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ABSTRACT

Mathematical models that predict the behavior of human bacterial pathogens in food are valuable tools for assessing and

managing this risk to public health. A study was undertaken to develop a model for predicting the behavior of Salmonella
enterica serotype 8,20:�:z6 in chicken meat during cold storage and to determine how well the model would predict the behavior

of other serotypes of Salmonella stored under the same conditions. To develop the model, ground chicken thigh meat (0.75 cm3)

was inoculated with 1.7 log Salmonella 8,20:�:z6 and then stored for 0 to 8 days at�8 to 168C. An automated miniaturized most-

probable-number (MPN) method was developed and used for the enumeration of Salmonella. Commercial software (Excel and

the add-in program NeuralTools) was used to develop a multilayer feedforward neural network model with one hidden layer of

two nodes. The performance of the model was evaluated using the acceptable prediction zone (APZ) method. The number of

Salmonella in ground chicken thigh meat stayed the same (P . 0.05) during 8 days of storage at�8 to 88C but increased (P ,

0.05) during storage at 98C (þ0.6 log) to 168C (þ5.1 log). The proportion of residual values (observed minus predicted values) in

an APZ (pAPZ) from�1 log (fail-safe) to 0.5 log (fail-dangerous) was 0.939 for the data (n¼ 426 log MPN values) used in the

development of the model. The model had a pAPZ of 0.944 or 0.954 when it was extrapolated to test data (n¼ 108 log MPN per

serotype) for other serotypes (S. enterica serotype Typhimurium var 5�, Kentucky, Typhimurium, and Thompson) of Salmonella
in ground chicken thigh meat stored for 0 to 8 days at�4, 4, 12, or 168C under the same experimental conditions. A pAPZ of

�0.7 indicates that a model provides predictions with acceptable bias and accuracy. Thus, the results indicated that the model

provided valid predictions of the survival and growth of Salmonella 8,20:�:z6 in ground chicken thigh meat stored for 0 to 8 days

at �8 to 168C and that the model was validated for extrapolation to four other serotypes of Salmonella.

Salmonella bacteria are a leading cause of foodborne

illness in the United States (24), and chicken meat is often

identified as an important source of human exposure to this

pathogen (2). Although chicken producers, in general, do a

good job of delivering product to consumers that has low

prevalence and numbers of Salmonella bacteria at retail (23,
26, 31), failure of consumers to properly refrigerate chicken

can result in rapid growth of low numbers of Salmonella
cells to high and dangerous levels. The time for cold storage

of chicken meat in the home has been found to range from 0

to 5 days with a most likely time of 2 days (28) or from 0.5

to 10 days with a most likely time of 2 days (4), depending

on the population of consumers surveyed. The temperature

of cold storage in the home refrigerator has been found to

range from 0.8 to 12.68C (5) or from�7.9 to 20.78C (10, 21),
depending on the population whose refrigerators are

surveyed. There are also significant temperature gradients

within refrigerators and significant fluctuations in tempera-

ture within refrigerators depending on loading conditions,

frequency and duration of door openings, and type of

refrigerator (7, 8). Thus, under some cold-storage conditions

and practices in the home, low levels of Salmonella in

chicken meat could grow to high and dangerous levels at the

time of meal preparation and result in considerable risk of

foodborne illness from increased bacterial survival during

undercooking or from increased cross-contamination of

ready-to-eat food.

Mathematical models that predict the behavior of

Salmonella in chicken meat during cold storage are valuable

tools for helping to assess and manage this risk to public

health, and several models of this type have been developed.

Zhou et al. (32) developed a model for predicting the growth

of Salmonella enterica serotype Typhimurium (103/g) in

chicken meat as a function of time, temperature (4, 8, 20, or

378C), and sodium chloride level (0 to 9%). Pradhan et al.

(22) modeled the survival and growth of Salmonella
Typhimurium (104.7/g) on chicken breast meat as a function

of time (0 to 20 days) and temperature (�20, �12, 0, 4, or

88C). Juneja et al. (9) developed a model for the growth of a
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Salmonella (103/g) cocktail (n ¼ 5 serotypes) on irradiated

chicken breast meat (i.e., with no microbial competition) as

a function of time and temperature (10 to 458C). Oscar (17)
developed a model for the survival and growth of

Salmonella Typhimurium strain DT104 (100.9 per portion)

on chicken skin stored for 0 to 10 days at 4 to 128C.

However, these models do not cover the entire range of

temperatures encountered during storage of chicken meat in

a domestic refrigerator, some were developed with high

inoculum sizes, they are not validated for other types of

Salmonella, and they do not all account for microbial

competition. Thus, there is a need to develop additional

models that predict the behavior of Salmonella in chicken

meat during cold-storage conditions encountered in the

home.

In a recent study (19), the survival and growth of

Salmonella Typhimurium DT104, a multiple-antibiotic-

resistant strain, on chicken meat (102.8 per portion) during

cold storage as a function of time (0 to 8 days), temperature

(�8 to 168C), and type of meat (white, dark, or skin) was

investigated and modeled. Although this model covers the

entire range of temperatures encountered during cold storage

of chicken meat in the home refrigerator and accounts for

microbial competition, the enumeration method used to

collect data for the development and validation of the model

is limited to strains of Salmonella with the same multiple-

antibiotic-resistant profile as Salmonella Typhimurium

DT104, and thus, the model cannot be validated for all

types of Salmonella found in chicken meat. Consequently, a

new method (i.e., an automated miniaturized most-probable-

number (MPN) method for Salmonella) that does not require

an antibiotic-resistant strain or antibiotics in the enumeration

medium was developed and used for the first time in the

present study to investigate and model the behavior of

Salmonella in chicken meat during cold storage. Specifical-

ly, the current study was undertaken to develop and validate

a model for predicting the behavior of S. enterica serotype

8,20:�:z6 in ground chicken thigh meat during cold storage

and then to evaluate the model for its ability to predict the

behavior of other serotypes of Salmonella in ground chicken

thigh meat stored under the same conditions. In the previous

study (19), the growth of Salmonella Typhimurium DT104

on chicken meat during cold storage was highest on dark

meat, intermediate on skin, and lowest on white meat.

Consequently, thigh meat was used in the present study to

develop a model that would be fail-safe when extrapolated

to skin or white meat.

MATERIALS AND METHODS

Salmonella. S. enterica serotypes 8,20:�:z6, Typhimurium

var 5�, Kentucky, Typhimurium, and Thompson were isolated

from chicken meat obtained at retail (20). Stock cultures of these

Salmonella serotypes were maintained at �808C in brain heart

infusion broth (BD, Sparks, MD) that contained 15% glycerol

(Sigma, St. Louis, MO).

Chicken meat preparation. Chicken thigh meat with native

microflora obtained from a local retail store was cubed and then

ground through coarse and fine plates of a table-top meat grinder

(model 586.8 Zelmer, The Sausage Maker, Buffalo, NY). Portions

(75 g) of the ground meat were packed into plastic petri dishes (100

by 15 mm), frozen at�208C, and then cut into cylindrical portions

(0.75 cm3) with a cork borer (#5). The small portions (0.75 cm3)

were transferred to 1.5-ml microcentrifuge tubes (Eppendorf Flex-

Tubes, Thomas Scientific, Swedesboro, NJ) and stored at �208C

until used in experiments.

Inoculum culture. A 5-ll amount of the appropriate serotype

of Salmonella from stock culture was transferred to 9 ml of

buffered peptone water (BPW; BD) in a glass dilution tube (16 by

125 mm), and the dilution tube was capped. Cultures were then

incubated for 72 h at 228C without shaking. Just before the

initiation of a storage trial, the culture was serially diluted (1:10) in

BPW to 10�5.

Storage trials. Small portions of chicken (0.75 cm3) were

thawed (30 min at 228C) and then inoculated (5 ll of a 10�5

dilution of the inoculum culture) in their centers to an initial

Salmonella level of ca. 1.7 log. Inoculated portions at 228C were

then incubated for 0 to 8 days at �8 to 168C in a heating and

cooling block (ThermoStat Plus, Eppendorf, Hamburgh, Germany,

or Grant-bio PCH1, Grant Instruments [Cambridge] Ltd., Shepreth,

Cambridgeshire, UK). This was done to simulate and model the

dynamic temperature shifts experienced by Salmonella on chicken

meat when it is stored by consumers in a domestic refrigerator/

freezer.

Experimental designs. To develop the model, a 6 3 13 full

factorial design that included time (0, 1, 2, 4, 6, and 8 days) and

temperature (�8, �4, 0, 4, 8, 9, 10, 11, 12, 13, 14, 15, and 168C)

with Salmonella serotype 8,20:�:z6 was used. However, it was not

always possible to collect samples on the planned sampling days;

for this reason, some samples were collected on days 3 and 5 of

cold storage. To validate the model for extrapolation, a 4 3 6 3 4

full factorial design including Salmonella serotype (Typhimurium

var 5�, Kentucky, Typhimurium, and Thompson), time (0, 1, 2, 4,

6, and 8 days), and temperature (�4, 4, 12, and 168C) was used.

From two (survival conditions) to six (growth conditions) replicate

trials were conducted per combination of temperature and serotype.

Sampling. One or two samples of chicken portions inoculated

with Salmonella (ca. 1.7 log) were processed individually at each

sampling time in a storage trial. The Salmonella-inoculated

chicken portion (0.75 cm3) was transferred to a 207-ml plastic

bag with a filter screen (Whirl-Pak, Nasco, Fort Atkinson, WI) that

contained 9 ml of BPW. The sample was processed with a Pulsifier

(model PUL 100, Microbiology International, Frederick, MD) for 1

min to recover Salmonella into BPW for enumeration.

MPN assay. A 3 (replicate) 3 8 (dilution) MPN assay was

performed in 2.0-ml 96-well deep-well plates (Axygen Scientific,

Union City, CA). A 1-ml amount of a 100, 10�1, or 10�2 serial

dilution of a Pulsifier-treated sample in BPW was added to an

empty cell in the first row of a 96-well deep-well plate that

contained 0.9 ml of BPW in all the other wells. After the first row

was filled with samples (n¼3 replicates per chicken sample), serial

dilutions (1:10) were performed by a robotic pipettor (SOLO Plus,

Hudson Robotics, Springfield, NJ). After incubation (24 h at

408C), 10 ll from each well of the 96-well deep-well plate used for

preenrichment in BPW was transferred by the robotic pipettor to

corresponding wells of a second 96-well deep-well plate that

contained 1 ml of Rappaport-Vassiliadis broth (RVB; BD) per

well. After incubation (24 h at 428C), 2 ll from each well of the

96-well deep-well plate used for selective enrichment in RVB was
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drop plated by the robotic pipettor onto xylose lysine Tergitol 4

(XLT4; BD) agar plates (n¼ 4 per 96-well deep-well plate) in a 6-

by-4 pattern. After incubation (24 h at 408C), positive (black) and

negative (no visible result) drops on XLT4 were recorded. The

XLT4 step was discovered to be optional because there was

consistent agreement between positive (black) and negative (no

visible result) drops on XLT4 and positive (white) and negative

(blue) wells in RVB. In addition, an AOAC International–

approved lateral flow assay for Salmonella (Reveal 2.0, Neogen,

Lansing, MI) was used to validate the results of the miniaturized

MPN method where in all cases white wells in RVB tested positive

for Salmonella, whereas blue wells in RVB tested negative for

Salmonella. MPN values (log per portion) were calculated by the

method of Thomas (29) as previously described (19).

Model development. Data (n ¼ 426 log MPN values) for

Salmonella 8,20:�:z6 were used for model development. A data set

was created in a computer spreadsheet (Excel 2013, Microsoft

Corporation, Redmond, WA) with four columns: (i) tag, (ii)

temperature, (iii) time, and (iv) MPN. Within the data for a

temperature and time, the highest 70 to 80% of log MPN values

were tagged as training data (n¼310), and the lowest 20 to 30% of

log MPN values were tagged as testing data (n ¼ 116). This

planned tagging of data was done to develop a fail-safe model and

to improve the model’s performance as described below. To

evaluate this approach, a second data set was created with only

three columns: (i) temperature, (ii) time, and (iii) MPN. Data for

training (n¼ 310 log MPN values) and testing (n¼ 116 log MPN

values) in this second data set were randomly tagged, using a

random number generator seed of 1 to initiate the random tagging

process.

A spreadsheet add-in program (NeuralTools 6.12, Palisade

Corporation, Ithaca, NY) was used to randomly tag MPN data in

the second data set and to develop a general regression neural

network (GRNN) model, as previously described (16), as well as

multilayer feedforward neural network models with single hidden

layers of two (MLF2), three (MLF3), or four (MLF4) nodes. Figure

1 shows the structure of the MLF2 model.

To develop the MLF models, the software (NeuralTools) used

the hyperbolic tangent function as the activation function for

neurons in the hidden layer and the identity function as the

activation function for the output neuron. Connection weight (wij)

and bias (bj) terms for each connection and neuron, respectively,

were determined using a combination of the conjugate gradient

descent and simulated annealing methods (11); this was done to

reduce the risk of finding the local minimum rather than the desired

global minimum. The formula used to calculate input from the jth

neuron (Xj) into the activation functions (27) was as follows:

Xj ¼
Xn

i¼1

f ðwijyi þ bjÞ

where yi was the ith input value and n was the number of neurons.

Connection weights and bias terms were not provided by the neural

network software for proprietary reasons. However, a stand-alone

version of the model will be made available on the author’s Web

site, www.ars.usda.gov/naa/errc/PoultryFARM.

Model performance. The acceptable prediction zone (APZ)

method was used to evaluate the model’s performance (14, 19).
This method involves three sequential evaluation steps: (i)

goodness of fit, (ii) validation for interpolation, and (iii) validation

for extrapolation. The APZ method has criteria for test data and

model performance that must be met in each sequential step for a

model to be classified as validated. The criteria for test data for

interpolation are that they must be independent (i.e., not used to

train or develop the model), they must be collected with the same

methods as used to collect dependent data for model development

so as not to confound comparison of observed and predicted

values, and they must provide sufficient and appropriate coverage

of the model’s predictions to allow an unbiased and complete

assessment of the model’s performance.

For models that predict log counts, such as those in the current

study, a model is considered to provide predictions with acceptable

bias and accuracy when the proportion of residual values (observed

minus predicted values) in an APZ (pAPZ) from�1 log (fail-safe)

to 0.5 log (fail-dangerous) is �0.7 (14, 15). Moreover, a neural

network model is considered validated for interpolation when the

pAPZ is �0.7 for data used to train (i.e., dependent data) and test

(i.e., independent data for interpolation) the model and the criteria

for test data are satisfied.

The analytical units for evaluation of model performance in

this study were complete data sets, individual survival or growth

curves, and individual combinations of independent variables. A

local prediction problem was defined as three consecutive times

within a combination of serotype and temperature where the pAPZ

was ,0.70. To validate the model for extrapolation to other

serotypes of Salmonella, the same test data and model performance

criteria were used, except that test data could differ from dependent

data in one respect and one respect only—the test variable, or in

this case, the serotype of Salmonella used to collect the data.

Statistical analysis. To provide an objective assessment of

Salmonella behavior in ground chicken thigh meat, one-way

analysis of variance (ANOVA) was performed within temperature

and serotype to determine whether the Salmonella numbers stayed

the same (survival), decreased (death), or increased (growth) as a

function of the time of cold storage. When time had a significant

effect (P , 0.05), the mean Salmonella numbers for days 1 to 8 of

FIGURE 1. Structure of the multilayer
feedforward neural network model with a
single hidden layer of two nodes for
predicting log most probable number
(MPN) values of Salmonella 8,20:�:z6 in
ground chicken thigh meat as a function of
time (0 to 8 days) and temperature (�8 to
168C) of cold storage.
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cold storage were compared with the mean Salmonella number for

0 days of cold storage using Dunnett’s multiple comparison test (P
, 0.05).

To provide an objective assessment of the effect of serotype

(n ¼ 5) on the behavior of Salmonella, one-way ANOVA was

applied within combinations of time (0, 1, 2, 4, 6, or 8 days) and

temperature (�4, 4, 12, or 168C) of cold storage to evaluate the

effect of serotype on Salmonella numbers. When serotype had a

significant effect (P , 0.05), all pairwise comparisons (n ¼ 9) of

mean Salmonella numbers were made among serotypes using

Tukey’s multiple comparison test (P , 0.05). Statistical analyses

were performed using a commercial software program (Prism,

version 6, GraphPad Software, San Diego, CA).

RESULTS

Effects of time and temperature on the behavior of
Salmonella in ground chicken thigh meat during cold
storage. The numbers of Salmonella 8,20:�:z6 in ground

chicken thigh meat stayed the same (P . 0.05) during

storage for 0 to 8 days at�8 to 88C but increased (P , 0.05)

during storage for 0 to 8 days at 9 to 168C (Fig. 2). Similar

results were obtained for the four other serotypes of

Salmonella investigated (results not shown). Thus, during

8 days of cold storage in ground chicken thigh meat with

native microflora, Salmonella survived at temperatures from

�8 to 88C and grew at temperatures from 9 to 168C.

Effect of serotype on numbers of Salmonella in

ground chicken thigh meat during cold storage. The

numbers of Salmonella in ground chicken thigh meat were

not affected (P . 0.05) by serotype during storage for 0 to 8

days at �4, 4, or 128C (results not shown). However, at

168C, serotype affected (P , 0.05) the numbers of

Salmonella in ground chicken thigh meat at 4, 6, and 8

days of storage but not at 0, 1, or 2 days of storage (Fig. 3).

The mean numbers of Salmonella 8,20:�:z6 and Kentucky in

ground chicken thigh meat during extended storage (4, 6, or

8 days) at 168C were slightly lower (,1 log) than the mean

numbers of Salmonella Typhimurium and Thompson.

Development of a model for the behavior of

Salmonella 8,20:�:z6 in ground chicken thigh meat

during cold storage. Enumeration data (n¼ 426 log MPN

values) for Salmonella 8,20:�:z6 with planned tagging were

used to develop the GRNN, MLF2, MLF3, and MLF4

FIGURE 2. Survival and growth of Salmonella 8,20:�:z6 in ground chicken thigh meat stored for 0 to 8 days at (A)�88C, (B)�48C, (C)
48C, (D) 88C, (E) 98C, (F) 108C, (G) 118C, (H) 128C, (I) 138C, (J) 148C, (K) 158C, or (L) 168C. Results for 08C are not shown. Bars and
error bars show means and standard deviations, respectively. Bars with an asterisk represent means that are significantly (P , 0.05)
different from the mean at zero days of storage as determined by one-way ANOVA followed by Dunnett’s multiple comparison test.
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models. All four models had acceptable pAPZs (Table 1),

and plots of the residual values indicated no local prediction

problems or systematic prediction bias (results not shown).

The rank order from best to worst for the complete data set

based on the pAPZs was GRNN, then MLF4, then MLF3,

and finally, MLF2. However, the predicted survival and

growth curves for GRNN, MLF3, and MLF4 were wavy

compared with the predicted survival and growth curves for

MLF2 (Fig. 4), a sign of overtraining. Thus, MLF2 was

selected as the best model for generalization.

Effect of tagging method on model performance.
The effect of the tagging method (planned versus random)

on the performance of the MLF2 model was evaluated.

Both tagging methods produced MLF2 models with

acceptable predictions (pAPZ � 0.7) for individual

survival and growth curves and for complete data sets,

with the exception of the growth curve at 158C for the

random tagging method, where the pAPZ was 0.667 (Table

1). A plot of residual values for the MLF2 model developed

by random tagging of data indicted no local prediction

problems or systematic prediction bias except for 4, 6, and

8 days of storage at 158C, where it provided overly fail-

dangerous predictions. Similar to the MLF2 model

developed by planned tagging, the MLF2 model developed

by random tagging provided predicted survival and growth

curves that were smoother in appearance than those

provided by the GRNN, MLF3, and MLF4 models

developed by planned tagging. Overall, the performance

of the MLF2 model developed by planned tagging (pAPZ¼
0.939) was better than that of the MLF2 model developed

by random tagging (pAPZ ¼ 0.883) of data (Table 1). As

expected, the MLF2 model with planned tagging had an

average bias (i.e., mean residual value) that was slightly

fail-safe (�0.14 log), whereas the MLF2 model with

random tagging had no average bias (0.00 log).

Performance of the MLF2 model for Salmonella
8,20:�:z6 for extrapolation to other serotypes of
Salmonella. The ability of the MLF2 model developed

with planned tagging to be extrapolated to other serotypes of

Salmonella was evaluated for test data collected during 0 to

8 days of storage at�4, 4, 12, or 168C. For all four serotypes

tested, the MLF2 model for Salmonella 8,20:�:z6 provided

acceptable predictions (pAPZ � 0.70) of individual survival

and growth curves and for complete data sets (Table 2), and

there were no signs of local prediction problems or

systematic prediction bias (results not shown).

FIGURE 3. Effect of serotype on survival and growth of Salmonella in ground chicken thigh meat stored at 168C for (A) 0 days, (B) 1 day,
(C) 2 days, (D) 4 days, (E) 6 days, or (F) 8 days. Bars and error bars show means and standard deviations, respectively. Means within a
day of storage with different letters are significantly (P , 0.05) different as determined by one-way ANOVA followed by Tukey’s multiple
comparison test.
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DISCUSSION

Most servings of chicken meat are not contaminated

with Salmonella, and those that are usually contain only a

few cells (12, 18). The types of Salmonella found in chicken

meat vary and are affected by several factors, such as flock,

chicken house, farm, processing plant, company, and

geographic region (1, 30). The ideal model for predicting

the behavior of Salmonella in chicken meat is one that is

developed with chicken meat and a low number of

Salmonella cells isolated from that chicken meat. However,

in the past, the main hurdle to developing this type of model

has been the lack of a method to enumerate low to high

levels of any type of Salmonella that might be found in

chicken meat.

Prior to this study, the natural antibiotic resistance of

four isolates of Salmonella and small portions of chicken

(�1 g) were used to acquire data needed to develop models

for predicting the survival and growth of a low initial

number (,1 log per portion) of Salmonella cells in chicken

meat with native microflora (15, 16). However, this

approach requires knowledge of the antibiotic resistance

profile of the isolate and the preparation of specialty

enumeration media with a defined mixture of antibiotics.

Moreover, it will not work with isolates that are susceptible

to antibiotics. Nonetheless, it was realized during the course

of previous studies that Salmonella cells could be enumer-

ated without knowledge of their antibiotic resistance profile

or the use of antibiotics in enumeration media by using small

portions of chicken meat (�1 g) and a three-step MPN

method involving (i) preenrichment in BPW, (ii) selective

enrichment in RVB, and (iii) selective drop plating onto

XLT4 agar. However, in previous studies, this method was

performed in large tubes with 10 ml of medium, which made

it labor-intensive and expensive and limited the amount of

data that could be collected in a given period of time.

The MPN method for enumeration of Salmonella can be

made more time and cost-effective by miniaturizing and

automating it. To accomplish this, the MPN assay used in

previous studies was reduced in volume from 10 ml in large

tubes to 1 ml in 2-ml, 96-well deep-well plates, and a robotic

pipettor was designed to perform the serial dilution, transfer,

and drop-plating steps of the method. The method was then

deployed for the first time in the present study to efficiently

acquire the large amount of data needed to develop and

validate a model for the behavior of Salmonella in chicken

meat during cold storage. This involved successfully

applying the new method to five chicken meat isolates of

Salmonella whose antibiotic resistance profiles were not

known.

One of the most expensive aspects of the automated

miniaturized MPN method was its consumption of pipet tips.

The procedure required 4 1/4 boxes of pipet tips per storage

trial with eight portions of chicken meat. However, it was

observed that the MPN results obtained on XLT4 matched

those obtained in RVB. Thus, the third step of the new

method was found to be optional. Omission of the third step

saves two boxes of pipet tips and eight XLT4 plates

(actually, it eliminates the need for XLT4 plates) per storage

trial without loss of data quality or quantity.

Four neural network models (i.e., GRNN, MLF2,

MLF3, and MLF4) were developed in the present study.

The predictions of the models were evaluated using the test

data criteria and model performance criteria of the APZ

method (19). All of the models were found to provide

acceptable predictions (pAPZ � 0.7) of the data used to train

and test them; thus, all had acceptable goodness of fit and

were successfully validated for interpolation. However,

some signs of overtraining were observed in three models

(GRNN, MLF3, and MLF4). Namely, the predicted survival

and growth curves were wavy rather than smooth in

appearance, indicating that the predictions were following

fluctuations in the training data rather than predicting the

general response of the dependent variable as a function of

the independent variables. The neural network that was

found to provide acceptable predictions with the smoothest

curves (i.e., the least overtraining) was the MLF2. Thus, it

was selected as the best model for generalization and further

evaluation.

To improve the performance and to create a slightly

fail-safe model, MPN data were manually tagged into

training and testing data. Within a combination of time and

temperature, the highest 70 to 80% of MPN data were

tagged for training, whereas the lowest 20 to 30% of MPN

data were tagged for testing. Compared with an MLF2

model developed with a random allocation of MPN data to

training and testing sets, the MLF2 model developed by

manual tagging had more residual values in the APZ (i.e.,

TABLE 1. Acceptable prediction zone analysis of neural network
models for predicting the survival and growth of Salmonella

8,20:�:z6 in ground chicken thigh meata

Temp

(8C)

No. of

log MPN

values

pAPZ for indicated model and data-tagging method

GRNN MLF2 MLF3 MLF4

Planned Planned Random Planned Planned

�8 21 1.000 1.000 1.000 1.000 1.000

�4 24 1.000 1.000 1.000 1.000 1.000

0 14 1.000 1.000 1.000 1.000 1.000

4 21 1.000 1.000 1.000 1.000 0.952

8 17 1.000 1.000 0.882 1.000 1.000

9 36 1.000 0.972 0.944 1.000 1.000

10 43 1.000 0.907 0.814 0.953 1.000

11 32 1.000 0.938 0.906 1.000 1.000

12 41 0.976 0.951 0.951 0.976 0.976

13 35 0.971 0.886 0.800 0.914 0.943

14 40 0.975 0.950 0.925 0.900 0.900

15 21 0.857 0.810 0.667 0.762 0.762

16 80 0.975 0.925 0.813 0.963 0.963

All 426 0.981 0.939 0.883 0.955 0.960

a Data for training (n¼ 310 log MPN values) and testing (n¼ 116

log MPN values) of a general regression neural network (GRNN)

model or multilayer feedforward neural network models with a

single hidden layer of two (MLF2), three (MLF3), or four

(MLF4) nodes were manually selected (planned) or randomly

selected (random) as described in ‘‘Materials and Methods.’’ Data

shown are the proportions of residual values (observed minus

predicted values) in an acceptable prediction zone (pAPZ) from

�1 log (fail-safe) to 0.5 log (fail-dangerous); training and testing

data are combined.
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pAPZ¼ 0.939 versus 0.883). This was expected because the

APZ is twice as wide in the fail-safe direction (�1 log) than

in the fail-dangerous (0.5 log) direction, and by purposely

segregating the highest MPN values into the training data

set, the resulting model tended to overpredict the number of

Salmonella cells and drive the residual values in the

direction of the wider part of the APZ, thus creating a fail-

safe model with better performance for the dependent data.

The APZ is twice as wide in the fail-safe direction

because, when using a model to predict food safety, it is

desirable to allow a model to err more in the fail-safe

direction to provide an added level of safety. However, it is

not desirable to allow a predictive model to err too much in

the fail-safe direction because this would result in an

overestimation of risk and the unnecessary condemnation

and destruction of safe food that could otherwise benefit

public health. The MLF2 model developed in the present

study was not overly fail-safe, as the mean residual was only

�0.14 log. In contrast, and as expected, the MLF2 model

developed by random tagging of data exhibited no average

bias.

In the current study, the ability of the MLF2 model for

Salmonella 8,20:�:z6 to predict the survival and growth of

other serotypes of Salmonella (i.e., Typhimurium var 5�,

Kentucky, Typhimurium, or Thompson) in ground chicken

thigh meat stored for 0 to 8 days at�4, 4, 12, or 168C was

evaluated using the APZ method. The data for model

validation for extrapolation to these four serotypes were

collected using the same methods as were used to acquire

the data for model development, except for the test variable

(i.e., serotype). Although serotypes 8,20:�:z6 and Kentucky

TABLE 2. Acceptable prediction zone analysis of the extrapola-
tion of a multilayer feedforward neural network model with one
hidden layer of two nodes for prediction of the survival and growth
of Salmonella 8,20:�:z6 in ground chicken thigh meat to other
serotypes of Salmonella

Temp

(8C)

No. of

log MPN

values

pAPZ for serotypea:

Typhimurium

var 5� Kentucky Typhimurium Thompson

�4 24 0.958 0.958 0.958 0.958

4 24 1.000 1.000 0.958 1.000

12 24 0.917 0.958 0.958 0.958

16 36 0.917 0.917 0.917 0.917

All 108 0.944 0.954 0.944 0.954

a Proportion of residual values (observed minus predicted values)

in an acceptable prediction zone (pAPZ) from �1 log (fail-safe)

to 0.5 log (fail-dangerous).

FIGURE 4. Survival and growth curves for Salmonella 8,20:�:z6 in ground chicken thigh meat as predicted by (A) a general regression
neural network (GRNN) model or multilayer feedforward neural network models with a single hidden layer of (B) two nodes (MLF2), (C)
three nodes (MLF3), or (D) four nodes (MLF4). Each graph contains 13 lines corresponding to the 13 test temperatures: from top to
bottom, 16, 15, 14, 13, 12, 11, 10, 9, 8, 4, 0,�4, and �88C.
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were found by one-way ANOVA to grow slightly less (,l

log) than serotypes Typhimurium and Thompson in ground

chicken thigh meat during extended (i.e., 4, 6, or 8 days)

storage at 168C, the results of this evaluation indicated that

the MLF2 model for Salmonella 8,20:�:z6 provided

acceptable predictions of the survival and growth of all

four test serotypes (Typhimurium var 5�, Kentucky,

Typhimurium, and Thompson). Thus, the MLF2 model for

Salmonella 8,20:�:z6 provided valid predictions for the other

four serotypes investigated, indicating that new models are

not needed for these serotypes, which will save considerable

time and money.

The data acquired in this study indicated that storage for

0 to 8 days at �8 to 08C did not change the number of

Salmonella cells in ground chicken thigh meat, regardless of

the serotype examined. In contrast, Foster and Mead (6)
reported that storage of minced chicken breast or leg meat

for 0 to 8 days and up to 100 days at�5,�2, or 18C resulted

in the death of five different serotypes (Typhimurium,

Agona, Cerro, Haardt, and Livingstone) of Salmonella. Slow

formation of larger ice crystals at temperatures just below

freezing is believed to create more cellular damage than

quick freezing at lower temperatures (i.e.,�208C), where the

ice crystals formed are smaller. Thus, we hoped to validate

freezing at higher temperatures as a potential practical,

home-based method for the reduction of the load of

Salmonella in chicken meat. Our inability to replicate the

previous findings of Foster and Mead (6) indicates an

incomplete understanding of the effects of frozen storage on

the behavior of Salmonella in chicken meat and the need for

additional research.

According to data acquired in this study, the number of

Salmonella cells will stay the same during 8 days of cold

storage at temperatures from �8 to 88C. However, some

studies report significant growth of Salmonella in this

temperature range. For example, Pradhan et al. (22) reported

that Salmonella Typhimurium numbers increased by 1.2 log

on raw chicken breasts stored for 7 days at 88C. Zhou et al.

(32) observed growth of Salmonella in chicken meat at both

4 and 88C with lag times of 118 and 69 h and growth rates of

0.026 and 0.083 h�1, respectively. In agreement with the

results of this study, Sharma et al. (25) reported that the

number of Salmonella Typhimurium (106/g) on chicken

breast meat does not change during 7 days of storage at 48C.

Other studies (3, 19) report a small reduction (,1 log) in the

number of Salmonella during refrigerated storage of chicken

meat for 7 to 8 days. More research is needed to better

understand these important differences in results among

studies.

In summary, a new automated miniaturized MPN

method was developed for the enumeration of low to high

levels of Salmonella in chicken meat with native microflora.

Data collected with this new method were used to develop

and validate a model for predicting the survival and growth

of a low initial number (1.7 log) of Salmonella 8,20:�:z6

cells in ground chicken thigh meat stored for 0 to 8 days at

�8 to 168C. In addition, the model was successfully

validated for extrapolation to four other serotypes (Typhi-

murium var 5�, Kentucky, Typhimurium, and Thompson) of

Salmonella isolated from chicken meat. The new model will

be a valuable tool for chicken producers, helping them to

better predict and manage the impact of consumer cold-

storage conditions and practices on the risk of salmonellosis

from chicken obtained at retail. Additional research is

needed to determine how the new miniaturized MPN

method can be applied to the development and validation

of models for other pathogen and food combinations.
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