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USING REGRESSION METHODS TO ESTIMATE STREAM

PHOSPHORUS LOADS AT THE ILLINOIS RIVER, ARKANSAS

B. E. Haggard,  T. S. Soerens,  W. R. Green,  R. P. Richards

ABSTRACT. The development of total maximum daily loads (TMDLs) requires evaluating existing constituent loads in streams.
Accurate estimates of constituent loads are needed to calibrate watershed and reservoir models for TMDL development. The
best approach to estimate constituent loads is high frequency sampling, particularly during storm events, and mass integration
of constituents passing a point in a stream. Most often, resources are limited and discrete water quality samples are collected
on fixed intervals and sometimes supplemented with directed sampling during storm events. When resources are limited, mass
integration is not an accurate means to determine constituent loads and other load estimation techniques such as regression
models are used. The objective of this work was to determine a minimum number of water–quality samples needed to provide
constituent concentration data adequate to estimate constituent loads at a large stream. Twenty sets of water quality samples
with and without supplemental storm samples were randomly selected at various fixed intervals from a database at the Illinois
River, northwest Arkansas. The random sets were used to estimate total phosphorus (TP) loads using regression models. The
regression–based annual TP loads were compared to the integrated annual TP load estimated using all the data. At a
minimum, monthly sampling plus supplemental storm samples (six samples per year) was needed to produce a root mean
square error of less than 15%. Water quality samples should be collected at least semi–monthly (every 15 days) in studies
less than two years if seasonal time factors are to be used in the regression models. Annual TP loads estimated from
independently  collected discrete water quality samples further demonstrated the utility of using regression models to estimate
annual TP loads in this stream system.

Keywords. Streams, Phosphorus loads, Phosphorus transport, Water quality monitoring.

he Federal Clean Water Act Section 303(d) requires
all states to identify streams and rivers that do not
attain water quality standards and submit a list of
these streams to the U.S. Environmental Protection

Agency. This Act also specifies that the states must develop
Total Maximum Daily Loads (TMDLs) or other watershed
restoration approaches for streams listed. TMDLs are
estimations of the amount of a constituent that streams can
receive and still meet water quality standards. Thus, the first
step in TMDL implementation is assessing existing
constituent loads in streams. Agricultural engineers and
scientists need accurate estimates of constituent loads for
trend analysis, watershed and reservoir model calibration,
and total maximum daily loads (TMDL) development.
Often, long periods of hydrologic and water quality data are
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not available, and short–term studies, such as two years, are
used to estimate constituent loads and calibrate watershed
and reservoir models.

Constituent loads are a function of the volumetric rate of
water passing a point in the stream and constituent concentra-
tion within the water. Several computer software programs
are available to estimate constituent loads that pass a fixed
point in a stream (e.g., GCLAS, U.S. Geological Survey,
2001; ESTIMATOR, Cohn et al., 1989, 1992; LOADEST2,
Crawford, 1991, 1996). The data requirements are generally
mean daily stream flow and constituent concentrations on
days when water quality samples were collected. However,
the frequency of water quality data collection required varies
with the method used to estimate constituent loads, stream
size and flashiness, and desired accuracy and precision.
Often the data needs are greater than the information
provided by typical (monthly, bimonthly, or quarterly) water
quality sampling programs.

High–frequency water quality sampling, particularly
during storm events, and using mass accumulation (integra-
tion) is the most accurate approach to estimate constituent
loads if sufficient data are collected to describe the changes
in water quality. Interpolation is generally used to estimate
constituent concentration during time periods between water
quality samples (Porterfield, 1972). Sufficient data often
requires that many samples be collected during storm events
to reflect the variability in constituent concentrations. And,
samples collected at a single point within the stream cross
section are calibrated to samples representing the integrated
stream cross section (Ging, 1999; Martin et al., 1992), e.g.,
equal width and depth integrated (EWI) water quality
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samples (Edwards and Glysson, 1999). Constituent loads
calculated by high frequency sampling and mass accumula-
tion are often used as a reference to evaluate results from
other methods such as ratio estimators or regression models
(Robertson and Roerish, 1999; Preston et al., 1989; Richards
and Holloway, 1987).

Regression methods use the relation between constituent
concentration and stream flow to estimate missing daily
concentrations.  The analysis is usually performed following
logarithmic transformation of concentration and flow. Re-
gression methods often require less frequent water quality
sampling than the integration method. The simple regression
approach has been modified to account for nonlinearities,
seasonal and long–term variability, censored data, logarith-
mic transformation biases, and residual serial correlation
(Cohn, 1995). This more elaborate approach has been widely
used, particularly as part of studies conducted by the U.S.
Geological Survey (USGS) (Asbury and Oaksford, 1997;
Pope and Milligan, 2000). Regression methods allow
confidence limits to be placed on load estimates and are often
used with relatively small datasets that have been assembled
over many years.

Recently, water quality monitoring agencies have targeted
storm events, collecting directed storm water quality samples
as well as fixed interval samples. The timing or location of
water quality samples collected during the storm event
hydrograph may bias the annual TP load (Robertson and
Roerish, 1999). For example, TP often displays hysteresis in
streams that is the TP concentration may increase rapidly and
peak on the rising limb of the storm and have a slower
decrease in TP concentration on the falling limb (Richards
et al., 2001; Richards and Holloway, 1987; Thomas, 1988).
Robertson and Roerish (1999) suggested that in smaller
streams additional storm samples resulted in a positive bias
because the measured concentrations are typically greater
than the average daily concentration. Furthermore, storm
chasing by sampling crews as opposed to fixed stage
sampling on the rising limb of the storm hydrograph resulted
in the least biased load estimates of the storm sampling
methods evaluated (Robertson and Roerish, 1999).

Our objectives were to compare regression–based total
phosphorus (TP) load estimates to TP loads from mass
accumulation  in the Illinois River, Arkansas, and identify the
number of water quality samples needed for use in regression
models. This study compared the TP load calculated using
mass accumulation of the entire database in 1998 (n = 449,
Nelson and Soerens, 2000) with loads determined using the
regression techniques and water quality samples randomly
sub–sampled from the database (variable n) and with loads
determined using the regression method and independently
collected water quality data (n = 37). We also evaluated the
use of seasonal time coefficients in regression models, effect
of directed storm sampling, and the impact of targeting the
storm hydrograph peak during storm chasing on the accuracy
and precision of regression–based TP load estimates.

STUDY SITE DESCRIPTION
The study site is at an established U.S. Geological Survey

streamflow and water quality monitoring station, the Illinois
River, South of Siloam Springs, Arkansas (U.S. Geological
Survey station number 07195430, Porter et al., 1999). The

study site is in Benton County, Northwest Arkansas, about 8
km south of Siloam Springs on Arkansas Highway 59. The
drainage basin area is approximately 1500 km2. Overall,
streamflow was generally greatest during winter and spring
from 1997 through 2000, with some high flow events
occurring in early summer. In general, low flows at this site
occurred in summer and fall. Total stream flow was least in
1997 and greatest in 1999 (table 1). Average Base Flow Index
(BFI, base flow proportion of total flow, Wahl and Wahl,
1995) was about 42%, ranging from 34 to 46%. About 40%
of the streamflow occurred at a stage of about 1.5 m or less
at the Illinois River during calendar year 1997–2000. The
stage was less than 1.5 m on over 80% of the days during these
years. Total phosphorus concentrations ranged from 0.06 to
almost 1 mg/L and are related to streamflow. Total phospho-
rus concentrations decrease with increasing base flow but
increase with increasing surface runoff discharge (Green and
Haggard, 2001). The Arkansas Water Resources Center
(AWRC) has estimated constituent loads at the Illinois River
using high–frequency water quality sampling and mass
accumulation  from 1997 through 2000 (Nelson and Soerens,
2000, 2001; Soerens et al., 2000). Furthermore, the U.S.
Geological Survey has also collected water quality samples
and estimated nutrient loads using regression methods
(Green and Haggard, 2001).

METHODS
WATER QUALITY SUB–SAMPLE SETS

A detailed description of the water quality sampling
protocol and laboratory analysis used by the AWRC can be
found in Nelson and Soerens (2000). The AWRC collected
grab samples from a single point during base flow conditions
and collected samples from a single point using an automated
sampler during storm events. From late September 1997
through May 1998, and during November and December
1998, water quality samples were collected every two days
when the stage of the Illinois River was less than about 1.5 m
or 18.4 m3/s. When the stage was greater than 1.5 m, water
quality samples were collected every 30 min during the rise
of the hydrograph and every hour during the fall of the
hydrograph (hereafter high–frequency sampling). During the
other months involved in this investigation, discrete water
quality samples were collected every two weeks and
composite water quality samples were collected when the
stage was greater than 1.5 m.

Because regression–based load estimates often use data
assembled over multiple years, various sub–sample datasets
were developed to mimic fixed–interval sampling and storm
chasing from the 750 water quality samples collected by the

Table 1. Streamflow characteristics of the Illinois River, south of Siloam
Springs (U.S. Geological Survey Station No. 07195430) at Highway 59.

Year

Annual
Mean

Streamflow
(m3/s)

Annual
Median

Streamflow
(m3/s)

Total
Streamflow

(106 m3)

Annual Peak
Daily

Streamflow
(m3/s)

Base
Flow
Index

1997 14.1 8.1 444 643 0.44
1998 18.9 10.7 597 915 0.46
1999 20.9 11.3 659 830 0.44
2000 16.9 7.9 535 912 0.34

Average 17.7 9.5 559 825 0.42
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AWRC during the period from late September 1997 through
early June 1999. A random sampling date was selected during
September 1997 using a random number generator, and then
sampling dates were selected based on 15–, 30–, 45–, and
60–day intervals, corresponding to n = 39, 19, 14, and 10,
respectively, from the original random sampling date in
September or October 1997. If these intervals resulted in a
date where the AWRC did not collect water quality data, then
the sample collected closest to this date [in time] was
selected. All samples were used in the development of these
data sets, including individual storm and composite samples.
A total of 20 sub–sample data sets were developed for each
sampling interval (scheme), e.g. 20 sub–sample data sets for
15–day interval, 20 for 30–day, and so on. Because the
AWRC collected water quality data less frequently when the
stage of the Illinois River was less than about 1.5 m, the
sub–sample data sets are not completely independent and
could contain some of the same sample results within
different datasets.

Storm events in this investigation are defined as times
when the auto–sampler was triggered when the stage
exceeded 1.5 m and high–frequency water quality sampling
was used, not composite sampling. Sixteen individual storm
events were sampled during this period. A random water
quality sample was selected from each of the 16 storm events,
and a total of 20 sub–sample sets were developed indepen-
dently with 16 storm water quality samples. Water quality
monitoring programs are not typically designed to collect
discrete samples during each storm event when using
grab–sampling protocols. Thus, 20 sub–samples sets from
nine randomly chosen storm events were also produced
representing six storm events per year sampling strategy.
These 20 sub–sets of nine storm samples were limited to the
upper 50% of the individual storm hydrograph because
storm–sampling protocols often are directed toward near
peak sampling. Twenty sub–sets of nine storms were also
produced from the upper 25 and 10% of the storm hydrograph
to ascertain any bias associated with targeting the peak of the
storm event.

MASS ACCUMULATION

The INTEGRATOR software program (Richards, 2001)
was used to estimate the TP load from the 449 samples
collected by the AWRC during calendar year 1998 using
numeric integration. The load associated with a sample
interval is given by the average of the instantaneous flux
(concentration � flow) at the time of the sample and the
instantaneous flux at the time of the previous sample,
multiplied by the time between samples. The annual load is
the sum of all such loads. A limit may be placed on the length
of time any sample is assumed to be valid. If any time interval
exceeds this limit, then there is some unaccounted for time.
The annual TP load can be adjusted for these unaccounted for
time periods using the ratio of annual discharge to covered
discharge, if desired.

This software program also provides an upper and lower
bound to the annual load; however, these boundaries are not
derived from statistical calculations. Rather, these bounds are
the sums of the loads calculated using the larger and smaller
of the fluxes that bound each time interval, rather than the
average. This approach assumes that the fluxes increase or
decrease monotonically within the interval between the
samples. A modification is required at the local maxima and

minima, because the assumption of monotonic change is
false for one of the time intervals that surround such a point
(unless the observed maximum or minimum is the true
maximum or minimum, which is unlikely). The ad hoc
approach used in this software assumes the true flux
associated with a maximum is 125% of the observed
maximum. Similarly, the true flux associated with a mini-
mum is assumed to be 90% of the observed minimum.

REGRESSION METHODS
This investigation used the relation between natural

logarithm (ln) transformed concentration (C) or load (L) and
daily mean discharge (Q), and seasonal factors (SIN and
COS):

ln (C) = β� + β� ln (Q) + β� SIN(2πT) + β� COS(2πT) (1)

ln (L) = β� + β� ln (Q) + β� SIN(2πT) + β� COS(2πT) (2)

where C is concentration in mg/L, L is load in kg/d, Q is mean
daily discharge ft3/s, �� is the regression constant, T is time,
and ��, ��, and �� are regression coefficients. Loads were
estimated for each day using observed streamflow and
summed to give annual loads. The ESTIMATOR software
program was used to estimate annual TP loads in 1998 for
each sub–set of data collected on assigned intervals with and
without storm events. This software implements a minimum
variance unbiased estimator to transform the results from ln
space to real space (Cohn et al., 1989, 1992) and provides
95% confidence intervals of individual annual load esti-
mates.

The full–scale regression model (eqs. 1 and 2) was used
to determine annual TP loads using 15– and 30–day interval
sub–sets with and without 16 storm events. This model also
was used to evaluate changes in estimated annual TP loads
from the 15–, 30–, 45–, and 60–day interval sub–sets with 9
and 16 storm events. However, seasonal factors were also
omitted from the regression model when using only nine
random storm samples. Thus, the simple relation between C
or L and Q was also used in these cases:

ln (C) = β� + β� ln (Q) (3)

ln (L) = β� + β� ln (Q) (4)

The simple regression model (eqs. 3 and 4) was also used
to determine the annual TP loads using 15–, 30–, 45– and
60–day interval sub–sets with nine random storm samples.
This model was also used to assess biases associated with
targeting the peak of the storm hydrograph in water quality
monitoring programs, e.g. using the nine random storm
events from the upper 50, 25, and 10% of the storm event
hydrograph.

DATA COMPARISONS

We evaluated differences between the 1998 integrated
annual TP load derived from the INTEGRATOR software
and the load calculated by manual integration (Nelson and
Soerens, 2000). The comparisons between annual TP loads
estimated using INTEGRATOR and ESTIMATOR are
presented as box plots. The difference between INTEGRA-
TOR and the mean or median of the 20 regression–based TP
load estimates was used to evaluate the accuracy (bias). The
spread or standard deviation (SD) of the 20 regression–based
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TP load estimates was used to evaluate the precision for each
sampling protocol (Dolan et al., 1981; Preston et al., 1989).
The accuracy and precision (bias and SD) were combined
into the root mean square error (RMSE) where RMSE is
defined by:

RMSE = (SD2 + bias2)0.5 (5)

In this study, the mean difference, median difference,
median absolute difference, SD, and RMSE were used to
evaluate the optimal water quality sampling strategies or
number of water quality samples needed in regression
techniques. The statistical values are calculated in kg/y and
then presented in percent of the annual TP load estimate
calculated via INTEGRATOR.

RESULTS AND DISCUSSION
MASS INTEGRATION

Because of the occurrence of two–week sampling inter-
vals when the stage was less than 1.5 m, there were times
when loads were not calculated. The estimate from INTE-
GRATOR was corrected using the ratio of annual discharge
to measured discharge used by the software program. The
INTEGRATOR load was essentially equal to the load
determined by manual integration. The INTEGRATOR load
was 229,000 kg in 1998 whereas Nelson and Soerens (2000)
reported 232,000 kg.

EFFECTS OF STORM SAMPLES

In order to demonstrate the significance of water quality
sampling during storm events, 15– and 30–day datasets with
and without directed storm chasing were used in regression
models and the results compared to the integrated load in
1998 (table 2, fig. 1). Without directed storm samples, the
15– and 30–day datasets underestimated the annual TP load
substantially. The mean and median of the 15–day predic-
tions were 72 and 68% of the integrated annual TP load,
respectively, and 30–day predictions were 64 and 58%,
respectively. However, inclusion of directed storm–chasing
data into the regression models substantially increased the
accuracy, and the 15– and 30–day medians were within 10%
of the integrated load. In fact, the 30–day median was  within
1% of the integrated load. Some variation was observed in the

Table 2. Effect of additional, directed storm water quality samples on
the accuracy and precision of regression–based annual 

phosphorus loads compared to the integrated 
229,000 kg phosphorus load in 1998.[a]

Fixed
Interval
Scheme
(days)

Storm
Samples

(N)[b]

Total
Samples
(N) [c]

Mean
Difference

(%)[c]

Median
Difference

(%)[c]

Absolute
Median

Difference
(%)[c]

SD
(%)[c]

RMSE
(%)[c]

15 – 39 –28 –32 32 11 31
15 16 55 –8 –9 10 10 13

30 – 19 –36 –42 42 17 39
30 16 35 –1 –1 9 13 13

[a] The regression models were equations 1 and 2.
[b] The dash (–) suggests that storm chasing was not used; however, the fixed 

interval–sampling scheme may have included storm samples.
[c] The mean, median, and absolute median difference, standard deviation (SD) 

and root mean square error (RMSE) are defined as percent of the 229,000–kg 
phosphorus load determined using the INTEGRATOR software program. 
Storms samples were randomly sub–sampled from the entire storm hydrograph 
from 16 individual storm events.
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Figure 1. Effect of additional, directed storm water quality samples on
regression–based TP load estimates in the Illinois River, Arkansas. (The
plot of INTEGRATOR represents the annual TP load estimate and the
minimum and maximum bounds; regression–based load box plots
represent the 10th, 25th, 50th, 75th, and 90th percentiles, and symbols
represent the 5th and 95th percentiles. N represents the number of water
quality observations used in integration or regression models.)

regression–based predictions with and without directed
storm samples, but the datasets that included directed storm
samples were much better overall. Only load estimates
greater than the 90th percentile using datasets not including
directed storm samples approached the integrated load.
These observations underscore the need to specifically target
storm events in water quality monitoring programs.

The ability and resources of most agencies involved in
water quality monitoring programs limit the number of
samples that are collected. The ability to collect samples
from all storms or 16 storms in 19 months is unlikely.
However, the regression–based loads with 16 directed storm
samples performed quite well regardless of the fixed
sampling interval used (table 2 and 3). Water quality
monitoring programs usually target a pre–determined num-
ber of storm events, not all storms. For example, the U.S.
Geological Survey attempts to collect six storm events
samples per year at several sites within the Illinois River
Basin (Green and Haggard, 2001). The U.S. Geological
Survey National Water quality Assessment (NAWQA)
program was designed to collect four to eight storm samples
per year (Hirsch et al., 1988). Thus, the remainder of
comparisons between the regression–based and integrated
annual TP loads uses only nine directed storm event samples
per data set, or six storm samples per year.

All mean and median differences were within 10% of the
integrated value and did not sequentially increase with
specifically targeting the storm hydrograph peak, although
all were slightly positively biased (table 4, fig. 2). The
precision increased with limiting the portion of the storm
hydrograph randomly sampled. However, reducing the
portion for sub–sampling reduces the number of observations
available for selection from each storm. The combination of
accuracy and precision (RMSE) was within 15% of the
integrated load for all portions of the storm hydrograph
analysis (table 4). It is possible that in larger streams, such as
the Illinois River, targeting the peak may be the best storm
chasing technique as long as samples are randomly collected
on either side, e.g., the rising or falling limb of the
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Table 3. Statistical properties of 20 regression–based annual phosphorus loads from various water quality monitoring strategies using
fixed–interval samples plus additional storm samples compared to the integrated 229,000–kg phosphorus load in 1998.[a]

Fixed Interval
Scheme
(days)

Regression
Equation
Number

Storm
Samples

(N)

Storm
Hydrograph

(%)

Total
Samples

(N)

Mean
Difference

(%)

Median
Difference

(%)

Median Absolute
Difference

(%)
SD
(%)

RMSE
(%)

15 1,2 16 100 55 –8 –9 10 10 13
30 1,2 16 100 35 –1 –1 9 13 13
45 1,2 16 100 30 0 –3 7 10 10
60 1,2 16 100 26 0 –3 9 14 14

15 1,2 9 100 48 –12 –12 12 8 15
30 1,2 9 100 28 –6 –7 12 16 17
45 1,2 9 100 23 18 13 13 16 24
60 1,2 9 100 19 23 17 18 28 36

15 1,2 9 Upper 50 48 2 3 7 10 11
30 1,2 9 Upper 50 28 11 7 8 13 17
45 1,2 9 Upper 50 23 15 12 12 14 21
60 1,2 9 Upper 50 19 20 19 19 22 30

15 3,4 9 Upper 50 48 –5 –5 8 9 10
30 3,4 9 Upper 50 28 5 4 8 11 12
45 3,4 9 Upper 50 23 8 3 10 14 16
60 3,4 9 Upper 50 19 15 14 14 15 21

15 1,2 9 Upper 25 48 6 5 10 10 11
30 1,2 9 Upper 25 28 19 16 16 18 26
45 1,2 9 Upper 25 23 42 36 36 24 48
60 1,2 9 Upper 25 19 27 24 24 17 32

15 3,4 9 Upper 25 48 –2 –3 5 8 8
30 3,4 9 Upper 25 28 8 7 7 11 14
45 3,4 9 Upper 25 23 18 15 15 14 23
60 3,4 9 Upper 25 19 13 9 10 14 19

[a] Regression equation numbers refer to the equations in the text and are the model used to estimate phosphorus loads.

hydrograph. In contrast, Robertson and Roerish (1999)
suggested storm chasing produced a positive bias and
resulted in imprecise, overestimated loads.

The importance of storm events in nutrient transport and
annual loads is substantial in streams and rivers. Greater than
85% of TP transported in the Illinois River occurs on days
where surface runoff accounts for greater than 30% of total
flow (Green and Haggard, 2001). This phenomenon is not
localized and has been observed throughout the United States
(Pionke et al., 1996; Richards et al., 2001). Almost half of TP

Table 4. Effect of targeting the storm hydrograph peak on accuracy and
precision of regression–based annual phosphorus loads compared 

to the integrated 229,000–kg phosphorus load in 1998.

Fixed
Interval
Scheme
(days)

Storm
Hydrograph

(%)

Total
Samples

(N)

Mean
Difference

(%)[a]

Median
Difference

(%)[a]

Absolute
Median

Difference
(%)[a]

SD
(%)[a]

RMSE
(%)[a]

30 100[b] 35 –1 –1 9 13 13
30 Upper 50[c] 28 5 4 8 11 12
30 Upper 25[c] 28 8 7 7 11 14
30 Upper 10[c] 28 8 8 8 10 13

[a] The mean, median, and absolute median difference, standard deviation (SD) 
and root mean square error (RMSE) are defined as percent of the 
229,000–kg phosphorus load determined using the INTEGRATOR software 
program.

[b] Denotes regression equations 1 and 2 with 16 storm samples.
[c] Denotes regression equations 3 and 4 with 9 storm samples randomly sub–

sampled from various portions of the storm hydrograph.

transported in streams during storm events may be resus-
pended from bottom sediments (Svendsen et al. 1995).
Release or resuspension of P associated with stream sedi-
ments in the Illinois River may be a critical source because
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Figure 2. Effect of chasing the storm hydrograph peak on
regression–based annual TP load estimates in the Illinois River,
Arkansas. (TOTAL 16 STORMS represents 16 individual storm samples
collected from the entire storm hydrograph of each storm; UPPER50%
9 STORMS represents nine individual storm samples collected from the
upper 50% of the storm hydrograph for each storm, and so on for 25 and
10%. N represents the number of water quality observations used in
integration or regression models.)
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this stream receives P inputs from several wastewater
treatment plants in the headwaters.

EFFECT OF SEASONAL TIME COEFFICIENTS
Regression models have the ability to include seasonal

time coefficients in order to account for seasonal variations
in TP concentrations observed in the residuals (Cohn, 1995);
however, sufficient data needs to be collected to adequately
describe these changes. It appears that when sampling all or
16 directed storm events over 19 months, the use of seasonal
time coefficients in regression models functions well regard-
less of the fixed–interval scheme. But, when targeting a
predetermined number of storm events and randomly
selecting the storms, the use of seasonal time coefficients
affected the accuracy and precision of the regression–based
TP load estimates. In all comparisons (table 3), the use of
seasonal time coefficients in regression models reduced the
accuracy and precision, as the RMSE was consistently
increased for all fixed sampling intervals. There was
considerable variability in these reductions. The RMSE
increased between 10 to 43% for all fixed intervals plus nine
directed storm samples from the upper 50% of the storm
hydrograph, and 50 to 113% for all fixed intervals plus nine
storms from the upper 25%. In general, when using seasonal
coefficients, the 15–day interval scheme plus nine directed
storm samples performed better than any other fixed interval
model with nine directed storm samples (the RMSE was 15%
or less). This suggests that at a minimum, semi–monthly or
15–day fixed interval sampling is needed in approximately
19–month studies if seasonal time coefficients are to be
included in the development of regression models to estimate
TP loads. The alternative to this minimum sampling scheme
was that all storm events should be sampled. Based on studies
limited to less than two years in duration, the most important
data requirement when using seasonal time factors is
sufficient repetition of seasonal cycles.

WATER QUALITY SAMPLING STRATEGIES

We must note that discussion with regard to water quality
sampling strategies is limited to studies of two years or less,
the time frame used in this analysis. Furthermore, this
evaluation of the regression method is also limited to the
Illinois River and other streams with similar TP concentra-
tion and flow relations. An analogous way to view these
results is to focus on the number of water quality samples
needed to develop regression equations and estimate annual
TP loads. In short–term investigations, it appears that, at a
minimum, monthly sampling plus six directed storm samples
a year is required to adequately estimate annual TP loads in
the Illinois River. The RMSE was within 15% of the
integrated load when seasonal time coefficients were not
used in the regression models and the upper half of the storm
hydrograph was targeted (table 3). Several sampling schemes
and regression models yielded accurate results. However,
precision generally increased with an increasing number of
observations or fixed–period sampling. Overall, the best
water quality sampling strategy was 15–day fixed interval
plus nine directed storm samples from the upper 25% of the
storm hydrograph; the RMSE was only 8%.

In this study, the 28 observations were collected over a
19–month period; however, it may be feasible to collect this
number of samples over a longer time frame. The collection

of water quality data over time and with consistent methods
allows the use of a rolling database. For example, if a water
quality–monitoring agency is collecting bimonthly samples
plus six storm event samples (n = 12 y–1), then three years
would be needed to cross the 28 observations threshold
observed in this investigation. Thus, the regression model
would use the past three years to estimate nutrient loads, e.g.,
the TP load in 2000 would be estimated using 1998 through
2000 data. Methods exist to determine if flow–weighted TP
concentrations in streams are changing with respect to time,
and these methods will identify the need to use a rolling
database. The period of interest for calculated TP loads
should coincide with the period of observation used to derive
the regression equations.

The minimum number of observations suggested in this
study is supported by independently collected EWI samples
and annual TP loads estimated using ESTIMATOR at the
Illinois River. Prior to October 1998, the U.S. Geological
Survey collected water quality samples every other month,
and after this date fixed–interval sampling was supplemented
with about six storm water quality samples per year (Green
and Haggard, 2001). Annual TP loads from 1997 through
2000 were based on 37 observations. The water quality
samples were collected from the beginning of water year
1997 through the end of calendar year 2000 (all mean daily
streamflow and TP concentration data are available at
http://water.usgs.gov/ar/nwis).  The regression–based annual
TP load estimates from calendar year 1997 through 2000
compared well with the integrated estimates from Nelson and
Soerens (2000, 2001) (fig. 3); the mean difference was less
than 5%. In 1997, the annual TP loads estimated using the
regression method with EWI samples was 17% greater than
the integrated estimate (Nelson and Soerens, 2000). Howev-
er, in 1998 through 2000 the EWI samples and regression
models underestimated the annual TP load by an average of
12%. Overall, this comparison is quite remarkable consider-
ing that water quality samples were collected by different
techniques, analyzed by different laboratories, and calcu-
lated by different methods.

While we only compared regression models, other
investigators have suggested that ratio estimators were more
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Figure 3. Comparison between regression–based annual TP load
estimates using EWI water quality samples collected by the U.S.
Geological Survey and Arkansas Water Resources Center integrated
(Nelson and Soerens, 2000, 2001) annual phosphorus load estimates using
automated and point samples.
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robust to sources of error than other load estimation
techniques such as averaging or regression models (Dolan
et al., 1981; Preston et al., 1989). Furthermore, Richards and
Holloway (1987) observed that loads based on flow–stratifi-
cation using ratio estimators provided the best results.
Similarly, Dolan et al. (1981) suggested that ratio estimators
were better, even with concentrated sampling during storm
events. The most recent study (Robertson and Roerish, 1999)
evaluating the effect of sampling strategy on load estimation
suggested that semi–monthly or 15–day sampling and
regression methods were the least biased in small streams.

CONCLUSIONS
This investigation focused on water quality samples

collected over a period of 19 months. Thus, the identification
of the most appropriate sampling strategy is based on
19 months of data collection, and this investigation sug-
gested 28 water quality samples as the minimum number
needed to adequately predict annual TP loads using regres-
sion models. However, the number of samples can be
collected over a larger time frame than that used in this study,
and the water quality samples should be collected during the
period when loads will be estimated.

This investigation underscored the importance of specifi-
cally targeting storm events, and at the Illinois River and
other larger streams, targeting the storm hydrograph peak
may be the best approach to storm chasing. About semi–
monthly or 15–day fixed interval sampling was needed if
seasonal time coefficients are to be included in the develop-
ment of regression models to estimate TP loads in our
19–month study. However, sufficient repetition of seasonal
variations may be obtained with less frequent sampling for
longer periods. Our sub–sampling comparison and the
exceptional  comparison between annual TP loads from 1997
through 2000 further validated the use of discrete sampling
and regression models in annual TP load estimation, at least
in streams similar to the one we studied.
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