 5, 10, 25, and 37�C. They

developed secondary models for lag time and growth rate but did not

evaluate model performance against an independent set of data or

determine growth kinetics for individual strains in the cocktail. San-

t'Ana, Franco, and Schaffner (2012) developed secondary models for

lag time and growth rate for a mixture of Salmonella serotypes on let-

tuce stored at 7–30�C but did not evaluate model performance

against an independent set of data or report growth kinetics for indi-

vidual strains in the cocktail. Thus, both models could be improved by

validation against an independent set of data for interpolation and by

validation against independent data for extrapolation to individual

strains.

5 | CONCLUSIONS

Validation of models is important because it provides users of

models with confidence that predictions are reliable. This is espe-

cially important when models are used to inform decisions about

food safety and public health. Criteria that ensure comparison of

observed and predicted values is accurate and unbiased, and that

provide an objective evaluation of model performance are important

to the validation process. In the current study, a model for growth of

a chicken isolate of Salmonella Newport on Romaine lettuce as a

function of times and temperatures observed during meal prepara-

tion was successfully validated using criteria that ensure model vali-

dation was accurate, unbiased, and objective. Thus, the model can

be used with confidence to predict and manage this important risk

to public health; namely, the growth of Salmonella on an RTE salad

vegetable following cross-contamination from raw chicken during

meal preparation.
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