
2606

Journal of Food Protection, Vol. 68, No. 12, 2005, Pages 2606–2613
Copyright Q, International Association for Food Protection

Development and Validation of Primary, Secondary, and Tertiary
Models for Growth of Salmonella Typhimurium on

Sterile Chicken†

T. P. OSCAR*

U.S. Department of Agriculture, Agricultural Research Service, Room 2111, Center for Food Science and Technology, University of Maryland Eastern
Shore, Princess Anne, Maryland 21853, USA

MS 05-154: Received 31 March 2005/Accepted 9 July 2005

ABSTRACT

Models are used in the food industry to predict pathogen growth and to help assess food safety. However, criteria are
needed to determine whether models provide acceptable predictions. In the current study, primary, secondary, and tertiary
models for growth of Salmonella Typhimurium (104.8 CFU/g) on sterile chicken were developed and validated. Kinetic data
obtained at 10 to 408C were fit to a primary model to determine initial density (N0), lag time (l), maximum specific growth
rate (mmax), and maximum population density (Nmax). Secondary models for N0, l, mmax, and Nmax as a function of temperature
were developed and combined with the primary model to create a tertiary model that predicted pathogen density (N) at times
and temperatures used and not used in model development. Performance of models was evaluated using the acceptable
prediction zone method in which experimental error associated with growth parameter determinations was used to set criteria
for acceptable model performance. Models were evaluated against dependent and independent (validation) data. Models with
70% prediction or relative errors (RE) in an acceptable prediction zone from 20.3 to 0.15 for mmax, 20.6 to 0.3 for l, and
20.8 to 0.4 for N, N0, and Nmax were classified as acceptable. All secondary models had acceptable goodness of fit and were
validated against independent (interpolation) data. Percent RE in the acceptable prediction zone for the tertiary model was
90.7 for dependent data and 97.5 for independent (interpolation) data. Although the tertiary model was validated for inter-
polation, an unacceptable %RE of 2.5 was obtained for independent (extrapolation) data obtained with a lower N0 (100.8 CFU/
g). The tertiary model provided overly fail-dangerous predictions of N from a lower N0. Because Salmonella concentrations
on chicken are closer to 100.8 than 104.8 CFU/g, the tertiary model should not be used to help assess chicken safety.

Kinetic data for development of models that predict
growth of pathogens on food are usually obtained in chal-
lenge studies with sterile broth and then modeled in three
stages: primary, secondary, and tertiary (Fig. 1) (21). Pri-
mary models predict changes in pathogen density as a func-
tion of time, whereas secondary models predict changes in
primary model parameters (e.g., lag time and growth rate)
as a function of independent variables (e.g., temperature,
pH, and water activity). Primary and secondary models are
combined in a computer software application to create a
tertiary model (3). The tertiary model uses predicted values
of growth parameters from secondary models in the pri-
mary model to predict changes in pathogen density at times
and levels of independent variables used and not used in
model development (Fig. 1).

Similar to model development, evaluation of model
performance involves three stages: goodness of fit and ver-
ification, interpolation, and extrapolation (11). Central to
the evaluation process is the calculation of performance fac-
tors that assess the bias and accuracy of model predictions
(6, 15) and the definition of criteria that permit a decision

* Author for correspondence. Tel: 410-651-6062; Fax: 410-651-8498;
E-mail: toscar@umes.edu.

† Mention of trade names or commercial products in this publication is
solely for providing specific information and does not imply recom-
mendation or endorsement by the U.S. Department of Agriculture.

as to whether a model provides acceptable predictions (18).
Although tertiary model predictions of pathogen density
have been compared in previous studies (8, 12, 23), per-
formance factors were not calculated and criteria were not
defined to assess whether predictions were acceptable.

In the current study, primary, secondary, and tertiary
models for growth of Salmonella Typhimurium (104.8 CFU/
g) on sterile chicken as a function of temperature (10 to
408C) were developed. Ability of the models to predict
pathogen growth for data used in model development (de-
pendent data) and data not used in model development (in-
dependent data for interpolation or extrapolation) was quan-
tified using the acceptable prediction zone method (11).
Criteria were established to assess whether model predic-
tions were acceptable based on an assessment of experi-
mental error associated with determination of growth pa-
rameters.

Because Salmonella numbers on chicken are usually
less than 30 CFU per carcass (17, 19, 20), tertiary model
predictions of pathogen density from a lower initial density
(100.8 CFU/g) were evaluated to determine whether the ter-
tiary model should be used to help assess chicken safety.
Growth from a high density was investigated and modeled
because the limit of enumeration by viable counts was 103

CFU/g.
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FIGURE 1. Relationship among the three
stages of predictive model development:
primary, secondary, and tertiary. N(t),
pathogen density at time t; N0, initial path-
ogen density; l, lag time; mmax, maximum
specific growth rate; Nmax, maximum pop-
ulation density.

MATERIALS AND METHODS

Salmonella. Salmonella Typhimurium (ATCC 14028, Amer-
ican Type Culture Collection, Manassas, Va.) was maintained in
stock culture at 2708C in brain heart infusion broth (Becton Dick-
inson, Sparks, Md.) that contained 15% glycerol (Sigma, St. Lou-
is, Mo.).

Sterile chicken. Ten-gram portions of ground chicken breast
meat were formed into uniform patties and then sterilized in an
autoclave at 1218C for 18 min. A 1.5-cm-diameter cork borer was
used to cut plugs from the patties. Plugs were cut in half and
trimmed to yield 1-g portions. Portions were transferred to indi-
vidual wells of a 12-well tissue culture dish for subsequent in-
oculation.

Inoculum culture. Stock culture (5 ml) was added to 5 ml
of brain heart infusion broth in a 25-ml Erlenmeyer flask sealed
with a foam plug. Inoculum cultures were incubated at 308C and
150 orbits per min for 23 h before serial dilution in buffered
peptone water (BPW; Becton Dickinson).

Challenge study. Diluted inoculum culture (5 ml) was pi-
petted onto the surface of the chicken portions for an initial den-
sity of 104.8 CFU/g, and inoculated portions were incubated at 10
to 408C. At selected incubation times, a 1-g portion was homog-
enized (model 80 stomacher blender, Seward, London, UK) in 9
ml of BPW. Samples of stomachate (50 ml), either undiluted or
serially diluted in BPW, were spiral plated (Whitley Automatic
Spiral Plater, Microbiology International, Frederick, Md.) onto
brain heart infusion agar (Becton Dickinson). Plates were incu-
bated at 308C for 24 h, and then colonies were counted with an
automated counter (ProtoCol, Microbiology International).

Experimental design. Kinetic data used in model develop-
ment were collected at 10, 12, 14, 16, 20, 24, 28, 32, 36, 38, and
408C. Twelve pathogen density (N) determinations were made per
temperature and were fit to a primary model to determine initial
density (N0), lag time (l), maximum specific growth rate (mmax),
and maximum population density (Nmax). Determinations of N
were targeted for lag (n 5 3), exponential (n 5 6), and stationary
(n 5 3) phases of growth.

Independent N data for evaluating performance of secondary
and tertiary models for the ability to interpolate within the re-
sponse surface were collected at 11, 13, 15, 18, 22, 26, 30, 34,
37, and 398C with the same experimental methods as used for

model development. These N data could not be used to evaluate
the primary model for interpolation as a function of time because
they were collected at different temperatures than the N data used
in primary modeling.

For secondary models, 12 N determinations were made per
temperature and were fit to the primary model to generate N0,
l, mmax, and Nmax data for performance evaluation for interpo-
lation. For the tertiary model, four of 12 N determinations per
temperature were randomly selected for performance evaluation
for interpolation. These four N determinations for tertiary model
evaluation were targeted for lag, early exponential, late expo-
nential, and stationary phases to satisfy the test data criteria for
interpolation in the acceptable prediction zone method, which
requires that test data be uniformly distributed within the re-
sponse surface (11).

Independent N data for evaluating the ability of the tertiary
model to extrapolate were collected at 10, 12, 14, 16, 20, 24, 28,
32, 36, and 408C using the same experimental methods as used
for model development except that a lower N0 (100.8 CFU/g) was
used. The N0 used in these experiments (100.8 CFU/g) was cal-
culated from the viable count determination of the inoculum cul-
ture. Thus, the tertiary model was evaluated for the ability to
predict N from a lower N0, which was outside the level of inde-
pendent variables (i.e., N0) used to develop the model.

To evaluate performance of the tertiary model for extrapo-
lation from a lower N0, four N determinations were made per
temperature targeted for mid-exponential, late exponential, early
stationary, and stationary phases. Determinations of N in lag and
early exponential phases were below the detection limit (103 CFU/
g) of viable counts and thus could not be included.

Because complete growth curves could not be generated from
the lower N0, it was not possible to perform primary modeling
and directly evaluate secondary models for extrapolation. How-
ever, the ability of primary and secondary models to extrapolate
was indirectly assessed when the tertiary model was evaluated for
extrapolation because the primary and secondary models were
combined in a computer software application to form the tertiary
model (Fig. 1).

Primary modeling. Viable count data were graphed as a
function of time and fit (Prism version 4.0, GraphPad Software,
San Diego, Calif.) to the logistic-with-delay primary model
(1):



J. Food Prot., Vol. 68, No. 122608 OSCAR

N if t # l0

 NmaxN(t) 5 (1)
1 1 [(N /N ) 2 1]exp[2m (t 2 l)]max 0 max

if t . l

where N(t) is pathogen density (log CFU per gram) at time t
(hours), N0 is initial pathogen density (log CFU per gram), l is
lag time (hours), Nmax is maximum pathogen density (log CFU
per gram), and mmax is maximum specific growth rate (hours21).

In addition to the logistic-with-delay primary model, N data
were fit to the three-phase linear model (4), the logistic model (1),
and the modified Gompertz model (24). However, the logistic-
with-delay model provided the highest goodness-of-fit value, as
assessed by Akaike’s information criteria (results not shown). To
simplify secondary and tertiary modeling, only growth parameters
obtained with the logistic-with-delay primary model were used in
the next two steps of model development. Thus, use of the logis-
tic-with-delay primary model was justified by comparison with
other primary models.

Secondary modeling. For technical reasons, not all growth
conditions could be evaluated on the same day. Consequently,
multiple inoculum cultures were used. As expected, N0 did not
change as a function of temperature (T, 8C); therefore, mean N0

was used as the secondary model.
Although N0 is not expected to change as a function of tem-

perature, inconsistent preparation and pipetting of the inoculum
could result in significant variation of N0 among growth curves
and temperatures. If N0 affects pathogen growth, as occurred in
the current study, inconsistent preparation and delivery of inocu-
lum among growth curves and temperatures would introduce ex-
perimental error into the secondary models for other growth pa-
rameters and into the tertiary model. Consequently, mean N0 was
used as a secondary model, mainly for quality control purposes,
to assess whether preparation and pipetting of the inoculum was
consistent among growth curves and temperatures.

Secondary models for l (10), mmax (developed in this study),
and Nmax (22) as a function of temperature were as follows:

ml 5 [p/(T 2 T )] (2)min

m if T # Tmax2min 0
m 5 (3)max 5 mm 1 [b(T 2 T )] if T . Tmax2min 0 0

a[(T 2 T )(T 2 T )]min maxN 5 exp (4)max 5 6(T 2 T )(T 2 T )submin supmax

where p is a regression coefficient, Tmin is the minimal growth
temperature, m is a shape factor, mmax2min is the minimal predicted
mmax, b is a regression coefficient, T0 is the temperature at which
mmax increases from mmax2min, a is a regression coefficient, Tsubmin

is a temperature just below Tmin, and Tsupmax is a temperature just
above Tmax, the maximal growth temperature. Secondary models
were fit to growth parameter data from primary modeling using
the Prism software program.

In a previous study (10), the l model was compared with
four other l models and provided the highest goodness-of-fit value
for Salmonella Typhimurium and sterile chicken. The comparison
of l models in the previous study (10) accounted for differences
in the number of parameters among models. The shape parameter
m was included in the l model to remove prediction bias at higher
temperatures (10).

In the current study, a modified version of the square root
model for mmax was developed because a significant prediction
bias at low temperatures (,148C) was observed when the square

root model (13) was used. Although the assumption of a constant
mmax below T0 in the modified square root model was not realistic,
this assumption fit the observed data better than the assumption
of the square root model of a decreasing mmax to Tmin. The mod-
ified version of the square root model for mmax removed a pre-
diction bias at low temperatures. Overparameterization of the
modified square root model was evaluated by comparing its pre-
dictions to data not used in model development. The modified
square root model had acceptable goodness-of-fit values and was
validated for interpolation and thus provided acceptable predic-
tions of mmax between 10 and 408C.

The Nmax model was compared with the assumption that
Nmax did not change as a function of temperature. Results of the
comparison (not shown) indicated that use of mean Nmax to predict
Nmax as a function of temperature introduced significant prediction
bias at the lower and upper ends of the temperature range used in
model development, i.e., regions where Nmax decreased signifi-
cantly. Consequently, the aforementioned secondary model was
used to predict Nmax as a function of temperature.

Use of these secondary models for l, mmax, and Nmax was
justified by comparison with other secondary models. To simplify
tertiary modeling, only one secondary model was used per growth
parameter.

Tertiary modeling. The primary model and secondary mod-
els were combined in a computer spreadsheet (Excel 2000, Mi-
crosoft Corporation, Redmond, Wash.) to create a tertiary model
(Fig. 1). The tertiary model used predicted values from the sec-
ondary models in the primary model to predict N at times and
temperatures that were used and not used in model development.

Performance evaluation. Performance of primary, second-
ary, and tertiary models was evaluated using the acceptable pre-
diction zone method (11). Prediction errors or relative errors (REs)
for individual prediction cases were calculated:

RE for l 5 (predicted 2 observed)/predicted (6)

RE for N, N , m , and N0 max max

5 (observed 2 predicted)/predicted (7)

such that an RE of less than zero represented fail-safe predictions
and an RE greater than zero represented fail-dangerous predic-
tions. Relative errors for N, N0, and Nmax were calculated using
CFU per gram rather than log CFU per gram. Calculation of RE
with log-transformed values would have overestimated model per-
formance and therefore was not done.

Percent RE in an acceptable prediction zone from 20.3 (fail
safe) to 0.15 (fail dangerous) quantified performance of the mmax

model (11). Performance of the secondary model for mmax was
classified as acceptable when %RE was $70 (11), i.e., 70% of
the predictions of mmax could not deviate from observed values
by more than 30% in the fail-safe direction or by more than 15%
in the fail-dangerous direction for the model to be classified as
acceptable.

Different acceptable prediction zones were used for evalu-
ating performance of l and N models because experimental error
associated with determining these growth parameters differs from
experimental error associated with determining mmax. For exam-
ple, l of Salmonella on sterile chicken is twice as variable among
replicate growth curves as is mmax (9). Consequently, an accept-
able prediction zone that was twice as wide (20.6 to 0.3) as the
acceptable prediction zone for mmax was used to evaluate perfor-
mance of the l model.

Performance of models that predict N (i.e., primary, second-
ary for N0, secondary for Nmax, and tertiary) is limited by the
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FIGURE 2. Absolute relative error (ARE) of pathogen density (N)
determinations among serial dilutions of the same sample of in-
oculated sterile chicken. Samples were inoculated with Salmonella
Typhimurium (104.8 CFU/g) and incubated for selected times at
11 temperatures from 10 to 408C.

FIGURE 3. Primary model fit to kinetic data for growth of Sal-
monella Typhimurium on sterile chicken. Data were obtained at
108C. Inset: acceptable prediction zone analysis of the goodness
of fit of the primary model to N (pathogen density) data used in
model development and obtained at 11 temperatures from 10 to
408C. RE, relative error.

FIGURE 4. Secondary model fit to data for initial density (N0) of
Salmonella Typhimurium on sterile chicken as a function of tem-
perature (10 to 408C). Inset: acceptable prediction zone analysis
of the goodness of fit of the secondary model for N0. RE, relative
error; dependent data, N0 data used in model development; in-
dependent data, N0 data not used in model development.

precision of the enumeration method. To establish performance
criteria for this class of models, the absolute relative error (ARE)
among serial dilutions of the same sample was quantified:

ARE 5 z(A 2 B)/[(A 1 B)/2]z

where dilutions A and B were observed N in CFU per gram. The
distribution of ARE was then evaluated and the 95th percentile
of ARE was used to establish the boundaries of the acceptable
prediction zone, which were 20.8 (fail safe) and 0.4 (fail dan-
gerous). Thus, width of the acceptable prediction zone was most
narrow for the mmax model (20.3 to 0.15), intermediate for the l
model (20.6 to 0.3), and widest for the N models (20.8 to 0.4).

The acceptable prediction zone for N models is based on a
conservative estimate of experimental error because it does not
account for other sources of experimental error for N such as
variation of N among duplicate samples. For technical reasons,
duplicate samples were not processed at each sampling time.
Thus, experimental error associated with among-sample variabil-
ity (e.g., pipetting error for N0, sample processing deviations) was
not quantified and included in the acceptable prediction zone for
N models.

Statistical analysis. Because the performance factor of the
acceptable prediction zone method, %RE, is a proportion, com-
parison among performance evaluations can be made using a 2 3
2 contingency table and Fisher’s exact test. In the current study,
Fisher’s exact test in the Prism software was used to compare
performance of the primary model and tertiary model for pre-
dicting the same N data (i.e., N data used in model development).

RESULTS

The ARE values among serial dilutions of the same
sample had a mean of 0.155, a median of 0.115, a range
of 0.000 to 0.608, and a 95th percentile of 0.400. ARE
values were randomly distributed as a function of observed
N (Fig. 2). The 95th percentile of AREs, which was a one-
tailed distribution, was used to establish the fail-dangerous
boundary of the acceptable prediction zone for N models.
The 95th percentile was used because in a one-tailed or
two-tailed statistical test, such as the t test, the 95th per-

centile (i.e., two standard deviations) is used as the criterion
for significance. The fail-safe boundary was set at twice the
fail-dangerous boundary as per the acceptable prediction
zone method (11) where predictions can err twice as much
in the fail-safe direction. Thus, the acceptable prediction
zone for evaluation of models that predicted N was estab-
lished as 20.8 (fail safe) to 0.4 (fail dangerous).

When the acceptable prediction zone (20.8 to 0.4) for
N was used to evaluate goodness of fit of the primary model
to kinetic data obtained at 11 temperatures from 10 to 408C
(Fig. 3), 121 of 129 REs were in the acceptable prediction
zone (Fig. 3, inset) for an acceptable %RE of 93.8.

Use of the mean value of 4.821 log CFU/g or 66,222
CFU/g to model N0 as a function of temperature (Fig. 4)
was evaluated against dependent data and independent (in-



J. Food Prot., Vol. 68, No. 122610 OSCAR

FIGURE 5. Secondary model fit to data for
lag time (l) of Salmonella Typhimurium on
sterile chicken as a function of temperature
(10 to 408C). Inset: acceptable prediction
zone analysis of the goodness of fit of the
secondary model for l. RE, relative error;
dependent data, l data used in model de-
velopment; independent data, l data not
used in model development.

TABLE 1. Best-fit value, 95% confidence interval (CI), and constraints for secondary model parameters

Secondary model Parameter Best-fit value 95% CI Constraints

N0

l
Mean N0

p
Tmin

m

4.822
41.47
7.325
1.440

4.790–4.854
37.38–45.55
7.033–7.617

Fixed
mmax mmax-min

T0

b
m

0.01885
11.43
0.004325
1.306

0–0.06124
1.417–21.43

0–0.01543
0.6283–1.984

.0

.0

Nmax a
Tmin

Tmax

Tsubmin

Tsupmax

2.348
9.640

40.74
9.606

40.76

2.326–2.369
9.225–10.06
38.96–42.52
9.149–10.06
38.93–42.60

terpolation) data. For both dependent and independent (in-
terpolation) data, all RE (100%) for N0 were inside the
acceptable prediction zone (20.8 to 0.4; Fig. 4, inset).
Thus, the secondary model for N0 had acceptable goodness
of fit and was validated for interpolation. These results also
indicated that preparation and delivery of inoculum among
growth curves and temperatures was acceptable.

The secondary model for l as a function of tempera-
ture (Fig. 5) was

l 5 [41.47/(T 2 7.325)]1.44

and the 95% confidence intervals and constraints for fitting
this and the other secondary models are presented in Table
1. For both dependent and independent (interpolation) data,
all REs (100%) for l were inside the acceptable prediction
zone (20.6 to 0.3; Fig. 5, inset). Thus, the secondary model
for l had acceptable goodness of fit and was validated for
interpolation.

The secondary model for mmax as a function of tem-
perature (Fig. 6) was

0.01885 if T # 11.43

m 5 1.306max 0.01885 1 [0.004325(T 2 11.43)]

if T . 11.43

For both dependent and independent (interpolation) data,

all REs (100%) for mmax were inside the acceptable predic-
tion zone (20.3 to 0.15; Fig. 6, inset). Thus, the secondary
model for mmax had acceptable goodness of fit and was
validated for interpolation.

The secondary model for Nmax as a function of tem-
perature (Fig. 7) was

(T 2 9.64)(T 2 40.74)
N 5 exp 2.348max 5 6[ ](T 2 9.606)(T 2 40.76)

For both dependent and independent (interpolation) data,
all REs (100%) for Nmax were inside the acceptable predic-
tion zone (20.8 to 0.40; Fig. 7, inset). Thus, the secondary
model for Nmax had acceptable goodness of fit and was
validated for interpolation.

The tertiary model was evaluated for its ability to pre-
dict N data used in model development and N data not used
in model development but inside (interpolation) or outside
(extrapolation) its response surface. For dependent data,
117 of 129 REs (%RE 5 90.7) were inside the acceptable
prediction zone (20.8 to 0.4; Fig. 8). Thus, the tertiary
model had acceptable performance for predicting N data
used in model development.

Because the same N data (i.e., N data used in model
development) were used to evaluate performance of the ter-
tiary model and goodness of fit of the primary model (Fig.
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FIGURE 6. Secondary model fit to data for maximum specific
growth rate (mmax) of Salmonella Typhimurium on sterile chicken
as a function of temperature (10 to 408C). Inset: acceptable pre-
diction zone analysis of the goodness of fit of the secondary model
for mmax. RE, relative error; dependent data, mmax data used in
model development; independent data, mmax data not used in mod-
el development.

FIGURE 8. Tertiary model prediction (solid line) of pathogen
density (N) data (circles) obtained at a single temperature (108C)
for Salmonella Typhimurium on sterile chicken. Inset: acceptable
prediction zone analysis of tertiary model predictions of N data
used in model development and obtained at temperatures from 10
to 408C. RE, relative error.

FIGURE 7. Secondary model fit to data for maximum pathogen
density (Nmax) of Salmonella Typhimurium on sterile chicken as
a function of temperature (10 to 408C). Inset: acceptable predic-
tion zone analysis of the goodness of fit of the secondary model
for Nmax. RE, relative error; dependent data, Nmax data used in
model development; independent data, Nmax data not used in mod-
el development.

FIGURE 9. Tertiary model prediction (solid line) of pathogen
density (N) data (squares) obtained at a single temperature (188C)
for evaluation of interpolation of Salmonella Typhimurium growth
on sterile chicken. Inset: acceptable prediction zone analysis of
tertiary model predictions of N data for evaluation of interpola-
tion at temperatures from 11 to 398C. RE, relative error.

3), Fisher’s exact test was used to compare performance
among these models. Although %RE was lower for the ter-
tiary model (90.7) than for the primary model (93.8) for
predicting the same N data, the reduction in performance
from the primary to the tertiary modeling step was not sig-
nificant (P 5 0.48). Thus, model error from combining the
primary model with four secondary models to create the
tertiary model was small.

For independent N data that were inside the response
surface, 39 of 40 REs (%RE 5 97.5) for the tertiary model
were inside the acceptable prediction zone (20.8 to 0.4;
Fig. 9). Thus, the tertiary model was validated for inter-
polation.

For independent N data that were outside the response
surface because they were from challenge studies conduct-
ed with a lower N0 (100.8 CFU/g), only 1 of 40 REs (%RE
5 2.5) for the tertiary model were in the acceptable pre-
diction zone (20.8 to 0.4; Fig. 10). All REs were positive,
which indicated that the tertiary model provided overly fail-
dangerous predictions of N from a lower N0. These results
indicated that the tertiary model developed for high N0 was
not validated for extrapolation of N from a lower N0.

DISCUSSION

In primary and secondary modeling, models are itera-
tively fit to data, and therefore comparison of model pre-
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FIGURE 10. Tertiary model prediction (solid line) of pathogen
density (N) data (triangles) obtained at a single temperature
(328C) for evaluation of extrapolation of Salmonella Typhimurium
growth on sterile chicken from a lower initial density (100.8 CFU/
g). Inset: acceptable prediction zone analysis of tertiary model
predictions of N data for evaluation of extrapolation of growth
from a lower initial density (100.8 CFU/g) at temperatures from
10 to 408C. For clarity of presentation, relative errors (REs)
greater than 10 (n 5 23) were not included.

dictions to dependent data assesses goodness of fit. In con-
trast, combining primary and secondary models creates ter-
tiary models. Therefore, comparison of tertiary model pre-
dictions to dependent data does not assess goodness of fit
but rather verifies that the tertiary model was properly con-
structed.

Some researchers have proposed that predictive models
for food pathogens can err more in the fail-safe direction
(16). With the acceptable prediction zone method (11),
evaluation of model performance is based on this assump-
tion. The reasons for using the acceptable prediction zone
method rather than other methods, such as the bias and
accuracy factors of Ross (15), to evaluate predictive model
performance have been fully addressed previously (11).

Use of predictions of growth parameters from second-
ary models outside the primary model from which they
were derived can result in inaccurate predictions of N be-
cause growth parameter values derived from the same N
data differ among primary models. For example, Buchanan
et al. (4) found that the three-phase linear model predicted
shorter l and longer generation times (by 22 to 32%) than
did the Gompertz and Baranyi primary models and that the
Gompertz model predicted lower Nmax than did the three-
phase linear and Baranyi primary models. Augustin and
Carlier (1) found differences among primary models for
estimates of l and growth rate. The extent of these differ-
ences depends on the quality of kinetic data, and these dif-
ferences do not follow a pattern (2). Therefore, use of cor-
rection factors to normalize estimates of growth parameters
among primary models, an approach used by some, is not
recommended (2). Thus, to avoid inaccurate predictions of
N, it is important to use predicted growth parameters from
secondary models in the primary model from which they
were derived, such as was done in the tertiary modeling
step of the current study (Fig. 1).

Creation of a tertiary model allows prediction of N for
conditions not used in model development. A potential dis-
advantage of using tertiary rather than primary models to
predict N is that prediction errors of secondary models are
combined, resulting in poorer model performance. For ex-
ample, %RE decreased from 93.8 to 90.7 between the pri-
mary and tertiary modeling steps in the current study. How-
ever, this reduction in model performance was not signifi-
cant.

Although it is only necessary to evaluate performance
of the tertiary model, when prediction problems occur it is
also important to evaluate performance of primary and sec-
ondary models to find the source of the problems. Predic-
tion problems can result from experimental error, model
error, and biological variation (7). It may be necessary to
repair a tertiary model by collecting additional data and by
fitting existing and new data to other primary and second-
ary models (11). In the current study, no prediction prob-
lems occurred in the tertiary model or in the primary and
secondary models from which it was created. All secondary
models had acceptable goodness of fit and were validated
for interpolation.

Ross et al. (16) proposed criteria for validating predic-
tive models for growth rate using the bias factor (Bf). They
proposed that growth rate models with Bf of 0.9 to 1.05 are
good, models with Bf of 0.7 to 0.9 or 1.06 to 1.15 are
acceptable, and models with Bf of ,0.7 or .1.15 are un-
acceptable. These criteria are the basis for the acceptable
prediction zone used to evaluate the performance of sec-
ondary models for mmax (11). These criteria also have been
applied to other growth rate models (7) and l models (11)
but not to models that predict N.

In the current study, criteria for models that predict N
(i.e., primary, secondary for N0, secondary for Nmax, and
tertiary) were developed based on an evaluation of exper-
imental error associated with determination of N by viable
counts. This approach provided a conservative estimate of
experimental error because it considered variation of N only
among serial dilutions of the same sample and not among
duplicate samples; that variation comes from other sources
of experimental error (e.g., variation of N0 due to pipetting
error) encountered in challenge studies. The 95th percentile
for the ARE of N among serial dilutions was 0.4. This value
was used to establish a wide acceptable prediction zone for
RE from 20.8 (fail safe) to 0.4 (fail dangerous) for eval-
uation of model performance for N. The wide acceptable
prediction zone for N reflects the imprecision of the viable
count method.

In addition to criteria for N models, new criteria for l
models were established in this study based on an exami-
nation of experimental error associated with determining
this growth parameter in challenge studies. In a previous
study (9), variation of l among replicate growth curves for
Salmonella on sterile chicken was twice as large as mmax.
Thus, the acceptable prediction zone for evaluation of the
l model in the current study was set at twice the width
(20.6 to 0.3 versus 20.3 to 0.15) of the acceptable pre-
diction zone for evaluation of the mmax model.

Coleman et al. (5) compared growth from low N0 (1
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to 10 CFU/ml) and high N0 (103 CFU/ml) for Escherichia
coli O157:H7 in sterile broth at 10, 19, and 378C and found
few differences in growth parameters. Likewise, under op-
timal conditions in sterile broth, l of Listeria monocyto-
genes is not different from low N0 (100.1 CFU/ml) to high
N0 (107 CFU/ml) (14). In contrast, growth of Salmonella
Typhimurium on sterile chicken from a low N0 (100.8 CFU/
g) in this study was much more rapid than growth from a
high N0 (104.8 CFU/g). All REs for N were positive, indi-
cating that the high N0 model underpredicted growth from
a lower N0. Because Salmonella concentrations on chicken
are closer to 100.8 than 104.8 CFU/g (17, 19, 20), the tertiary
model was not considered appropriate for assessing chicken
safety.

Although the tertiary model developed here was not
validated for use in the chicken industry, this study is im-
portant because it is the first in which performance of a
tertiary model that predicts N has been quantified. This
study is also the first in which criteria were developed and
applied to allow a decision as to whether a tertiary model
and its component models (i.e., primary and secondary
models) provided acceptable predictions of pathogen
growth. Experimental error associated with imprecision of
the enumeration assay was a more important source of pre-
diction error than was modeling error; very little loss in
predictive performance was observed between the primary
and tertiary modeling steps.
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