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ABSTRACT

Validation of model predictions for independent variables not included during model development can save time and money

by identifying conditions for which new models are not needed. A single strain of Salmonella Typhimurium DT104 was used to

develop a general regression neural network (GRNN) model for growth of a low inoculum size (0.9 log) on chicken skin with

native microflora as a function of time (0 to 8 h) and temperature (20 to 45uC). The ability of the GRNN model to predict growth

of higher inoculum sizes (2, 3, or 4.1 log) was evaluated. When the proportion of residuals in an acceptable prediction zone

(pAPZ) from 21 log (fail-safe) to 0.5 log (fail-dangerous) was $0.7, the GRNN model was classified as providing acceptable

predictions of the test data. The pAPZ for dependent data was 0.93 and for independent data for interpolation was 0.88. The

pAPZs for extrapolation to higher inoculum sizes of 2, 3, or 4.1 log were 0.92, 0.73, and 0.77, respectively. However, residual

plots indicated local prediction problems with pAPZs of ,0.7 for an inoculum size of 3 log at 30, 35, and 40uC and for an

inoculum size of 4.1 log at 35 and 40uC where predictions were fail-dangerous, indicating faster growth at higher inoculum sizes.

The model provided valid predictions of Salmonella Typhimurium DT104 growth on chicken skin from inoculum sizes of 0.9

and 2 log at all temperatures investigated and from inoculum sizes of 3 and 4.1 log at some but not all temperatures investigated.

Thus, the model can be improved by including inoculum size as an independent variable.

Predictive microbiology has an important role to play in

efforts to improve food safety. Predictive models can be

used to help assess the impact of food handling and storage

conditions on pathogen levels in food and the risk to public

health. An important step in model development is

validation that predictions have acceptable accuracy and

bias (20). Evaluation of predictive models in the author’s

laboratory consists of three stages (12): (i) demonstration of

acceptable goodness of fit to dependent data; (ii) demon-

stration of acceptable predictions of independent data for

interpolation; and (iii) demonstration of acceptable predic-

tions of independent data for extrapolation. Validation for

extrapolation to independent variables not included during

model development can save time and money by identifying

conditions for which new models are not needed.

Salmonella organisms are a leading cause of foodborne

illness, and poultry foods are often implicated as sources of

salmonellosis in humans (1). Some studies (9, 10) indicate

that Salmonella growth in food is not affected by inoculum

size, whereas other studies (2, 5, 11, 14) indicate the

opposite. Predictive models are usually developed with one

inoculum size because of the cost associated with including

it as an independent variable. In the present study, a

predictive model for growth of a low inoculum size of

Salmonella Typhimurium DT104 on chicken skin with

native microflora was developed and then evaluated for its

predictions of growth from higher inoculum sizes. The

purpose of this study was to determine whether or not

inoculum size should be included as an independent variable

in the model.

MATERIALS AND METHODS

Organism. A multiple-antibiotic-resistant strain (ATCC

700408) of Salmonella enterica serotype Typhimurium definitive

phage type 104 (DT104) was obtained from a commercial source

(American Type Culture Collection, Manassas, VA). This serotype

was selected because it is a predominant serotype isolated from

chickens in the author’s geographical region (17, 19). In addition, this

strain was used because it has a phenotype that can be quantified in the

presence of native microflora by plating on agar media with multiple

antibiotics (13). A stock culture of this strain was maintained at

270uC in brain heart infusion broth (Difco, BD, Sparks, MD) that

contained 15% (vol/vol) glycerol (Sigma, St. Louis, MO).
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Plating media. XLT4 base agar medium (BD) supplemented

with 25 mM HEPES and 25 mg of antibiotics chloramphenicol (C),

ampicillin (A), tetracycline (T), and streptomycin (S) per ml

(hereinafter referred to as CATS) was used for drop plating and

spiral plating. All CATS supplements were from Sigma.

Chicken skin preparation. Chicken thighs with native

microflora were purchased weekly at local retail stores. The skin

was removed, placed on a plastic cutting board, held at 270uC for

15 min, and then cut into circular portions (2.14 cm2) with a no. 10

cork-borer. A different batch of chicken skin portions was prepared

and used for each replicate storage trial.

Inoculum. Stationary-phase cells of Salmonella Typhimur-

ium DT104 for inoculation of chicken skin portions were obtained

by adding 5 ml of stock culture to 5 ml of brain heart infusion broth

in a 25-ml Erlenmeyer flask sealed with a foam plug followed by

incubation at 30uC and 150 rpm for 23 h.

Experimental designs. Full factorial designs were used for

model development and evaluation (Table 1). Independent data for

model evaluation for interpolation were collected at temperatures

intermediate to those used during model development but at the

same storage times. Independent data for model evaluation for

extrapolation were obtained by inoculating chicken skin portions

with higher inoculum sizes of Salmonella Typhimurium DT104.

Four (20, 30, 35, 40, 45uC) or five (25uC) replicate storage trials

were conducted per temperature for model development, whereas

two replicate storage trials were conducted per temperature for

model evaluation.

Chicken skin inoculation. Chicken skin portions with native

microflora were spot inoculated with 5 ml of a 1027, 1026, 1025, or

1024 dilution of the 23-h inoculum culture to obtain four inoculum

sizes (Table 1). Serial dilutions (1:10) were prepared in sterile

buffered peptone water (BPW; BD).

Sample processing. Individual chicken skin portions were

placed in 9 ml of BPW in a 207-ml capacity bag with filter screen

(Whirl-Pak, Nasco, Fort Atkinson, WI). Samples were pulsified

(Pulsifier model PUL 100, Microbiology International, Frederick,

MD) for 1 min to recover Salmonella Typhimurium DT104 into

BPW, which was then used for pathogen enumeration. Duplicate

samples were processed at each sampling time, and results were

averaged to obtain the log number of Salmonella Typhimurium

DT104 at sampling time t.

MPN assay. A three-tube most-probable-number (MPN)

assay in BPW (three replicates with 4 dilutions each) was used

to enumerate levels of Salmonella Typhimurium DT104 from 0 to

4 log per chicken skin portion (13). Because the entire sample

including the chicken skin portion was included in the MPN assay,

the lower limit of detection was 0 log per chicken skin portion.

MPN tubes were incubated for 24 h at 38uC, and then 5 ml from

each MPN tube and sample bag with chicken skin portion were

drop plated onto CATS. Positive MPN tubes produced a black

colony on CATS after 24 h of incubation at 38uC.

Viable counts. Higher levels (.4 log per chicken skin

portion) of Salmonella Typhimurium DT104 were enumerated by

spiral plating because this method was less labor-intensive than the

MPN method. Pulsified samples were serially diluted (1:10) in

BPW, and then 50-ml volumes of appropriate dilutions were spiral

plated (WASP, Microbiology International) onto CATS. Spiral

plates were incubated for 24 h at 38uC before automated counting

of black colonies (ProtoCol, Microbiology International).

Data analysis. MPN was determined by use of an MPN table,

and these values and CFU data were expressed as log number

change (D) per skin portion:

D~ N tð Þ{ N0

where N(t) was the log number of Salmonella Typhimurium

DT104 cells per chicken skin portion at sampling time t and N0

was the initial log number of Salmonella Typhimurium DT104

cells per chicken skin portion.

Model development. A general regression neural network

(GRNN) model (21) was developed with MPN and CFU data for

growth of a low inoculum size (0.9 log) of Salmonella
Typhimurium DT104 on chicken skin stored at 20 to 45uC for 0

to 8 h (Table 1). A data set was created in a computer spreadsheet

(Excel 2007, Microsoft, Redmond, WA) with separate columns for

temperature (independent numerical variable in degrees Celsius),

time (independent numerical variable in hours), and D (dependent

numerical variable in log change). The model was trained by using

a spreadsheet add-in program (Neural Tools version 5.5, Palisade,

Newfield, NY).

The model had an input layer with two nodes, one per

independent variable, and a pattern layer with one node per

observed value (Fig. 1). Each node in the pattern layer computed

its distance from the presented observed value:

D T,tð Þ~
Xp

j~1

xj { xij

sj

� �2

where D(T,t) was the distance function for independent variables

(x) of temperature (T), and time (t), j is the index for independent

variables that ran from 1 to p, i is the index for observed values that

ran from 1 to n, and s is the smoothing factor. Each calculated

distance was passed to the summation layer where the summed

values from the numerator node, N(x), were divided by the

summed values from the denominator node, D(x), to obtain the

predicted value in the output layer:

ŷy xð Þ~

Xn

i~1
yiexp {D T,tð Þð ÞXn

i~1
exp {D T,tð Þð Þ

~
N xð Þ
D xð Þ

TABLE 1. Experimental designs for model development and evaluation

Data No. of replicates Temp (uC) Time (h) Inoculum (log)a

Development 4 20, 25, 30, 35, 40, 45 0, 2, 4, 6, 8 0.9 ¡ 0.05

Interpolation 2 22.5, 27.5, 32.5, 37.5, 42.5 0, 2, 4, 6, 8 0.9 ¡ 0.07

Extrapolation 2 20, 25, 30, 35, 40, 45 0, 2, 4, 6, 8 2 ¡ 0.05

Extrapolation 2 20, 25, 30, 35, 40, 45 0, 2, 4, 6, 8 3 ¡ 0.07

Extrapolation 2 20, 25, 30, 35, 40, 45 0, 2, 4, 6, 8 4.1 ¡ 0.06

a Mean ¡ standard deviation.
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where y was the observed value and ŷ was the predicted value.

Training of the model involved optimizing smoothing factors to

minimize mean squared error (e):

e ~ ŷy { yð Þ2

Smoothing factors of the GRNN model could not be extracted

from the commercial software application for proprietary reasons.

However, the GRNN model will be incorporated into the U.S.

Department of Agriculture Pathogen Modeling Program, and the

MPN and CFU data used in model development and evaluation

will be archived in ComBase. The Pathogen Modeling Program

and ComBase can be accessed at http://portal.arserrc.gov/.

Alternatively, the GRNN model can be obtained from the author

and then run with the commercial software applications mentioned

above.

Model performance. Data obtained at 2, 4, 6, and 8 h of

storage were used to evaluate model performance. Data obtained at

0 h of storage were not used because residuals were zero due to

calculation of D. Model performance was evaluated by the

acceptable prediction zone method (11, 12). In brief, the proportion

of residuals (observed D 2 predicted D) in an acceptable prediction

zone (pAPZ) from 21 log (fail-safe) to 0.5 log (fail-dangerous)

was determined. When pAPZ was $0.7, the model was classified

as providing acceptable predictions of the test data. The model was

evaluated for goodness of fit, interpolation, and extrapolation.

Residuals were graphed as a function of independent variables, and

pAPZs were determined for individual growth curves or storage

temperatures to evaluate the GRNN model for local prediction

problems.

RESULTS

Data used in development of the GRNN model were

previously used to develop a regression (REG) model using

the primary, secondary, and tertiary modeling approach

(16). The primary model used in the REG model was the

Baranyi model. Predictions of the REG model were

compared with predictions of the GRNN model (Table 2).

For four of the five sets of data, the GRNN model provided

better (i.e., higher-pAPZ) predictions than the REG model.

Consequently, only results for the GRNN model are

presented for evaluating the ability of a predictive model

developed with a low inoculum size to extrapolate to higher

inoculum sizes.

Figures 2 and 3 provide a visual summary of the

growth responses and quality of kinetic data used to develop

and evaluate model performance in the current study. It

should be noted that growth of Salmonella Typhimurium

DT104 was observed at all temperatures investigated and

that the optimum temperature for growth was 40uC.

Figure 4 shows results of the acceptable prediction

zone analysis for each of the test data sets. Table 2 reports

the overall pAPZs for the GRNN model predictions of the

test data sets, whereas Figure 4 shows the pAPZs for

individual growth curves or storage temperatures. The latter

pAPZs were used to identify local prediction problems (i.e.,

pAPZs for individual growth curves or storage temperatures

that were ,0.7).

The overall pAPZ for dependent data was 0.93

(Table 2), and the residual plot (Fig. 4A) did not show

signs of local prediction problems, as all pAPZs for

individual growth curves or storage temperatures were

.0.7. Thus, the GRNN model had acceptable goodness of

fit.

The overall pAPZ for independent data collected at

intermediate temperatures was 0.88 (Table 2), and the

residual plot (Fig. 4B) indicated no local prediction

problems, as all pAPZs for individual growth curves or

storage temperatures were .0.7. Thus, the GRNN model

was validated for interpolation.

The overall pAPZ for independent data collected with a

higher inoculum size of 2 log was 0.92 (Table 2), and the

residual plot (Fig. 4C) did not show signs of local prediction

problems, as all pAPZs for individual growth curves or

storage temperatures were .0.7. Thus, the GRNN model

was validated for extrapolation to an inoculum size of 2 log.

The overall pAPZ for independent data collected with

an inoculum size of 3 log was 0.73 (Table 2). However, the

residual plot (Fig. 4D) indicated local prediction problems

with fail-dangerous predictions (i.e., residuals of .0.5 log)

at 30, 35, and 40uC where pAPZs were ,0.7. Thus, the

FIGURE 1. Diagram showing the structure of the general
regression neural network used in model development and
evaluation.

TABLE 2. Evaluation of model performance: comparison of
regression (REG) and general regression neural network (GRNN)
models

Data

Inoculum

(log) ntrials nevaluate

pAPZa

REG GRNN

Development 0.9 25 100 0.84 0.93

Interpolation 0.9 10 40 0.92 0.88

Extrapolation 2 12 48 0.83 0.92

Extrapolation 3 12 48 0.58 0.73

Extrapolation 4.1 12 48 0.67 0.77

a Proportion of residuals in an acceptable prediction zone from 21

log (fail-safe) to 0.5 log (fail-dangerous).
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GRNN model was only validated for extrapolation to an

inoculum size of 3 log at 20, 25, and 45uC.

The overall pAPZ for independent data collected with

an inoculum size of 4.1 log was 0.77 (Table 2). Again, the

residual plot (Fig. 4E) indicated local prediction problems

with fail-dangerous predictions (i.e., residuals of .0.5 log)

at 35 and 40uC where pAPZs were ,0.7. Thus, the GRNN

model only provided valid predictions for extrapolation to

an inoculum size of 4.1 log at 20, 25, 30, and 45uC.

Figure 5 shows the final spreadsheet form of the

GRNN model. Based on results of the acceptable prediction

zone analysis (Fig. 4), the GRNN model can be used with

confidence to predict growth of low inoculum sizes (#2

log) of Salmonella Typhimurium DT104 on chicken skin

with native microflora that are within the ranges of time (0

to 8 h) and temperature (20 to 45uC) used in model

development.

DISCUSSION

In a previous study (14), the author compared growth of

a small (1.1 log) and a large (3.7 log) inoculum size of

Salmonella Typhimurium DT104 on ground chicken breast

meat with native microflora that was stored for .40 h at 10

to 40uC. He found that inoculum size affected pathogen

growth with the largest effect on maximum population

density followed by lag time and then growth rate. In the

present study, a small effect of inoculum size on growth of

the same strain of Salmonella Typhimurium DT104 on

chicken skin with native microflora was observed during

storage at 20 to 45uC for 8 h, which was not long enough for

growth to reach maximum levels. Had longer storage times

been studied, a larger effect of inoculum size on pathogen

growth might have been observed. However, it is unlikely

that chicken producers or consumers would store chicken at

20 to 45uC for greater than 8 h and still sell or consume the

product, respectively. Thus, it seemed reasonable to limit

the storage trials to 8 h, which is the normal time for a

production run in a chicken processing plant. Lower growth

temperatures (5 to ,20uC) were not included in this study

because the lag time of Salmonella Typhimurium DT104 on

chicken skin is greater than 8 h at these storage temperatures

(16).
Mackey and Kerridge (10) conducted a similar study in

which they inoculated minced beef with a cocktail of

antibiotic-resistant serotypes of Salmonella and then studied

the effect of inoculum size on growth at 10 to 35uC. They

found that inoculum size (1.6 versus 4 log) did not alter lag

time or growth rate. In contrast, the author found that

growth of Salmonella Typhimurium DT104 on chicken skin

with native microflora at 35uC was slightly faster from

inoculum sizes of 3 and 4.1 log than from 0.9 log and at

30uC was slightly faster from an inoculum size of 3 log.

FIGURE 2. Growth of different inoculum
sizes of Salmonella Typhimurium DT104
on chicken skin stored at (A) 20uC, (B)
25uC, (C) 30uC, (D) 35uC, (E) 40uC, or (F)
45uC. Symbols represent mean values ¡

standard deviations.
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Interestingly, in an earlier study with sterile chicken breast

meat (11), the author observed faster growth from a low

inoculum size (0.8 log) than from a higher inoculum size

(4.8 log) at all storage temperatures from 10 to 40uC, which

could indicate that native microflora interacts with inoculum

size to affect growth of Salmonella Typhimurium DT104 in

the chicken meat matrix.

Liao (9) reported that the growth rate of a cocktail of

antibiotic-resistant serotypes of Salmonella on sprouting

alfalfa seeds at 20uC was not affected by inoculum sizes

from ,1 to 3 log. In agreement with Mackey and Kerridge

and with Liao, the author found that inoculum size did not

affect growth of Salmonella Typhimurium DT104 on

chicken skin at 20uC in the present study. Together these

results indicate that the effect of inoculum size on growth of

Salmonella in food is complex and as with other pathogens

may differ depending on the interaction of several factors,

such as pathogen strain, food structure, storage temperature,

gas atmosphere, and native microflora (3, 6). Thus,

inclusion of inoculum size as an independent variable for

Salmonella in predictive models seems justified, as

previously suggested (14).
Performance of predictive models is usually evaluated

by calculation of bias (Bf) and accuracy (Af) factors (20).
When Bf and Af meet the criteria for performance, the model

is classified as providing acceptable or valid predictions of

the test data. Because models used to predict food safety can

err more in the fail-safe direction than in the fail-dangerous

direction, criteria for acceptable performance are wider in

the fail-safe direction. For example, the criterion for

acceptable model performance for Bf is twice as wide in

the fail-safe direction as in the fail-dangerous direction (20).
The Bf and Af method was developed for secondary

models that predict generation time as a function of

independent variables (20). Although this method has been

successfully applied to secondary models for lag time, it

yields inaccurate results when applied to models that predict

log numbers of microbes, such as primary models,

secondary models for maximum population density, and

tertiary models (15). In contrast, the acceptable prediction

zone method provides an accurate assessment of the

performance of these types of models and therefore was

used in the present study rather than the Bf and Af method

(12, 15).
The acceptable prediction zone method was applied for

the first time to individual growth curves or storage

temperatures in the present study. This assisted the author

in identifying local prediction problems. Had the method

only been applied to entire data sets or all storage

temperatures at once, a different conclusion would have

been obtained. Namely, the GRNN model would have been

validated for extrapolation to higher inoculum sizes when in

FIGURE 3. Growth of a low inoculum
size (0.9 log) of Salmonella Typhimurium
DT104 on chicken skin stored at (A)
22.5uC, (B) 27.5uC, (C) 32.5uC, (D)
37.55uC, or (E) 42.5uC. Symbols represent
mean values ¡ standard deviations.
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fact it did not provide acceptable predictions under all

storage temperatures and inoculum sizes investigated.

Consequently, results of this study indicated that inclusion

of inoculum size as an independent variable would improve

model performance.

There is general consensus in predictive microbiology

that models should be evaluated against independent data.

However, there is not general consensus on how those

independent data should be collected. In most cases,

independent data used to ‘‘validate’’ predictive models

result in confounded comparisons and invalid conclusions

about model performance. For example, when the perfor-

mance of a model developed with strain A in broth culture is

compared with data collected with strain B in food, it is not

possible to conclude whether or not the model provides

FIGURE 4. Residual plots and acceptable prediction zone analysis of model performance for (A) dependent data collected with an
inoculum size of 0.9 log, (B) independent data for interpolation collected with an inoculum size of 0.9 log, (C) independent data for
extrapolation to a higher inoculum size of 2 log, (D) independent data for extrapolation to a higher inoculum size of 3 log, and (E)
independent data for extrapolation to a higher inoculum size of 4.1 log. The proportion of residuals in an acceptable prediction zone
(pAPZ) from 21 log (fail-safe) to 0.5 log (fail-dangerous) was calculated for individual growth curves.

FIGURE 5. General regression neural network model for pre-
dicting growth of low inoculum sizes (#2 log) of Salmonella

Typhimurium DT104 on chicken skin stored for 0 to 8 h at 20 to
45uC. The model requires off-the-shelf software (Excel and Neural
Tools) to run.
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acceptable predictions of the other strain or the food because

comparisons are confounded. Moreover, if independent data

only correspond to some conditions used in model

development, only partial validation of the model is

possible. In fact, if independent data are not uniformly

distributed within the matrix of independent variables used

in model development, then the resulting model evaluation

will be biased. Thus, design of experiments for collecting

data to properly evaluate model performance is important.

In other words, criteria for test data as well as model

performance are needed if a model evaluation is going to

result in a model validation.

In a previous study (12), the author described a

systematic process for model evaluation and validation that

involves criteria for both test data and model performance.

This process is important because it provides users of the

author’s models with confidence that they provide predic-

tions with acceptable accuracy and bias. Here, the author

revisits and updates this process because it is yet to be

widely adopted by the larger predictive microbiology

community.

Figures 6 to 8 show flow diagrams of the process for

evaluating and validating predictive models. This process is

most appropriately applied to tertiary models (e.g., current

model) that predict changes in log numbers of microbes as a

function of independent variables, which should be the

targeted end point of predictive microbiology modeling

studies. It can also be applied to primary and secondary

models to find potential sources of fatal prediction errors in

tertiary models if a regression approach rather than a neural

network modeling approach is used (11). In this process,

calculation of pAPZs and residual plots compose model

evaluation, whereas meeting of criteria for test data and

model performance compose model validation. In other

words, model evaluation involves comparing observed and

predicted values, and model validation involves meeting

criteria for test data and model performance.

The first step of this process (Fig. 6) is to evaluate the

model for goodness of fit by comparing predicted values to

observed data used in model development (i.e., dependent

data). The only criterion for test data is that they were used in

model development. The criterion for model performance is the

same for all three steps; pAPZs for individual growth curves or

combinations of independent variables must be $0.7.

The second step of this process (Fig. 7) is to evaluate

the model for interpolation by comparing predicted values

to observed data collected with the same experimental

methods but at intermediate values of independent variables.

The criteria for test data are (i) that they were not used in

model development (i.e., independent); (ii) that they be

collected with the same experimental methods (e.g., same

strain, same previous history of inoculum, same food

matrix, same enumeration methods, etc.); (iii) that they be

collected for intermediate combinations of independent

variables; and (iv) that a uniform distribution of data

throughout the matrix of independent variables was used in

model development so as to provide an unbiased and

complete assessment of model performance. In addition to

the aforementioned criterion for model performance (pAPZ

FIGURE 6. Flow diagram of the first step in the process used to
develop, evaluate, and potentially validate predictive models (see
the text for more details).

FIGURE 7. Flow diagram of the second step in the process used
to develop, evaluate, and potentially validate predictive models
(see the text for more details).
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$ 0.7), the model must pass the goodness of fit test before it

can be validated for interpolation.

The third step in the process (Fig. 8) is to evaluate the

model for extrapolation to independent variables not

included during model development but collected with the

same experimental methods except the independent variable

being evaluated. Here, it is best to use the same

experimental design as used in model development so that

the new data can be added to the model in the event that it is

determined that the independent variable being evaluated

should be added to the model. The criteria for test data are

(i) that they were not used in model development (i.e.,

independent); (ii) that they be collected with the same

experimental methods except the one independent variable

being evaluated; and (iii) that uniform coverage of the

matrix of independent variables be used in model

development to provide an unbiased and complete evalu-

ation of model extrapolation. In addition to the aforemen-

tioned criterion for model performance (i.e., pAPZ $ 0.7),

the model must pass tests for goodness of fit and validation

for interpolation before it can be validated for extrapolation.

If a model fails any step in the model validation

process, it can be repaired by collection of additional data or

by fitting the data to better primary and secondary models in

the case of a regression-based tertiary model. In the present

study, the GRNN model met the criteria for test data for all

model evaluations and met the model performance criterion

for goodness of fit, interpolation, and extrapolation to an

inoculum size of 2 log. However, it only partially met the

performance criterion for extrapolation to inoculum sizes of

3 and 4.1 log. The data for higher inoculum sizes can be

added to the model because the experimental design used to

collect these data was the same as used in model

development. However, an additional two replications of

storage trials at the three higher inoculum sizes will likely be

needed to generate a new model with acceptable goodness

of fit. In addition, two additional replications at intermediate

temperatures for the three higher inoculum sizes will be

needed to evaluate the expanded model for interpolation. A

less costly and time-consuming approach may be to develop

future models with a higher inoculum size, such as 3 log.

Data from this study indicate that such a model would

provide fail-safe predictions of Salmonella growth from

lower inoculum levels and would likely yield pAPZs of

$0.7 for all four inoculum sizes and combinations of times

and temperatures investigated.

In the present study, a simple one-step modeling

method, GRNN, that uses off-the-shelf software to predict

pathogen growth as a function of independent variables was

used. The author found that this method was easier than the

traditional regression approach of primary, secondary, and

tertiary modeling and resulted in better model performance

(Table 2), which is in agreement with other studies (4, 7, 8,
18). In addition, this approach required fewer data for model

development and has the potential to simultaneously model

growth, survival, and inactivation data, which is a difficult

task for regression-based methods. Thus, the author

recommends it as a way of reducing the technical difficulty

and cost of developing predictive models in food.
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