
Original article

Neural network model for growth of Salmonella Typhimurium in

brain heart infusion broth

Thomas P. Oscar*,†

United States Department of Agriculture, Agricultural Research Service, Residue Chemistry and Predictive Microbiology Research Unit,

Center for Food Science and Technology, University of Maryland Eastern Shore, Room 2111, Princess Anne, MD 21853, USA

(Received 12 April 2018; Accepted in revised form 31 May 2018)

Summary Models that predict growth of Salmonella as a function of variables in the current and previous environ-

ment are valuable tools for assessing the safety of food. Therefore, this study was undertaken to develop

a model for growth of Salmonella Typhimurium in brain heart infusion broth as a function of previous

pH (5.7–8.6), temperature (15–40 °C), pH (5.2–7.4) and time. Viable count data (log CFU mL�1) were

modelled using a neural network approach. The variable impacts were 2.4% for previous pH, 29.0% for

temperature, 4.9% for pH and 63.7% for time. The proportion of residuals in an acceptable prediction

zone (pAPZ) from -1 (fail-safe) to 0.5 log CFU mL�1 (fail-dangerous) was 0.965 (1061/1100) for depen-

dent data and 0.939 (386/411) for independent data for interpolation. A pAPZ ≥ 0.7 indicated that the

model provided predictions with acceptable accuracy and bias. Thus, the model was successfully vali-

dated.
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Introduction

Salmonella are a leading cause of foodborne illness in
the United States (Scallan et al., 2011; Painter et al.,
2013) and throughout the world (D’Aoust, 1994; Van
Cauteren et al., 2017). Many kinds of food, such as
poultry meat and eggs, beef, pork, seafood, milk prod-
ucts, fresh produce, and nuts and tree fruits, are con-
taminated with Salmonella (Carrasco et al., 2012;
Besser, 2018). Although the level of contamination
may be low initially (Oscar, 2014, 2016), Salmonella is
able to grow when it is exposed to the proper environ-
mental conditions (Li et al., 2017; Shakeri et al.,
2017). Thus, models that predict growth of Salmonella
as a function of environmental and food variables like
temperature and pH are valuable tools for assessing
food safety (Soboleva et al., 2000; Santillana Farakos
et al., 2016).

Physiological state is an important variable that
affects growth of Salmonella when it is shifted to a
new environment (Oscar, 1999b; Ribaudo et al., 2017).

Physiological state is an important variable for growth
of other human bacterial pathogens as well (Skan-
damis et al., 2007; Hereu et al., 2014). In fact, physio-
logical state is an important variable in models that
predict the growth of human bacterial pathogens over
time (Baranyi et al., 1993; McKellar & Lu, 2005).
Thus, the previous environment, which can alter the
physiological state of a human bacterial pathogen, is
also an important variable to include in a predictive
model for growth of a human bacterial pathogen in
food (Beuchat & Mann, 2008; Kataoka et al., 2016).
These statements also apply to food spoilage bacteria.
Models that predict growth of a human bacterial

pathogen, like Salmonella, as a function of variables
(e.g. temperature and pH) in the current and previous
environment are valuable tools for assessing the safety
of food (Oscar, 1999a,b). Typically these models are
developed using a three-step, nonlinear regression
approach that involves primary, secondary and tertiary
modelling (Oscar, 2005a). This process can be cumber-
some, complicated and time-consuming. An alternative
approach that involves just one step and that is not
cumbersome, complicated, or time-consuming is neural
networks (Oscar, 2009). With the advent of commer-
cial software applications that can train and test neural
networks and produce a user-friendly model, it is now
easy for this technology to be applied in the field of
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predictive microbiology as it is being applied in other
fields, such as robotics and self-driving cars. Therefore,
this study was undertaken to develop a neural network
model for growth of Salmonella Typhimurium in brain
heart infusion broth as a function of previous pH
(5.7–8.6), temperature (15–40 °C) and pH (5.2–7.4).
The model was actually an expanded version (addition
of stationary phase) of a previously developed model
(Oscar, 1999c) that predicted lag and exponential
phases of growth of Salmonella Typhimurium in brain
heart infusion broth as a function of previous pH
(5.7–8.6), temperature (15–40 °C) and pH (5.2–7.4).

Materials and methods

Data collection

Data for model development and validation were col-
lected as previously described (Oscar, 1999c). In brief,
a single strain (American Type Culture Collection
14028, Manassas, VA, USA) of Salmonella Typhimur-
ium was grown to stationary phase at 30 °C in 5 mL
of brain heart infusion broth (Difco, Becton Dickin-
son, Sparks, MD, USA) with pH of 5.7, 6.7, 7.8 or 8.6
for model development and with pH of 6.3, 7.4 or 8.3
for model validation for interpolation. A single strain
rather than a cocktail of strains was used so that the
model could be expanded in the future to include
strain variation as an independent variable.

After growth at various pH (i.e. previous pH), the
5-mL cultures of Salmonella Typhimurium were seri-
ally diluted and then inoculated into 50 mL of brain
heart infusion broth adjusted to pH of 5.2, 6.3 or 7.4
for model development and to pH of 5.7 or 6.7 for
model validation for interpolation. The 50-mL cultures
of brain heart infusion broth with an initial concentra-
tion of 4 log CFU of Salmonella Typhimurium per
mL were incubated at 15, 20, 25, 30, 35 or 40 °C for
model development and at 17.5, 22.5, 27.5, 32.5 or
37.5 °C for model validation for interpolation. Thus,
the experimental design was a 4 (previous pH) by 3
(pH) by 6 (temperature) full factorial for model devel-
opment and a 3 (previous pH) by 2 (pH) by 5 (temper-
ature) full factorial for model validation for
interpolation. A single replicate of each combination
of independent variables was conducted with a few
exceptions where two replicates were conducted. The
concentration of Salmonella Typhimurium in the 50-
mL brain heart infusion broth cultures over time was
determined by viable counts on brain heart infusion
agar. Undiluted and serially diluted samples of the 50-
mL brain heart infusion broth culture were spiral-pla-
ted onto brain heart infusion agar at selected sampling
times and colonies that formed after incubation at
30 °C for 24 h were counted using an automated col-
ony counter.

Model development

A multiple-layer feed-forward neural network model
with two hidden layers of two nodes each was devel-
oped as previously described (Oscar, 2017b) except
that it had four rather than two input variables. The
structure of the neural network was determined by
previous experience and by trial and error. In brief, a
data set was created that had 1100 combinations of
the four independent numerical variables (previous
pH, temperature, pH and time) and one dependent
variable (log CFU mL�1). Seventy per cent of the
dependent data (n = 770) were randomly selected and
used to train the neural network, whereas 30% of the
dependent data (n = 330) were randomly selected and
used to test the neural network for generalisation. The
data set was created in a computer spreadsheet (Excel,
MicroSoft Corporation, Redmond, WA, USA), and
the neural network was trained and tested with a
spreadsheet add-in program (NeuralTools, Palisade
Corporation, Ithaca, NY, USA). An independent set
of data (n = 411) was used to test the model for inter-
polation. These data were collected with the same
methods as the data used to develop the model. In
addition, they were collected at intermediate values of
the independent variables used in model development;
this was done to provide a complete and unbiased
evaluation of model performance per the test data cri-
teria of the acceptable prediction zone method (Oscar,
2005b).

Model performance and validation

The test data and model performance criteria of the
acceptable prediction zone (APZ) method were used to
evaluate model performance as previously described
(Oscar, 2005a,b). These criteria were based on estab-
lished statistical concepts and principles, established
performance standards in the U.S. educational system
(Oscar, 2005b) and an analysis of the distribution of
absolute relative errors associated with the enumera-
tion method (Oscar, 2005a). In brief, a residual (ob-
served–predicted) was considered acceptable when it
was in an APZ from -1 (fail-safe) to 0.5 log
CFU mL�1 (fail-dangerous). The model was consid-
ered to provide predictions with acceptable accuracy
and bias for the test data when the proportion of
residuals in the APZ (pAPZ) was ≥0.7. The model was
considered validated when pAPZ for dependent data
and independent data for interpolation were accept-
able and there were no local prediction problems.

Independent variable impacts

One of the outputs of the neural network software was
the relative impact of the independent variables
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(previous pH, temperature, pH and time) on the
dependent variable (log CFU mL�1). These values
summed to 100% and the independent variable with
the largest value was the one that had the largest effect
on the dependent variable. They were calculated as fol-
lows:

Yn ¼ Dn

DppH þ DT þ DpH þ Dt

;

where Yn was the relative impact (%) of independent
variable n (previous pH, temperature, pH or time),
Dnwas the mean delta for independent variable n, DppH

was the mean delta for previous pH, DT was the mean
delta for temperature, DpH was the mean delta for pH,
Dt was the mean delta for time, and delta was the dif-
ference between maximum and minimum dependent
values from the training set and was obtained by step-
ping the through the values of independent variable n
while the other independent variables were fixed.

Results

Neural network model

Figure 1 shows a screenshot of the user-friendly form
of the neural network model that was developed. This
form of the model is similar in format to those in the
U.S. Department of Agriculture, Pathogen Modeling
Program. To use the model, values for previous pH,
temperature and pH are entered. These values should
be within the indicated ranges because predictions of
the model that are outside these ranges might not be
reliable. After the values for the independent variables

are entered, the model predicts the complete growth
curve. The model is programmed to limit the growth
curve to times used in model development and
validation.

Growth curves

Examples of growth curves are shown in Figure 2 for
dependent data (panels a–d) and for independent data
for interpolation (panels e and f). Symbols are
observed values whereas solid lines are growth curves
predicted by the model.

Independent variable impacts

Independent variable impacts were 2.4% for previous
pH, 29.0% for temperature, 4.9% for pH and 63.7%
for time. Predicted growth curves in Figure 3 show
that time had the largest effect on growth (all panels),
previous pH had a very small effect on growth (panel
a), temperature had a large effect on growth (panel b),
and pH had a small effect on growth (panel c). These
results agree with the independent variable impact
results.

Model performance

Residual plots for dependent data (panels a and b)
and independent data for interpolation (panel c) are
shown in Figure 4. Values of pAPZ for dependent
data were 0.964 (742/770) for training data, 0.967
(319/330) for testing data and 0.965 (1061/1100) for
training data plus testing data, whereas the pAPZ for
independent data for interpolation was 0.939 (386/
411). There were no signs of local prediction problems.

Figure 1 Screenshot of the user-friendly version of the neural network model for growth of Salmonella Typhimurium in brain heart infusion

broth as a function of previous pH, temperature, pH and time. [Colour figure can be viewed at wileyonlinelibrary.com]
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Thus, the model was found to provide predictions with
acceptable accuracy and bias as the proportion of
residuals in the acceptable prediction zone (pAPZ) was
≥ 0.7 for both dependent data and independent data
for interpolation. Therefore, the model was success-
fully validated per the test data and model perfor-
mance criteria of the acceptable prediction zone
method (Oscar, 2005a,b) meaning that users of the
model can be confident that its predictions are reliable.

Discussion

One common application of predictive models in the
food industry is to verify critical control points in
Hazard Analysis and Critical Control Point programs
for red meat and poultry processing (Elliott, 1996).
For example, predictive models are often used to
assess the effect of a process deviation on outgrowth
of a spore-forming pathogen like Clostridium perfrin-
gens during cooking and cooling of meat products like

roast beef and turkey (Juneja et al., 2011; Huang &
Vinyard, 2016). Here, a 1-log cycle increase in
Clostridium perfringens is used as an indicator that the
critical control point is out-of-control and that correc-
tive action is needed to ensure food safety.
Another common application of predictive models

for human bacterial pathogens is in the exposure
assessment component of a risk assessment to predict
the change in pathogen number in a unit operation of
a food production chain (Hildebrandt & Kleer, 2004;
Oscar, 2004). Here, a model that can consider the pre-
vious environment provides a more accurate prediction
of the change in pathogen number within the unit
operation being simulated. For example, in a risk
assessment for Salmonella and fresh leafy greens the
following unit operation scenario could be relevant for
the model developed in this study: a food handler who
is shedding Salmonella Typhimurium from a recent
episode of salmonellosis is working at a restaurant
with a salad bar and forgets to wash his hands after

Figure 2 Examples of growth curves for

Salmonella Typhimurium in brain heart infu-

sion broth as a function of previous pH,

temperature, pH and time for data used in

model development (panels a–d) and data

used in model validation for interpolation

(panels e and f).
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visiting the rest room. He then cross-contaminates
fresh-cut lettuce (pH = 5.90) with Salmonella Typhi-
murium (104 CFU) from faecal material (i.e. previous
environment) on his hands. The lettuce is then added
to the salad bar and held at room temperature (22 °C)
for various times before being consumed. The food
safety question that could be answered with the model
is: what impact will this scenario have on consumer
exposure over time? Here, the pH of human faeces
(i.e. previous pH) was assumed to be 6.64, which is the
median value reported by Rose et al. (2015). This
information (previous pH of human faeces = 6.64, pH

of lettuce = 5.90 and temperature of holding for the
lettuce = 22 °C) was entered into the model to gener-
ate a growth curve for this scenario, see Figure 1. The
growth curve could then be used to answer the posed
food safety question.
Nonlinear regression is the most common method of

modelling data for growth of human bacterial patho-
gens in laboratory broth (McClure et al., 1994; Whit-
ing & Buchanan, 1997). This approach usually
involves three sequential steps: primary modelling,

Figure 3 Impact of (a) previous pH, (b) temperature and (c) pH on

predicted growth curves for Salmonella Typhimurium in brain heart

infusion broth.

Figure 4 Residual plots and acceptable prediction zones for evalu-

ating performance of the neural network model for growth of Sal-

monella Typhimurium in brain heart infusion broth: (a) dependent

data used to train the model, (b) dependent data used to test the

model for generalisation and (c) independent data used to test the

model for interpolation.
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secondary modelling and tertiary modelling (Whiting
& Buchanan, 1993; Whiting, 1995). The tertiary
model, which is created by incorporating the sec-
ondary models into the primary model, predicts the
growth curve as a function of the independent vari-
ables (Oscar, 2005a). An alternative approach for
modelling growth of human bacterial pathogens in
laboratory broth, which was used in the current study
and previous studies (Jeyamkondan et al., 2001; Gar-
cia-Gimeno et al., 2002), is artificial neural networks.
An advantage of the artificial neural network
approach (Hajmeer et al., 1997; Schepers et al., 2000;
Jeyamkondan et al., 2001) and the global regression
approach (Martino & Marks, 2007) over the nonlinear
regression approach is that the model is developed in
one rather than three steps, which results in better
model performance. Like tertiary models, the neural
network model predicts the growth curve as a function
of the independent variables. Similar to previous stud-
ies (Oscar, 2017a,b) in which artificial neural networks
were used for modelling thermal inactivation of Sal-
monella Typhimurium in ground chicken thigh meat
with native microflora, the neural network model
developed in the present study was found to provide
highly accurate and unbiased predictions
(pAPZ > 0.93) of sigmoid-shaped curves.

Conclusions

Similar to the original study (Oscar, 1999c), previous
pH was found to have only a very small effect on the
subsequent growth of Salmonella Typhimurium in
brain heart infusion broth even after inclusion of the
stationary phase of growth. Thus, in the future, as the
model is expanded to include other independent vari-
ables, previous pH could be excluded without any
appreciable loss of model performance, which would
have the added benefit of reducing the cost of model
expansion and improvement. More specifically, the
next steps are to expand the model to include other
independent variables, such as inoculum size, strain
variation and water activity that will allow it to be
applied to a wider range of prediction scenarios. Once
these steps are accomplished, it will be possible to
evaluate the expanded model for its ability to predict
the growth of Salmonella in a wider range of food
products. Validation of the model in food will be an
important step that will make the model an even more
valuable tool for the food industry.
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