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ABSTRACT

Predictive models are valuable tools for assessing food safety. Existing thermal inactivation models for Salmonella and

ground chicken do not provide predictions above 718C, which is below the recommended final cooked temperature of 73.98C for

chicken. They also do not predict when all Salmonella are eliminated without extrapolating beyond the data used to develop

them. Thus, a study was undertaken to develop a model for thermal inactivation of Salmonella to elimination in ground chicken at

temperatures above those of existing models. Ground chicken thigh portions (0.76 cm3) in microcentrifuge tubes were inoculated

with 4.45 6 0.25 log most probable number (MPN) of a single strain of Salmonella Typhimurium (chicken isolate). They were

cooked at 50 to 1008C in 2 or 2.58C increments in a heating block that simulated two-sided pan frying. A whole sample

enrichment, miniature MPN (WSE-mMPN) method was used for enumeration. The lower limit of detection was one Salmonella
cell per portion. MPN data were used to develop a multiple-layer feedforward neural network model. Model performance was

evaluated using the acceptable prediction zone (APZ) method. The proportion of residuals in an APZ (pAPZ) from�1 log (fail-

safe) to 0.5 log (fail-dangerous) was 0.911 (379 of 416) for dependent data and 0.910 (162 of 178) for independent data for

interpolation. A pAPZ �0.7 indicated that model predictions had acceptable bias and accuracy. There were no local prediction

problems because pAPZ for individual thermal inactivation curves ranged from 0.813 to 1.000. Independent data for interpolation

satisfied the test data criteria of the APZ method. Thus, the model was successfully validated. Predicted times for a 1-log

reduction ranged from 9.6 min at 568C to 0.71 min at 1008C. Predicted times for elimination ranged from 8.6 min at 608C to 1.4

min at 1008C. The model will be a valuable new tool for predicting and managing this important risk to public health.
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Salmonella is a leading cause of foodborne illness (19).
Poultry meat and egg products are often linked to outbreaks

of salmonellosis (3). Most Salmonella pathogens are located

on the surface of chicken (20) and are rapidly killed during

cooking. However, Salmonella pathogens in ground chicken

are located throughout the product (1). Thus, if ground

chicken is not thoroughly cooked, Salmonella can survive

and cause salmonellosis (8).
Predictive models are valuable tools for assessing food

safety (2). One important feature is the ability to predict

pathogen behavior in food for conditions that were not

investigated but that are within the ranges of variables used

to develop the model (22). In other words, the ability to

interpolate. Thus, an important step in model development is

validating the model for its ability to interpolate (16).
However, even after validation, a model should not be used

to make predictions outside the ranges of independent

variables used to develop and validate it because these

predictions may not be reliable.

Models that predict thermal inactivation of Salmonella

in ground chicken have been developed (5, 7, 12, 13).

However, the maximum temperature investigated and

modeled is 71.18C. This temperature is below the recom-

mended final cooked temperature of 73.98C or 1658F for

chicken. One exception is the study of Murphy et al. (10), in

which ground chicken was cooked to final temperatures of

75 and 808C. However, the model was developed with a

heat-resistant strain of Salmonella Senftenberg. Thus, it may

not accurately predict thermal inactivation of other Salmo-

nella strains. In fact, the model for Salmonella Senftenberg

may be overly fail-safe, resulting in overcooking of the

ground chicken to a point at which it would not be

consumed. Therefore, existing models can be improved by

including higher temperatures and by using Salmonella
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serotypes with more normal heat resistance than Salmonella
Senftenberg to develop them.

Another limitation of existing models is that they do not

predict when Salmonella pathogens are eliminated without

extrapolating beyond the data used to develop them. This is

because the lower limit of detection of the viable count

method used to enumerate Salmonella is about 2.6 log/ml.

Therefore, a study was undertaken to develop a model for

thermal inactivation of Salmonella to elimination in ground

chicken at temperatures above those of existing models.

Data were acquired by a whole sample enrichment,

miniature most-probable-number (WSE-mMPN) method.

This enumeration and presence or absence method has a

lower limit of detection of one Salmonella cell per portion.

Thus, it was possible to investigate and model thermal

inactivation of Salmonella to elimination in ground chicken.

MATERIALS AND METHODS

Experimental designs. For model development, an 8 3 13

full factorial of time (0, 0.5, 1, 2, 4, 6, 8, 10 min) and temperature

(50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 95, 1008C) was used.

There were four replicate trials per temperature. For model

validation, an 8 3 12 full factorial of time (0, 0.5, 1, 2, 4, 6, 8,

10 min) and temperature (52, 56, 60, 64, 68, 72, 76, 80, 84, 88,

92.5, 97.58C) was used. There were two replicate trials per

temperature. Temperature refers to that of the well surfaces in the

heating block used to cook the ground chicken portions.

Ground chicken. Ground chicken portions with native

microflora were prepared from thigh meat, as previously described

(18). Portions were cylindrical in shape, with a radius of 4.5 mm, a

height of 12 mm, and a volume of 0.76 cm3 (V¼ pr2h), which is

equivalent to 0.76 g. They were housed in 1.5-ml polypropylene

microcentrifuge tubes with 0.5-mm-thick walls. They were stored

at �208C until they were used in experiments.

Cooking trials and inoculation procedure. Salmonella
enterica serotype Typhimurium was isolated from a chicken breast

that was harvested from a whole broiler chicken obtained at retail,

as described in a previous study (17). Stock cultures were stored at

�808C in brain heart infusion broth (BD, Sparks, MD) that

contained 15% glycerol (Sigma Aldrich, St. Louis, MO). Five

microliters of stock culture was added to 9 ml of buffered peptone

water (BPW; BD) in a glass dilution tube with cap. The tube was

incubated for 72 h at 228C without shaking to obtain stationary

phase cells for inoculation of ground chicken portions. A fresh

culture was prepared for each trial.

Chicken portions (nine per trial) were thawed at 228C for 30

min. The 72-h culture was serially diluted (1:10) in BPW. Five

microliters of the 10�2 dilution was inoculated into the center of the

chicken portion. Inoculum size was 4.45 6 0.25 (mean 6 SD) log

MPN per portion. Chicken portions were cooked for 0 to 10 min in

a preheated heating block (Grant-bio PCH1, Grant Instruments,

Cambridgeshire, UK). This model system simulated two-sided pan

frying, but in the vertical rather than horizontal direction. However,

it produced a similar meat temperature profile as two-sided pan

frying of ground meat patties in the horizontal direction (4). Thus,

it provided a realistic and reliable model system for investigating

and modeling the thermal inactivation of Salmonella in ground

chicken during cooking.

An uninoculated portion was used to monitor meat temper-

ature during cooking. A soldering iron was used to create a hole in

the lid of the microcentrifuge tube. A thermometer (range¼�50 to

1508C; Traceable Jumbo-Digital Display Thermometer, Control

Company, Friendswood, TX) was inserted through the hole and

into the center of the chicken portion. Initial temperature of

chicken portions was 22.6 6 1.38C.

Salmonella enumeration by WSE-mMPN. Before enumer-

ation, chicken portions were cooled for 20 to 30 min at room

temperature after cooking to simulate how consumers would

handle ground chicken after cooking and to obtain results that

reflected Salmonella number after a realistic cooking and cooling

scenario. In contrast, in previous modeling studies (7, 13, 14),
before enumeration, ground chicken was immediately cooled in an

ice bath after cooking, which is not what is done in the real world.

After cooling for 20 to 30 min, portions were transferred to plastic

filter bags (207-ml; Whirl-Pak, Nasco, Fort Atkinson, WI)

followed by addition of 9 ml of cold BPW. Samples were then

pulsified (Pulsifier PUL 100, Microbiology International, Freder-

ick, MD) for 15 s to recover Salmonella into BPW for enumeration

by a 3 (replicate) 3 8 (dilution) mMPN method, as previously

described (18).
In brief, the mMPN was performed in 2-ml, 96-well deep well

plates. Serial dilutions (1:10) in BPW were performed by a robotic

pipettor (SOLO Plus, Hudson Robotics, Springfield, NJ). The

BPW plates were incubated for 24 h at 408C. Next, 10 ll from each

BPW well was transferred by the robotic pipettor to corresponding

wells of a second deep well plate that contained 1 ml of Rappaport-

Vassiliadis R10 broth (RVB; BD) in each well. The RVB plates

were incubated for 48 h at 428C. Salmonella-positive (white) and

-negative (blue) wells were then recorded and used to calculate the

MPN, as previously described (21).
The WSE was accomplished by incubating the sample

remaining in the BPW bags for 24 h at 408C. Next, 100 ll of

the BPW incubate was transferred to 10 ml of RVB in a glass

dilution tube with cap. The RVB tubes were incubated for 48 at

428C. Salmonella-positive (white) and -negative (blue) tubes were

recorded.

Portions with a single positive RVB well and a positive RVB

tube were assigned an MPN value of 0.79 log. Portions with no

positive RVB wells but a positive RVB tube were assigned an

MPN value of 0.395 log. Portions with one positive RVB well and

a negative RVB tube were assigned an MPN value of 0 log.

Portions with no positive RVB wells and a negative RVB tube, or

samples that tested negative for Salmonella, were assigned an

MPN value of �1 log. This was done so that, when the model

predicted survival and there was no survival or when the model

predicted no survival and there was survival, the residual would be

unacceptable according to the criteria of the acceptable prediction

zone (APZ) method for evaluating model performance (see below).

It should be stated that the WSE-mMPN method not only

determines the number but also the presence or absence of

Salmonella in the chicken portions. Thus, it is able to acquire data

for modeling not only the reduction but also the elimination of

Salmonella from ground chicken during cooking.

Model development. A data set was created in an Excel

spreadsheet (version 2013, MicroSoft Corporation, Redmond,

WA). It had four columns: (i) tag, (ii) temperature (independent

numerical variable), (iii) time (independent numerical variable),

and (iv) log MPN per portion (dependent numerical variable). The

tag variable identified the dependent data for model development

and the independent data for interpolation for model validation.

A spreadsheet add-in program (industrial version 6, Neu-

ralTools, Palisade Corporation, Ithaca, NY) was used to develop a
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multiple-layer feedforward neural network model with two hidden

layers of two nodes each for predicting log MPN per portion (Fig.

1). The activation functions were the hyperbolic tangent function

for the hidden layers and the identity function for the output layer.

In a similar manner, a multiple-layer feedforward neural network

model with a single hidden layer of two nodes for predicting meat

temperature as a function of cooking time and temperature was

developed. The spreadsheet add-in program also calculated the root

mean square error for dependent and independent data as the

square root of the average square deviation of observed and

predicted values.

NeuralTools does not provide weights and bias values for the

neural networks it creates. However, it was possible to develop a

stand-alone version. First, the PREDICT function of NeuralTools

was used to create two arrays. Both arrays had four columns: (i)

temperature; (ii) time; (iii) concatenate (temperatureþtime), and

(iv) predicted log MPN or predicted meat temperature. Second, the

CONCATENATE and VLOOKUP functions of Excel were used to

return predicted values from the arrays. The stand-alone version of

the model predicted the thermal inactivation curve and the meat

temperature profile for cooking temperatures from 50 to 1008C in

18C increments (Fig. 2).

Model performance. Performance of the thermal inactivation

model was evaluated using the APZ method for models that predict

log number (15). A prediction was considered acceptable when the

residual (observed � predicted) was in an APZ from �1 log (fail-

safe) to 0.5 log (fail-dangerous). Model predictions had acceptable

bias and accuracy when the proportion of residuals in the APZ

(pAPZ) was �0.7 for whole sets of data (i.e., dependent data or

independent data for interpolation) or individual thermal inactiva-

tion curves. The model was considered validated when the pAPZ

values for dependent and independent data for interpolation were

acceptable, there were no local prediction problems (i.e., two

consecutive thermal inactivation curves with pAPZ ,0.7), and the

independent data for interpolation satisfied the test data criteria of

the APZ method.

There are two test data criteria for independent data for

interpolation (16). First, independent data for interpolation must be

collected using the same methods as dependent data. This ensures a

valid comparison of observed and predicted values. Second,

independent data for interpolation must provide uniform coverage

of model predictions. This ensures an unbiased evaluation of

model performance. The independent data for interpolation were

collected with the same methods as the dependent data. In addition,

they were collected at temperatures that were intermediate to those

of the dependent data. Thus, they satisfied the test data criteria of

the APZ method for independent data for interpolation.

Graphical analysis. Model predictions were graphed as a

function of time and temperature (version 6, Prism, GraphPad

Software, San Diego, CA). Predicted MPN at time zero was 4.38

log per portion for all temperatures. Horizontal lines were added at

Y ¼ 3.38 log MPN per portion to determine the time for a 1-log

reduction and at Y¼ 0 log MPN per portion to determine the time

for elimination. The cursor was placed at intersections of the

horizontal lines and the thermal inactivation curve. Resulting

coordinates from the x axis (time in min) were recorded. This

method for obtaining the kinetic parameters is analogous to

interpolation of values from a standard curve, which is a widely

used scientific method. The nonlinear portion of the curve was

included in the determination of kinetic parameters. Moreover,

when the model predicts a log MPN value ,0, it is predicting that

Salmonella has been eliminated from the chicken portion.

FIGURE 1. Architecture of the multiple-layer feedforward neural network model for predicting the log MPN of Salmonella Typhimurium
in ground chicken portions as a function of cooking time and temperature. w, weight; b, bias; tanh, hyperbolic tangent function.

106 OSCAR J. Food Prot., Vol. 80, No. 1



RESULTS

A subset of data used in model development is shown in

Figure 3. These representative data show that temperature of

ground chicken rose rapidly during cooking and then

plateaued. Final meat temperature was observed to be less

than the cooking temperature (Table 1). Come-up time was

about 4 min. Three patterns of thermal inactivation were

observed: (i) none (Fig. 3A), (ii) concave downward (Fig.

3B), and (iii) sigmoidal (Fig. 3C to 3F).

The data set used to develop the model for thermal

inactivation contained 416 log MPN values. The data set

used to validate the model for interpolation contained 178

log MPN values. The root mean square error was 0.464 log

for dependent data and 0.509 log for independent data for

interpolation. Variable impacts were 54.1% for time and

45.9% for temperature.

Model performance was evaluated using the APZ

method. The pAPZ for individual thermal inactivation curves

ranged from 0.813 to 1.000 (Table 1). Thus, there were no

local prediction problems. The pAPZ was 0.911 (379 of 416)

for dependent data (Fig. 4A) and 0.910 (162 of 178) for

independent data for interpolation (Fig. 4B). Because the

independent data for interpolation satisfied the test data

criteria of the APZ method, the pAPZ for dependent data and

independent data were �0.7, and there were no local

prediction problems, the model was successfully validated.

The validated model was used to determine the time for

a 1-log reduction, as explained above. These values ranged

from 9.6 min at 568C to 0.71 min at 1008C (Table 1). The

validated model was also used to determine the time for

elimination, as explained above. These values ranged from

8.6 min at 608C to 1.4 min at 1008C (Table 1).

A model for meat temperature profile was developed

with 572 meat temperature readings. Independent data for

interpolation consisted of 264 meat temperature readings.

The root mean square error was 2.48C for dependent data

and 2.78C for independent data for interpolation. Variable

impacts were 57.5% for time and 42.5% for temperature.

DISCUSSION

The objective of the present study was accomplished. A

model that predicts thermal inactivation of Salmonella to

FIGURE 2. Neural network model for thermal inactivation of Salmonella Typhimurium to elimination in ground chicken. Users enter the
cooking temperature in cell A2, and then the model predicts the thermal inactivation curve and meat temperature profile.

J. Food Prot., Vol. 80, No. 1 THERMAL INACTIVATION MODEL FOR SALMONELLA AND GROUND CHICKEN 107



elimination in ground chicken at temperatures above

existing models was developed and validated. The model

simulates a scenario in which ground chicken is cooked by

two-sided pan frying, cooled at room temperature for a short

period, and then consumed. A small chicken portion was

used to acquire data for model development and validation.

To extrapolate model predictions to larger ground chicken

portions, it can be assumed that the small chicken portion

FIGURE 3. Thermal inactivation curves for Salmonella Typhimurium in ground chicken and meat temperature profiles during cooking at
(A) 508C, (B) 588C, (C) 668C, (D) 748C, (E) 828C, and (F) 1008C. Symbols are observed data. Lines are predicted values.
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used for data acquisition contains the cold spot of the larger

portion size and that all Salmonella are located in this cold

spot. Thus, the model can be used to predict, independent of

portion size, when all Salmonella are eliminated during

cooking at a specific temperature. However, this is a

conservative estimate because some or all of the Salmonella
may actually be located in a spot closer to the heat source.

Predictions of the model can be used to assess whether or

not it is safe to consume ground chicken cooked by a

specific time and temperature scenario. There are aspects of

this study that are new. However, the model has limitations

that require further research.

To my knowledge, this is the first study to use WSE-

mMPN to acquire data for modeling thermal inactivation of

Salmonella in ground chicken. Advantages of this method

for this application are several. First, incubation in BPW

allows injured cells of Salmonella to recover. Thus, an

overestimation of the thermal inactivation of the pathogen is

avoided. Second, the lower limit of detection was one

Salmonella cell per portion. This made it possible to model

thermal inactivation to elimination without extrapolating

beyond the data. Third, incubation in RVB allowed

enumeration of Salmonella in the presence of other

microorganisms. Thus, there was no need to use marker

strains (12) or remove background microflora (5) to measure

thermal inactivation. The end result was more realistic data

and predictions.

A second novel aspect was neural network modeling.

Unlike regression models, neural networks are flexible. They

can model data sets with different shaped thermal inactiva-

tion curves, such as those obtained in the present study (see

Fig. 3). A second advantage is that neural network modeling

involves one step instead of three. This reduces prediction

error, simplifies modeling, and saves time. The study of

Juneja et al. (6) is a good example of how complex

regression modeling of thermal inactivation data can be. If

the model had failed validation, one option would be to fit

the data to a different model, perhaps a regression model.

A third novel aspect, in the sense that it is not often

done by predictive microbiologists, was validation against

independent data for interpolation. The validation data

satisfied the test data criteria of the APZ method (16).

TABLE 1. Predictions and performance of a thermal inactivation
model for Salmonella Typhimurium in ground chickena

Data

set

CT

(8C)

FT

(8C)

t-log

(min)

t-elim

(min)

No. in

APZ Total pAPZ

Dep 50.0 48.4 ND ND 31 32 0.969

Ind 52.0 50.1 ND ND 15 16 0.938

Dep 54.0 52.0 ND ND 32 32 1.000

Ind 56.0 53.9 9.65 ND 13 16 0.813

Dep 58.0 56.0 7.45 ND 28 32 0.875

Ind 60.0 58.1 5.31 8.60 15 16 0.938

Dep 62.0 60.2 3.84 6.44 28 32 0.875

Ind 64.0 62.2 3.21 4.37 14 15 0.933

Dep 66.0 64.0 2.73 3.39 31 32 0.969

Ind 68.0 65.7 2.57 2.92 15 16 0.938

Dep 70.0 67.3 2.12 2.57 30 32 0.938

Ind 72.0 68.8 2.09 2.42 12 14 0.857

Dep 74.0 70.4 1.64 2.24 28 32 0.875

Ind 76.0 71.9 1.61 1.97 14 15 0.933

Dep 78.0 73.5 1.57 1.96 30 32 0.938

Ind 80.0 75.2 1.45 1.91 13 16 0.813

Dep 82.0 77.0 1.19 1.84 30 32 0.938

Ind 84.0 78.8 1.14 1.71 12 14 0.857

Dep 86.0 80.7 1.11 1.55 28 32 0.875

Ind 88.0 82.4 1.10 1.48 13 14 0.929

Dep 90.0 84.2 1.09 1.47 29 32 0.906

Ind 92.5 86.2 1.07 1.47 13 13 1.000

Dep 95.0 88.0 1.04 1.46 26 32 0.813

Ind 97.5 89.4 0.88 1.42 13 13 1.000

Dep 100.0 90.8 0.71 1.36 28 32 0.875

a CT, cooking temperature; FT, predicted final cooked tempera-

ture; t-log, predicted time for a 1-log reduction; t-elim, predicted

time for elimination; no. in APZ, number of residuals in an

acceptable prediction zone from�1 log (fail-safe) to 0.5 log (fail-

dangerous); total, number of residuals; pAPZ, proportion of

residuals in the acceptable prediction zone; Dep, dependent data;

ND, not determined; Ind, independent data for interpolation. FIGURE 4. Performance of the neural network model for thermal
inactivation of Salmonella Typhimurium in ground chicken. (A)
Dependent data and (B) independent data for interpolation. The
acceptable prediction zone (gray box) was from�1 log (fail-safe)
to 0.5 log (fail-dangerous). Residuals .1.5 log were graphed as
1.5 log for clarity of presentation.
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Namely, they were collected with the same methods as

dependent data. Thus, comparisons of observed and

predicted values were not confounded. In addition, they

were collected at temperatures intermediate to those of

dependent data. Thus, they provided uniform coverage of

model predictions. Consequently, evaluation of model

performance was not biased. Proper validation is important

because it provides users with confidence that model

predictions are reliable.

A fourth novel aspect was that data were acquired under

dynamic conditions that simulated two-sided pan frying of

ground chicken. This was accomplished by cooking ground

chicken in microcentrifuge tubes inserted into a heating

block. This model system had an additional advantage in

that it protected laboratory personnel from occupational

exposure to Salmonella. In this simulation of pan frying, a

period of survival before thermal inactivation was observed

as ground chicken warmed to temperatures that caused

thermal inactivation of the pathogen. Meat temperature

profiles obtained were similar in pattern to those reported for

pan frying of ground beef (4). Thus, the model system

provided a realistic simulation of a real cooking method.

In addition to predicting the number of Salmonella as a

function of cooking time and temperature, the current model

predicts the temperature profile of the cold spot of the

ground chicken portion as a function of cooking time and

temperature. Thus, the model predictions, which are based

on cooking temperature rather than meat temperature at the

cold spot, will not mislead consumers who use a meat

thermometer to assess food safety. Rather, they will provide

consumers the opportunity to compare their meat tempera-

ture readings with model predictions for meat temperature so

they can judge for themselves how close the predicted meat

temperature profile is to their cooking scenario and, thus,

how reliable the model predictions of Salmonella inactiva-

tion and elimination may be for their cooking scenario.

There are several limitations of the current model that

can be addressed with additional research. First, thermal

resistance varies among strains and serotypes of Salmonella
(11). However, only one strain of Salmonella Typhimurium

was used to develop and validate the present model. A single

strain was used because it simplified inoculum preparation

and provided specific information about the thermal

inactivation of that strain. However, additional research is

needed to see whether the model developed with this strain

can be improved by including other strains and serotypes of

Salmonella. This can be accomplished by collecting

independent data for extrapolation and then using the APZ

method to evaluate the ability of the current model to predict

these data, as was done in a previous study for a growth

model for Salmonella and ground chicken (18). The model

could then be expanded to include strains and serotypes for

which it does not provide acceptable predictions.

A second limitation of the present model was that only

one inoculum size (4.45 log) was investigated and modeled.

This inoculum size does not cover all levels of Salmonella
that may be present in ground chicken (1). However, a study

was recently completed in which inoculum sizes from 1.45

to 5.45 log in 1-log increments were investigated (T.P.O.,

unpublished data). Thus, a model with inoculum size as an

independent variable will be available soon. This model will

be especially valuable for quantitative microbial risk

assessment.

A third limitation of the current model was that ground

chicken was warmed to room temperature before cooking. In

reality, consumers are more likely to cook chilled ground

chicken. Thus, further research is needed to determine

whether initial meat temperature affects thermal inactivation

of Salmonella in ground chicken. If yes, the model can be

expanded by additional research to include a range of initial

meat temperatures as an independent variable.

A fourth limitation of the present model was that data

were collected for only one distance from the heat source.

The temperature profile of ground chicken during cooking

varies as a function of distance from the heat source (10).
Moreover, Mackey et al. (9) showed that the distance from

the heat source affects thermal inactivation of Salmonella
Typhimurium in agar cylinders with, as expected, more

rapid thermal inactivation of cells that are closer to the heat

source. Thus, it is likely that the model can be improved by

including other distances from the heat source as an

independent variable.

Ultimately, the model will need to provide predictions

of thermal inactivation at the ‘‘cold spot’’ or distance farthest

from the heat source. This distance will vary as a function of

patty thickness and cooking method, e.g., one-sided versus

two-sided pan frying. Thus, having a model with distance

from the heat source as an independent variable will likely

provide model users with a more robust model that can

predict thermal inactivation of Salmonella under a variety of

cooking conditions and scenarios.

A fifth limitation of the current model was that

maximum temperature of the heating block was 1008C.

However, ground meat is usually pan fried at temperatures

from 140 to 1908C (4). Nonetheless, the manufacturer of the

heating block used in this study also sells another model

(temperature range up to 4008C; Grant BT5D, Grant

Instruments) that can achieve these higher pan frying

temperatures. Thus, it should be possible in the future to

investigate and model cooking temperatures higher than

1008C. However, an important consideration is that the

melting point of polypropylene is 160 to 1708C. This would

necessitate a change in the model system from polypropyl-

ene microcentrifuge tubes to glass vials.

A sixth limitation of the present model was the use of a

single formulation of ground chicken. It is known that the

thermal inactivation of Salmonella differs among formula-

tions of ground chicken (7). In particular, level of fat affects

thermal inactivation (5). Thus, it may be advantageous to

use the current model system to investigate thermal

inactivation in ground chicken breast and mixtures of thigh,

breast, and skin to develop and validate a model that

includes type of chicken meat or meat formulation as an

independent variable.

The approach to modeling thermal inactivation of

Salmonella in the present study differs from previous

studies. The approach used in previous studies involved

placing ground chicken in plastic bags that were heat sealed

and then submerged in preheated water baths held at

constant temperatures. For example, Juneja et al. (7) used
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this approach to investigate and model thermal inactivation

of Salmonella in ground chicken cooked at 55 to 718C.

Irradiated meat samples (3 g) were inoculated with a mixture

of eight serotypes of Salmonella. Inoculum size was 8 log/g.

Meat samples were flattened to 1- to 2-mm thickness before

cooking. Come-up time was immediate. Salmonella were

enumerated by viable counts. Thermal inactivation curves

were nonlinear. Data were modeled by regression methods.

Time for a 1-log reduction was 0.29 min at 718C.

Another example is the study of Murphy et al. (13), who

investigated and modeled thermal inactivation of Salmonella
in ground chicken cooked at 55 to 708C. Meat samples (10

g) with native microflora were inoculated with a mixture of

six antibiotic-resistant serotypes of Salmonella. Inoculum

size was 7 log/g. Meat samples were flattened to 1-mm

thickness and then were cooked in preheated water baths.

Come-up time was instantaneous. Salmonella were enumer-

ated by viable counts. Thermal inactivation curves were

linear. Data were modeled by regression methods. Time for

a 1-log reduction was 0.07 min at 708C.

A final example is that of Osaili et al. (14), who

investigated and modeled thermal inactivation of Salmonella
in ground chicken cooked at 54 to 608C. Meat samples (10

g) with native microflora were inoculated with a single strain

of Salmonella Typhimurium. Inoculum size was 7.5 log/g.

Meat samples were flattened to 3 mm. They were cooked in

preheated water baths. Come-up time was immediate.

Salmonella Typhimurium was enumerated by viable counts.

Thermal inactivation curves were linear. Data were modeled

by regression methods. Time for a 1-log reduction was 0.49

min at 608C.

In the present study, thermal inactivation of Salmonella
in ground chicken cooked at 50 to 1008C was investigated

and modeled. Meat samples (0.76 cm3) with native

microflora were inoculated with a single strain of Salmonella
Typhimurium. Inoculum size was 4.45 log MPN per portion.

Meat samples in microcentrifuge tubes were 9 mm thick.

They were cooked in a preheated heating block. Come-up

time was 4 min. Salmonella were enumerated by WSE-

mMPN. Thermal inactivation curves were nonlinear. Data

were modeled by neural network methods. Time for a 1-log

reduction was 2.12 min at 708C.

Thermal inactivation of Salmonella was slower in the

present study than in the aforementioned studies. Although

there were many differences in experimental methods and

conditions, distance of Salmonella from the heat source may

be the critical factor. It was 1 to 3 mm in the other studies

and 5 mm in the current study. Consequently, come-up time

was immediate in the other studies but was about 4 min in

the present study. There was a short period of time when the

Salmonella in the present study did not experience

temperatures high enough to kill them. This resulted in a

shoulder in the inactivation curve even at 1008C.

In conclusion, when using models to predict thermal

inactivation of a pathogen, one may find that existing

models are not perfect for the scenario of interest. Although

the current model is not perfect or applicable to all cooking

scenarios, it does address some limitations of existing

models. First, it can predict thermal inactivation of

Salmonella at the recommended final cooked temperature

of 73.98C (1658F) for chicken. Second, it can predict when

all Salmonella are eliminated from ground chicken during

cooking without extrapolating beyond the data used in

model development. This is because the WSE-mMPN

method used to enumerate Salmonella also determined the

presence or absence of the pathogen in the chicken portions

after cooking. Moreover, not extrapolating beyond the data

used in model development is important because, when a

model is used to make predictions beyond the data used to

develop it, the predictions may not be reliable. Third, the

current model was properly validated using the test data

and model performance criteria of the APZ method. This

was important; it ensured that the comparisons of observed

and predicted values were not confounded because the

independent data were collected with the same methods as

the dependent data and ensured that the validation was not

biased because the independent data for interpolation

provided uniform coverage of model predictions. Fourth,

the cooking and cooling scenario simulated and modeled in

the present study more closely represented how chicken is

cooked and cooled in the real world than the cooking and

cooling scenario used in previous studies to develop

thermal inactivation models for Salmonella in ground

chicken. Thus, the current model is expected to provide

more realistic and reliable predictions than previous models

for the thermal inactivation of Salmonella in ground

chicken. After publication, the data and model will be

made available for free at www.ars.usda.gov/nea/errc/

PoultryFARM.
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