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Abstract

The growth of Salmonella typhimurium (ATCC 14028) on the surface of autoclaved ground chicken breast and thigh burgers

incubated at constant temperatures from 8 to 48 jC in 2 jC increments was investigated and modeled. Growth curves at each

temperature were fit to a two-phase linear primary model to determine lag time (k) and specific growth rate (l). Growth of S.

typhimurium on breast and thigh meat was not different. Consequently, secondary models that predicted lag time and specific

growth rate as a function of temperature were developed with the combined data for breast and thigh meat. Five secondary

models for lag time and three secondary models for specific growth rate were compared. A new version of the hyperbola model

and a cardinal temperature model were selected as the best secondary models for lag time and specific growth rate, respectively.

The secondary models were combined in a computer spreadsheet to create a tertiary simulation model that predicted the

potential growth (log10 increase) of S. typhimurium on cooked chicken as a function of time and temperature. Probability

distributions and simulation were used in the tertiary model to model the secondary model parameters and the times and

temperatures of abuse. The outputs of the tertiary model were validated (prediction bias of � 4% for k and 1% for l and

prediction accuracy of 10% for k and 8% for l) and integrated with a previously developed risk assessment model for

Salmonella. Published by Elsevier Science B.V.
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1. Introduction

Mathematical models that predict the growth of

Salmonella as a function of food and environmental

factors have been developed (Smith, 1985; Thayer et

al., 1987; Gibson et al., 1988; Oscar, 1999c) and

promoted as a means of assessing the microbiological

safety of food (Buchanan, 1993; Skinner et al., 1994;

McClure et al., 1994; Schaffner and Labuza, 1997;

Whiting and Buchanan, 1997b; Soboleva et al., 2000).

However, growth models are limited in the ability to

predict food safety because they do not consider

whether or not the pathogen is present. In addition,

they do not consider other pathogen events, such as

contamination, physical removal, nonthermal inacti-

vation, thermal inactivation and dose–response, which
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determine the exposure and response of consumers to

pathogens of food origin. Consequently, growth mod-

els only predict the potential growth of the pathogen

and not the absolute growth of the pathogen on or in

food that has been improperly handled.

One way of improving the effectiveness of predic-

tive models as food safety tools is to integrate them

with risk assessment models that predict the absolute

change in the pathogen load of a food as it moves from

the farm to the table. The most common approach for

integrating predictive models with risk assessment

models is to place them inside the framework of the

risk assessment model (Whiting and Buchanan, 1997a;

Cassin et al., 1998; McNab, 1998). A potential prob-

lem with this approach is that it creates complex mo-

dels that are difficult to use. Reducing the complexity

of risk assessment models is a major hurdle for their

routine application in the food industry.

As an alternative, predictive models can be used

outside the framework of the risk assessment models

in an attempt to keep the risk assessment models

simple and easy to use (Oscar, 1998b). The USDA,

ARS, Poultry Food Assess Risk Model or Poultry

FARM (www.arserrc.gov/mfs/) is a computer soft-

ware application that contains four predictive models

for growth of Salmonella and risk assessment models

for Salmonella and Campylobacter (Oscar, 1999d).

Poultry FARM provides chicken processors with a

computer-modeling tool that they can use to assess the

microbiological safety of chicken destined for specific

distribution channels and consumer populations (Os-

car, 1999d).

A limitation of the growth models in Poultry FARM

is that their output cannot easily serve as input in the

risk assessment models. In addition, the growth mod-

els in Poultry FARM (Oscar, 1999a,b,c) do not predict

growth on dark chicken meat or growth at temper-

atures below 10 jC or above 40 jC. Therefore, the
current study was undertaken to investigate and model

the growth kinetics of Salmonella typhimurium ATCC

14028 on sterile ground chicken breast and thigh

burgers incubated at constant temperatures from 8 to

48 jC.
S. typhimurium ATCC 14028 has been used exten-

sively in our laboratory for investigating and model-

ing the growth of Salmonella in laboratory medium

(Oscar, 1998a, 1999a) and on sterile ground chicken

breast burgers (Oscar, 1999b,c, 2000). In general, it

exhibits the same growth kinetics as other strains of

Salmonella that are commonly found on chicken in

the United States (Oscar, 1998a, 2000) and thus, it is a

good strain to use for developing predictive growth

models for Salmonella and chicken.

During the secondary modeling stage of model

development, the data for breast and thigh meat were

analyzed separately and then ultimately combined

because growth of S. typhimurium was not different

on the two types of meat. However, during the secon-

dary modeling step, which model best-described lag

time and specific growth rate, as a function of temper-

ature became an issue. Thus, an objective of the cur-

rent study was to compare secondary models for the

ability to predict lag time and specific growth rate as a

function of temperature.

In the final step of model development, the best-

fitting secondary models for lag time and specific

growth rate were combined in a computer spreadsheet

to create a tertiary model that predicted the potential

growth (i.e., log10 increase) of Salmonella as a func-

tion of time and temperature. An objective of the ter-

tiary modeling step was to create a predictive model

whose output could serve as input in the previously

developed risk assessment model for Salmonella in

Poultry FARM.

2. Materials and methods

2.1. Organism

Kinetic data for development of the model were col-

lected using a single strain of S. typhimurium (ATCC

14028, American Type Culture Collection, Rockville,

MD, USA). Stationary phase cells of the organism (109

CFU/ml) were maintained at � 70 jC in brain heart

infusion broth (Difco Laboratories, Detroit, MI, USA)

that contained 15% (v/v) glycerol.

2.2. Experimental design

Autoclaved (121 jC for 18 min) ground chicken

breast and thigh burgers were inoculated on their sur-

face with 106 S. typhimurium in a 1.2-cm2 inoculation

well (Oscar, 1999c) and then incubated at constant

temperatures from 8 to 48 jC in 2 jC increments for a

total of 42 growth curves, 21 with breast meat and 21
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with thigh meat. Surface growth was measured rather

than growth throughout the burger because most bac-

teria are located on the surface of intact chicken (Cun-

ningham, 1982). Ground chicken burgers were used

rather than intact chicken pieces to create a more ho-

mogeneous model system and thus, reduce experi-

mental error.

2.3. Microbiological methods

Details of the microbiological methods have been

published (Oscar, 1999a) and therefore, only a general

description will be provided here. S. typhimurium for

inoculation were grown in brain heart infusion broth

(pH 6.4) under aerobic conditions at 37 jC for 23 h.

After dilution in sterile buffered peptone water (Difco),

100 Al was inoculated onto the surface of the burgers

for an initial concentration of 106 S. typhimurium per

1.2 cm2. A high initial concentration was used to

facilitate viable cell counting (Oscar, 1999c).

Burgers were inoculated at 4 jC and then were

incubated at constant temperatures from 8 to 48 jC in

2 jC increments. Each growth curve involved eight

burgers or sampling times. At each sampling time, an

inoculated burger (6 g) was homogenized (model 400

stomacher blender, Seward, London, UK) in 94 ml of

sterile buffered peptone water. After centrifugation,

undiluted and diluted (10 � 1 to 10� 3) samples were

spiral plated (WASP spiral plater, Don Whitley Sci-

entific, West Yorkshire, UK) onto brain heart infusion

agar (Difco). Spiral plates were inverted and incu-

bated at 30 jC for 24 h before counting of colonies

using an automated colony counter (Protocol, Micro-

biology International, Frederick, MD, USA).

2.4. Primary modeling

Viable cell counts in the homogenate (N; log10
CFU/ml) were graphed as a function of sampling time

(t; h). Lag time (k; h) and specific growth rate (l;
log10 CFU/h) were determined by nonlinear regres-

sion (version 3.0, PrismR, GraphPad Software, San

Diego, CA, USA) using a two-phase linear model

(Einarsson, 1994; Buchanan et al., 1997):

N ¼ N0 if tVk

N ¼ N0 þ lðt � kÞ if t > k,
ð1Þ

where N0 was the initial viable cell count in the ho-

mogenate (log10 CFU/ml). In three cases, the curve-fit

predicted a lag time that was much shorter than ob-

served. To obtain a curve-fit that was in agreement

with the observed data, lag time was fixed at the last

sampling time where the growth curve was observed

to be in lag phase.

2.5. Secondary modeling

2.5.1. Lag time models

The following secondary models were evaluated

for predicting lag time as a function of temperature

(T ; jC).

k ¼ exp½ p=ðT � qÞ� ð2Þ

k ¼ ½ p=ðT � qÞ�2 ð3Þ

k ¼ ½ p=ðT � qÞ�m ð4Þ

k ¼ Aþ ðB=TÞ þ ðC=T2Þ ð5Þ

k ¼ 1=½bðT � TminÞ2� ð6Þ

Models (2)–(4) are different forms of the hyperbola

model (Zwietering et al., 1991, 1994; Duh and

Schaffner, 1993) where p (h) is the rate of change

of lag time as a function of temperature, q is the

temperature at which lag time is infinite and m is an

exponent. Model (5) is the nonlinear Arrhenius

model of Davey (Davey, 1989, 1991; Daughtry et

al., 1997) where A, B and C are regression coef-

ficients without biological meaning. Model (6) is the

inverse square root model of Ratkowsky (Adair et

al., 1989; Duh and Schaffner, 1993; Wijtzes et al.,

1995) where b is the rate of change of lag time as a

function of temperature and Tmin is the minimum

temperature for growth. Transformations (logarithm

and square root) to stabilize model variance (Gibson

et al., 1988) were applied to the model rather than

the data to facilitate curve-fitting operations.
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2.5.2. Specific growth rate models

The following secondary models were evaluated

for predicting the specific growth rate as a function of

temperature (T ; jC).

l ¼ ðbðT � TminÞf1� exp½cðT � TmaxÞ�gÞ2 ð7Þ

l ¼ ½bðT � TminÞ�2f1� exp½cðT � TmaxÞ�g ð8Þ

l ¼ 0 if TVTmin or zTmax

l ¼ loptðD=EÞ if Tmin < T < Tmax

ð9Þ

D ¼ ðT � TmaxÞðT � TminÞ2

E ¼ ðTopt � TminÞ½ðTopt � TminÞðT � ToptÞ
� ðTopt � TmaxÞðTopt þ Tmin � 2TÞ�

Eqs. (7) and (8) are variations of the square root

model of Ratkowsky and are referred to in the

scientific literature as the Ratkowsky 2 and 3 models,

respectively (Ratkowsky et al., 1983; Zwietering et

al., 1991, 1994), where b is the rate of change of the

specific growth rate between Tmin and Topt, c is the

rate of change of the specific growth rate between Topt
and Tmax, Tmin is the minimum growth temperature,

Topt is the optimum growth temperature, and Tmax is

the maximum growth temperature. Eq. (9) is the

cardinal temperature model with inflection (Rosso et

al., 1993, 1995) where Tmin, Topt, and Tmax are the

cardinal temperatures and lopt is the specific growth

rate at Topt or the optimum specific growth rate.

2.5.3. Evaluation of the secondary models

The secondary models were fit to the combined

data for breast and thigh meat using PrismR. The

goodness-of-fit of the data to each model was eval-

uated using the coefficient of determination (R2) and

the standard deviation of the residuals (Syx):

Syx ¼ MRðYo � YpÞ2=ðn� sÞ,

where Yo was the observed lag time or specific growth

rate, Yp was the predicted lag time or specific growth

rate, n was the number of lag time or specific growth

rate determinations (n = 42) and s was the number of

fitted parameters (s = 2, 3 or 4) in the model.

The bias of the model predictions was evaluated by

calculating the relative error (RE) of each prediction

case (Delignette-Muller et al., 1995; Rosso et al., 1995):

RE ¼ ½ðYo � YpÞ=Yp�100:

The median relative error (MRE) was used to

quantify the prediction bias of the model, whereas

the mean absolute relative error (MARE) was used to

quantify the prediction accuracy of the model. The

prediction bias and accuracy of the model predictions

were also quantified by calculating the bias factor

(BF) and accuracy factor (AF) of Ross (1996):

BF ¼ 10ðRlogðYp=YoÞ=nÞ,

AF ¼ 10ðRAlogðYp=YoÞA=nÞ:

In addition, prediction bias was evaluated by

calculating the number of runs (PrismR), where a

run was a set of consecutive residuals that were either

above or below zero on the residual plot. The higher

the number of runs, the more random the distribution

of residuals was around zero and the more desirable

was the model.

The confidence intervals for the best-fit values

(BFV) of the model parameters were evaluated by cal-

culating the absolute relative standard error (ARSE):

ARSE ¼ AðSE=BFVÞA100,

where SE was the standard error of the best-fit value as

provided by PrismR. Model parameters with ARSE

exceeding 20% were considered to have wide con-

fidence intervals. Based on R2, Syx, MRE, MARE, BF,

AF, runs and ARSE, one lag time and one specific

growth rate model were selected for the development

of the tertiary simulation model.

2.6. Tertiary modeling

The lag time and specific growth rate models were

incorporated into a computer spreadsheet (Excel 2000,

Microsoft, Redmond, WA, USA) to create a tertiary

simulation model that predicted the potential growth
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(log10 increase) of S. typhimurium on cooked chicken

as a function of time and temperature. Pert distribu-

tions, which were defined by minimum, most likely

and maximum values, were used to model the param-

eters of the lag time and specific growth rate models

and the times and temperatures of abuse. The model

was simulated using @Risk (version 4.0, Palisade,

Newfield, NY), a spreadsheet add-in program.

3. Results

3.1. Evaluation of the primary modeling step

Comparison of the best-fit values for lag time

and specific growth rate indicated that growth was

similar on breast and thigh meat at all the temper-

atures investigated (Table 1). The confidence inter-

vals of the best-fit values for lag time and specific

growth rate, as assessed by the absolute relative

standard error (ARSE), were low (< 20%) in most

cases. Only at the extremes of the growth temper-

ature range were high (>20%) ARSE values ob-

served. The mean ARSE for lag time (15%) was

two-fold higher than the mean ARSE for specific

growth rate (5%). Overall, the ARSE values for the

lag time and specific growth rate parameters were

acceptable and similar for breast and thigh meat.

The high R2 values (mean>0.97) and low Syx values

(mean < 0.14) indicated that the two-phase linear

model fit the data well (Fig. 1). As expected from

the ARSE results, the lowest R2 and highest Syx
were seen at the extremes of the growth temperature

range (Table 1). Overall, the quality of the kinetic

Table 1

Best-fit values and statistical summary of the primary modeling stepa

Temperature Lag time Specific growth rate Goodness-of-fit
(jC)

Best-fit (h) ARSE (%) Best-fit (log10/h) ARSE (%) R2 Syx

Breast Thigh Breast Thigh Breast Thigh Breast Thigh Breast Thigh Breast Thigh

8 43.8 46.8 33 18 0.005 0.012 20 8 0.930 0.980 0.064 0.105

10 19.6 21.6 15 Fixedb 0.025 0.025 4 5 0.991 0.966 0.099 0.245

12 14.9 10.3 15 32 0.045 0.048 4 6 0.989 0.974 0.129 0.209

14 11.3 9.1 12 13 0.079 0.078 4 3 0.987 0.991 0.152 0.131

16 6.5 5.7 15 14 0.103 0.107 4 3 0.989 0.992 0.131 0.113

18 5.3 4.5 3 22 0.145 0.155 3 5 0.992 0.985 0.109 0.169

20 3.7 3.9 15 10 0.192 0.186 5 3 0.985 0.995 0.136 0.081

22 3.8 3.2 6 8 0.247 0.269 3 3 0.995 0.994 0.073 0.098

24 3.3 2.8 12 16 0.343 0.311 7 6 0.984 0.983 0.148 0.161

26 2.5 2.4 5 8 0.365 0.382 3 3 0.997 0.995 0.056 0.087

28 2.2 2.2 5 14 0.438 0.411 2 6 0.997 0.983 0.055 0.149

30 2.1 2.3 8 5 0.527 0.540 5 3 0.986 0.996 0.114 0.073

32 1.6 1.5 6 7 0.603 0.554 3 2 0.995 0.996 0.077 0.082

34 1.4 1.6 7 10 0.607 0.664 3 4 0.995 0.992 0.071 0.120

36 1.4 1.4 5 8 0.613 0.679 2 3 0.997 0.992 0.058 0.111

38 1.3 1.4 7 7 0.699 0.776 3 3 0.995 0.996 0.080 0.088

40 1.3 1.2 9 10 0.751 0.757 4 3 0.993 0.991 0.111 0.131

42 1.0 1.5 25 8 0.609 0.784 7 5 0.977 0.990 0.186 0.126

44 1.1 1.1 17 Fixed 0.648 0.655 6 4 0.988 0.982 0.129 0.184

46 0.9 1.0 15 Fixed 0.514 0.490 4 6 0.992 0.954 0.084 0.283

48 1.6 1.0 74 62 0.260 0.249 22 10 0.795 0.972 0.389 0.151

Mean 6.22 6.03 14.7 15.2 0.372 0.387 5.5 4.6 0.978 0.986 0.117 0.138

SEM 2.17 2.29 3.3 3.2 0.054 0.058 1.1 0.4 0.010 0.002 0.016 0.012

a ARSE= absolute relative standard error; R2 = coefficient of determination; Syx = standard error of the residuals; and SEM= standard error

of the mean.
b Lag time was fixed during primary modeling and thus, it was not possible to calculate ARSE.
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data was high and not different for breast and thigh

meat.

3.2. Comparison of the secondary models

3.2.1. Evaluation of the lag time models

Five models (models (2)–(6)) were evaluated for

the ability to predict lag time as a function of temper-

ature (Table 2). The coefficients of determination, R2,

were high (>0.98) for all models indicating that they

all fit the data well (Fig. 2A to E). However, the

hyperbola (^m) model had the highest R2 or best fit to

the data (Table 2). Greater differences were noted

among the models for Syx, the goodness-of-fit criterion

that adjusted for differences in the number of fitted

parameters. Nonetheless, the best fit was once again

obtained with the hyperbola (^m) model, which had

the lowest Syx (Table 2).

Fig. 1. Examples of primary model fits to kinetic data collected on cooked chicken breast (A and C) and thigh (B and D) meat burgers. Lag time

(k) and specific growth rate (l) values are the best-fit valuesF their standard errors from the primary model fit, whereas R2 is the coefficient of

determination of the primary model fit.

Table 2

Statistical summary of the secondary modeling step for lag time (models (2)– (6)) and specific growth rate (models (7)– (9))a

Model Goodness-of-fit Runs test Prediction bias Prediction accuracy

R2 Syx Runs Above Below MRE BF MARE AF

(2) Hyperbola (exp) 0.9896 1.042 11 8 34 � 20.4 1.29 23.9 1.34

(3) Hyperbola (^2) 0.9903 1.009 10 36 6 30.1 0.75 40.6 1.36

(4) Hyperbola (^m) 0.9937 0.825 20 18 24 � 3.9 1.00 10.1 1.10

(5) Davey (exp) 0.9927 0.884 19 13 29 � 5.6 1.07 13.1 1.15

(6) Inverse Ratkowsky 0.9903 1.009 10 36 6 30.1 0.75 40.5 1.36

(7) Ratkowsky 2 0.9868 0.0305 15 18 24 � 1.7 1.04 7.0 1.08

(8) Ratkowsky 3 0.9877 0.0294 21 22 20 1.0 1.01 5.7 1.06

(9) Cardinal temperature 0.9877 0.0294 19 23 19 0.9 0.97 8.6 1.08

a R2 = coefficient of determination; Syx = standard error of the residuals; MRE=median relative error; BF = bias factor; MARE=mean

absolute relative error; and AF= accuracy factor.
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The runs test, which quantifies the distribution of

the residuals around zero, was one of the three sta-

tistics used to evaluate the bias of the model pre-

dictions. The model with the most number of runs

and thus, the most random distribution of its resid-

uals around zero, was the hyperbola (^m) model

(Table 2 and Fig. 3C). Two other indices of predic-

tion bias were the median relative error of the

predictions (MRE) and the bias factor (BF). Again,

the model with the MRE closest to zero, no bias, and

Fig. 2. Secondary model fits of the lag time (A to E) and specific growth rate (F to H) data as a function of temperature.
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the BF closest to one, no bias, was the hyperbola

(^m) (Table 2).

The hyperbola (^m) represents a new version of

this model. Earlier versions of the hyperbola model

produced predictions with considerable systematic

bias (Fig. 3A and B). In contrast, the hyperbola

(^m) (Fig. 3C) model showed little systematic pre-

diction bias. The Davey model showed some system-

atic prediction bias at optimal to high temperatures

(Fig. 3D), whereas the inverse Ratkowsky exhibited

Fig. 3. Scatter plots of the relative errors of prediction of the secondary models for lag time (A to E) and specific growth rate (F to H) as a

function of temperature. Positive values on the lag time plots are fail-safe, whereas positive values on the specific growth rate plots are fail-

dangerous.
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considerable systematic bias throughout the entire

temperature range for growth (Fig. 3E).

Accuracy of the model predictions was assessed

using the mean absolute relative error (MARE) of the

predictions and the accuracy factor (AF). Again, the

most accurate model or the model with the lowest

MARE and the AF closest to one was the hyperbola

(^m) (Table 2).

The final criterion used to evaluate the secondary

models for lag time was the ARSE value, a measure of

the width of the confidence intervals for the best-fit

values of the model parameters. The only models with

high ARSE values (>20%) were the hyperbola (exp)

and Davey models (Table 3). The hyperbola (^m)

model had low ARSE (< 10%) for all its parameters.

Thus, the best secondary model for lag time was the

hyperbola (^m), which had the best goodness-of-fit

(R2 and Syx), the lowest prediction bias (runs, MRE

and BF), the highest prediction accuracy (MARE and

AF) and the tightest confidence intervals for its fitted

parameters.

3.2.2. Evaluation of the specific growth rate models

Three models (models (7)–(9)) were evaluated for

their ability to predict specific growth rate as a

function of temperature. All three models fit the data

well (Fig. 2F to H) as indicated by high (> 0.985) and

similar R2 values and as indicated by low (< 0.31) and

similar Syx values (Table 2).

All three models for specific growth rate showed

very little (< 5%) prediction bias (Table 2). The

model with the highest number of runs (Table 2)

or most random distribution of its residuals (Fig. 3F

to H) was the Ratkowsky 3. The cardinal temper-

ature model had the MRE closest to zero, whereas

the Ratkowsky 3 had the closest BF value to one.

Thus, the Ratkowsky 3 model showed the lowest

prediction bias. In addition, the Ratkowsky 3 model

had the lowest MARE and the closest AF value to one

and thus, was the most accurate of the three models

(Table 2).

Most of the best-fit values for the parameters of

the secondary models for specific growth rate had

Table 3

Best-fit values and 95% confidence intervals for the parameters of the secondary models for lag time (models (2)– (6)) and specific growth rate

(models (7)– (9))

Model Parameter Best-fit value ARSEa (%) 95% Confidence interval

(2) Hyperbola (exp) p 28.86 4 26.80 to 30.93

q 0.4372 63 � 0.1232 to 0.9977

(3) Hyperbola (^2) p 32.00 3 30.04 to 33.96

q 3.217 5 2.893 to 3.541

(4) Hyperbola (^m) p 40.67 7 34.95 to 46.39

q 5.251 6 4.601 to 5.901

m 1.415 7 1.228 to 1.602

(5) Davey (exp) A � 0.6199 28 � 0.9718 to � 0.2679

B 42.64 9 34.77 to 50.51

C � 57.63 36 � 99.50 to � 15.77

(6) Inverse Ratkowsky b 0.0009765 6 0.0008571 to 0.001096

Tmin 3.217 5 2.893 to 3.541

(7) Ratkowsky 2 b 0.02771 4 0.02520 to 0.03023

Tmin 3.797 24 1.917 to 5.676

c 0.1769 10 0.1429 to 0.2110

Tmax 51.12 1 50.46 to 51.77

(8) Ratkowsky 3 b 0.02973 5 0.02644 to 0.03301

Tmin 4.703 20 2.820 to 6.587

c 0.1172 13 0.08655 to 0.1478

Tmax 49.44 0 49.07 to 49.81

(9) Cardinal temperature Tmax 49.26 0 48.89 to 49.64

Tmin 5.699 14 4.090 to 7.308

Topt 40.01 1 39.51 to 40.51

lopt 0.7320 1 0.7143 to 0.7498

a Absolute relative standard error.
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tight confidence intervals or low ARSE values (Table

3). The one exception was the Tmin parameter of the

Ratkowsky 2 and 3 models, which had an ARSE

value in excess of 20%. Overall, the ARSE values

were best for the cardinal temperature model.

Although the Ratkowsky 3 model exhibited slight-

ly less prediction bias and had slightly better predic-

tion accuracy than the cardinal temperature model, the

cardinal temperature model was selected as the best

secondary model for specific growth rate because it

had tighter confidence intervals for all its fitted para-

meters, which (as described below) was an advantage

for the development of the tertiary model.

3.3. Tertiary modeling

The hyperbola (^m) model for lag time and the

cardinal temperature model for specific growth rate

were combined in a computer spreadsheet to create a

tertiary simulation model that predicted the potential

growth (log10 increase) of S. typhimurium on cooked

chicken as a function of time and temperature (Fig. 4).

Pert distributions were used to model the best-fit

values and their 95% confidence intervals for the

parameters of the secondary models (Table 3). This

was done to account for the uncertainty associated with

estimating these parameters. Consequently, having

parameters with low ARSE was a desirable character-

istic of the selected models because high ARSE would

have increased the uncertainty of the tertiary model

predictions. The uncertainty of the times and temper-

atures of abuse were also modeled using pert distri-

butions.

3.3.1. Validation of the tertiary model predictions

To validate the predictions of the tertiary model,

the temperature of abuse was held constant at values

from 8 to 48 jC in 2 jC increments, the lag time and

specific growth rate cells in the model were tempora-

rily designated as output cells, and then the model was

simulated for 10,000 iterations per temperature. The

mean lag time and specific growth rate values pre-

dicted by the tertiary model were then compared to the

42 observed lag time and specific growth rate values

by calculating prediction bias and accuracy values.

Results of this analysis indicated that the prediction

bias and accuracy of the tertiary model predictions for

both lag time and specific growth rate were low

(< 10%; Table 4). In addition, the 95% confidence

intervals of the predictions (meanF 2SD) for lag time

and specific growth rate were tight, with coefficients

of variation (SD/mean) less than 20%, at all temper-

atures, except for 8 jC, where the coefficient of

variation was 46%. Thus, using pert distributions to

model the uncertainty of the secondary model param-

eters rather than just using the best-fit values was a

valid approach for predicting the potential growth of

S. typhimurium on cooked chicken.

Fig. 4. Tertiary simulation model for predicting the potential growth (log10 increase) of S. typhimurium on cooked chicken as a function of time

and temperature.
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3.3.2. Use of the tertiary model for providing risk

assessment model inputs

A single scenario (Fig. 4) was simulated to dem-

onstrate how the tertiary model could be used to

provide input settings for a previously developed risk

assessment model. Simulation of the scenario (10,000

iterations) resulted in the output distribution shown

in Fig. 5. This output distribution was filtered to

remove the iterations where no growth occurred.

The number of no growth events was 8226 (cell

B36) for an incidence of potential growth events of

17.7%, the first input setting needed for the risk

assessment model in Poultry FARM. The other

three input settings needed for the risk assessment

model in Poultry FARM were the minimum,

median and maximum extent of potential growth,

which were obtained from cells B5, B23 and B6,

respectively, of the filtered output distribution (Fig.

5).

Fig. 5. Filtered results of the output distribution for the scenario

simulated using the input settings and tertiary model shown in

Fig. 4.

Table 4

Predicted lag time and specific growth rate values from 10,000

iterations of the tertiary simulation modela

Temperature Lag time (h) Specific growth rate (log10/h)
(jC)

Mean SD Mean SD

8 46.79 11.67 0.0059 0.0027

10 21.24 4.00 0.0197 0.0046

12 12.84 2.04 0.0416 0.0061

14 8.87 1.24 0.0712 0.0073

16 6.61 0.84 0.1080 0.0082

18 5.19 0.60 0.1516 0.0088

20 4.22 0.46 0.2014 0.0092

22 3.52 0.36 0.2566 0.0094

24 3.00 0.29 0.3163 0.0096

26 2.60 0.24 0.3795 0.0096

28 2.28 0.20 0.4446 0.0096

30 2.02 0.17 0.5101 0.0094

32 1.81 0.15 0.5736 0.0091

34 1.64 0.13 0.6322 0.0086

36 1.49 0.12 0.6820 0.0078

38 1.36 0.11 0.7177 0.0071

40 1.25 0.10 0.7319 0.0067

42 1.16 0.09 0.7138 0.0074

44 1.07 0.08 0.6473 0.0093

46 1.00 0.08 0.5072 0.0125

48 0.93 0.07 0.2514 0.0205

MRE � 4.38 0.88

BF 1.01 0.97

MARE 10.07 8.42

AF 1.10 1.08

a SD= standard deviation; MRE=median relative error; BF =

bias factor; MARE=mean absolute relative error; and AF= accuracy

factor.
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4. Discussion

A predictive model for growth of Salmonella on

cooked chicken was developed that covered a broader

range of temperature than previously developed mod-

els (Smith, 1985; Thayer et al., 1987; Gibson et al.,

1988; Oscar, 1999a,b,c). In addition, the model devel-

oped was designed to provide the input settings

(incidence, minimum, median and maximum extent

of potential growth) for growth events in a previously

developed risk assessment model for Salmonella

(Oscar, 1999d). The predictive model was developed

by following a six-step approach: (1) kinetic data

collection; (2) database creation; (3) primary model-

ing; (4) secondary modeling; (5) tertiary modeling;

and (6) model validation (Buchanan, 1993; Whiting

and Buchanan, 1997b). A major focus of the predic-

tive modeling process was the identification of the

best-fitting secondary models for lag time and specific

growth rate.

Comparison of the performance of secondary mod-

els for predicting lag time as a function of temperature

has been done before. Zwietering et al. (1991) used an

F-test to compare the hyperbola (exp), the inverse

Ratkowsky, the inverse Ratkowsky 2 and the inverse

Ratkowsky 3 models and found that all of the tested

models had acceptable f-values but that the hyperbola

(exp) had the lowest f-value or best fit to the data. Duh

and Schaffner (1993) compared the hyperbola (exp)

and the inverse Ratkowsky models and found that

both made fail-dangerous predictions of lag time at

high temperatures. In contrast, in the present study,

the inverse Ratkowsky made mostly fail-safe predic-

tions, whereas the hyperbola (exp) made mostly fail-

dangerous predictions. A general observation of sec-

ondary models for lag time is that they do not predict

well at high temperatures (Duh and Schaffner, 1993;

Schaffner, 1995; this study); the exceptions in the

current study were the hyperbola (^m) and Davey

models.

The performance of secondary models for predict-

ing specific growth rate as a function of temperature

has also been compared. Zwietering et al. (1991)

compared the Ratkowsky 2 and 3 models for growth

rate using an F-test and found that the Ratkowsky 3

model had slightly better goodness-of-fit, which is in

agreement with the current study. In contrast, Duh and

Schaffner (1993) found that the Ratkowsky 2 model

had slightly better goodness-of-fit (lower f-value and

higher R2) than the Ratkowsky 3 model. However,

similar to the current study, Duh and Schaffner (1993)

reported little systematic bias in the predictions of the

Ratkowsky 2 and 3 models. Finally, Rosso et al.

(1993) compared the cardinal temperature model with

the Ratkowsky 2 and 3 models and found similar but

slightly better goodness-of-fit for the cardinal temper-

ature model. In addition, they observed significant

correlations among the parameters of the Ratkowsky 2

and 3 models but not the cardinal temperature model.

These parameter correlations were identified as the

cause of difficulties encountered in obtaining accurate

parameter estimates. Likewise, in the present study,

the cardinal temperature model, although similar in

goodness-of-fit to the Ratkowsky 2 and 3 models, was

easier to fit and yielded more accurate parameter

estimates than the Ratkowsky 2 and 3 models.

Deciding which secondary model provided the best

fit was not easy because there was no single statistical

measurement that proved entirely satisfactory. Rather,

the final decision was based on considering a number

of statistical measures. The hyperbola (^m) model was

identified as the best-fitting model for lag time and

represents a new version of this model that was

discovered during the early stages of secondary mod-

eling when the untransformed hyperbola (^1) and

square root transformed hyperbola (^2) models were

being evaluated. When the lag time data were fit to the

untransformed hyperbola (^1) model (results not

shown), the model predicted well at low temperatures

but over predicted at temperatures corresponding to

the bottom plateau of lag time. In contrast, when the

lag time data were fit to the square root transformed

hyperbola (^2) model, the model predicted well at low

temperatures but under predicted at temperatures

corresponding to the bottom plateau of lag time. Thus,

a transformation of the model using an exponent

between one and two was needed to eliminate the

prediction bias. In fact, when the exponent (m) was

introduced as a fitted parameter in the model, the

resulting secondary model fit, with an m parameter

value of 1.4, showed little prediction bias for lag time

throughout the entire temperature range for growth.

Probability distributions for secondary model

parameters and simulation have been used inside risk

assessment models (Whiting and Buchanan, 1997a;

Cassin et al., 1998; McNab, 1998) and in tertiary
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predictive models (this study) to predict the growth of

pathogens on food. However, the validity of this

approach for predicting pathogen growth has not been

tested. One potential concern of this modeling

approach is the generation of nonsensical predictions

due to the random sampling of the probability distri-

butions. To test for such predictions, the current model

was simulated and the mean predicted values for lag

time and specific growth rate at each temperature were

compared to the observed values by calculating pre-

diction bias and accuracy statistics. In addition, the

95% confidence intervals for the tertiary model pre-

dictions at each temperature were evaluated. Results

of this analysis did not suggest any problems regard-

ing nonsensical predictions of the growth parameters.

Thus, use of probability distributions for secondary

model parameters and simulation to predict microbial

growth is a valid approach. However, it may require

that the modeler accurately estimate the secondary

model parameters (i.e., have tight confidence intervals

for each parameter estimate), as nonsensical predic-

tions may be more common for tertiary models with

secondary model parameter distributions with large

uncertainty.

The simulation results in the present study demon-

strated that not all temperature abuse events resulted

in the potential growth of Salmonella on cooked

chicken because not all times of abuse exceeded the

lag time for growth. However, to predict the absolute

growth of Salmonella on chicken that has been im-

properly handled, the results of the tertiary model si-

mulation need to be entered into the risk assessment

model for Salmonella in Poultry FARM and simulated

along with the other pathogen events that determine

the change in the number of Salmonella on chicken as

it moves from packaging at the processing plant to the

consumer’s table (Oscar, 1998b, 1999d). Results of

such simulations, which are beyond the scope of this

study, would demonstrate even further that not all

temperature abuse events result in the growth of Sal-

monella because not all portions of chicken are con-

taminated with Salmonella; especially after proper

cooking when the presence of Salmonella is likely

to be a very rare event.

The predictive model developed in the current

study is not a complete model for predicting the

growth of Salmonella on chicken. Some of the impor-

tant factors that were not considered in the develop-

ment of this model are strain variation, physiological

state of the pathogen, initial pathogen density, fluctu-

ating temperatures and competing microorganisms.

Current research in the author’s laboratory is directed

at expanding the current model to include the afore-

mentioned factors.
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