
Proceedings, 10th World Congress of Genetics Applied to Livestock Production 
 

Fast Imputation Using Medium- or Low-Coverage Sequence Data 
 

P. M. VanRaden1 and C. Sun2 
1Animal Improvement Programs Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland, 

2National Association of Animal Breeders, Columbia, Missouri, USA 

ABSTRACT: Direct imputation from raw sequence reads 
can be more accurate than calling genotypes first and then 
imputing, especially if read depth is low or error rates high. 
An efficient strategy chooses the 2 haplotypes most likely 
to form the genotype and updates the posterior allele 
probabilities from the prior probabilities within those 
haplotypes as each animal’s sequence is processed. 
Imputation of 1 million loci on 1 chromosome required 20 
min and 5 gigabytes of memory using 10 processors for 500 
bulls simulated at 8X coverage plus 250 younger bulls that 
had lower coverage or had high, medium, or low density 
chips. Percentages of correct genotypes were 99.2, 97.0, 
and 94.1 for bulls sequenced at 8X, 4X, and 2X coverage 
and were 98.1, 96.8, and 91.7 for bulls genotyped with 
600K, 60K, and 10K density chips. Imputation using 
sequence with low coverage or high error was less accurate 
if genotypes from a high-density chip were not included in 
the sequence data.  
Keywords: imputation; genotypes; sequence read depth; 
allele probabilities 
 

Introduction 
Sequence data with low read depth or high error 

requires different imputation strategies than previous 
algorithms designed for data from genotyping chips 
because homozygotes and heterozygotes are known with 
less certainty from sequence data (Menelaou and Marchini, 
2012). Either of the 2 alleles may be read a different 
number of times, not read at all, or misread, which requires 
additional probability calculations not needed with present 
algorithms that assume genotypes are known. Animal 
breeders have developed imputation software that runs 
many times faster than software from human geneticists by 
using long-range phasing, general pedigrees, and the high 
degree of haplotypes shared across very large populations. 
For example, genotypes from several lower density chips 
are used to impute 60,000 markers for 500,000 animals in 
routine genomic evaluation and >600,000 markers for 
>150,000 animals in research (VanRaden et al., 2013).  

These fast algorithms are adapted in the current 
report to use sequence data directly instead of first calling 
genotypes from the sequence reads. Within haplotype pairs, 
allele probabilities are updated based on read depth of the 
sequence alleles and prior probabilities. Including high-
density (HD) chip genotypes for each sequenced animal 
ensures accurate haplotype matching for all animals. These 
strategies can reduce cost by accurately imputing genotypes 
using lower coverage for more individuals.  

 
Materials and Methods 

Simulated data. The population structure and 
number of sequence variants were identical to a previous 

test (VanRaden et al., 2013), but known genotypes were 
used in the previous test whereas read depth was reduced 
and errors were introduced in the current test. Sequence 
variants were simulated for a chromosome with a length of 
1 Morgan and containing 1 million polymorphic loci which 
is equivalent to 30 million loci across the bovine genome. 
Sequence genotypes were then imputed from 20,000 
markers/chromosome (simulating a 600K chip), 2,000 
markers (simulating a 60K chip), or 333 markers 
(simulating a 10K chip). Allele frequencies in the founding 
population had a uniform distribution between 0 and 1 (u) 
for markers placed on chips, but the sequence variants had 
lower minor allele frequencies and a quadratic distribution, 
but with perhaps fewer rare variants than actual sequences. 

Sequences were simulated for 250, 500, or 1,000 
bulls that had the most US daughters, plus sequences 
reduced to 600K density for 250 randomly chosen US bulls 
born in 2010. Several generations sometimes separated the 
sequenced older bulls from the young bulls with 600K 
genotypes because the average birth year of the older bulls 
was 1987. Another 23,656 ancestors in the pedigree had 
sequences generated but not observed. Imputation accuracy 
was computed by percentage of matching true and called 
genotypes across all loci and also by the correlation after 
centering both the true and the called genotypes by 
subtracting twice the allele frequency. 

True genotypes were reduced to read depths 
averaging 16, 8, 4, 2, or 1, whereas the previous test had 
assumed perfectly known genotypes for all sequence 
variants. The sequenced bulls had reduced read depth either 
at all variants or at all variants except the 600K markers on 
the chip, which were given a read depth of 32. This tested if 
genotypes should combine reduced-depth sequence data 
and an HD chip to improve imputation as recommended by 
Menelaou and Marchini (2012). Tests were repeated with 0, 
1, 4, or 16% error in the individual sequence reads. Another 
test used reduced-depth sequence reads for the young bulls 
as proposed by De Donato et al. (2013) and by Hickey 
(2013), but these also included 600K chip data.  

Human sequence genotypes for 394,724 SNPs 
from the shortest chromosome (HSA 22) from the 1000 
Genomes Project Consortium (2012) were also imputed 
from 39,440 SNPs that had highest minor allele frequency 
(>0.12). The 1,092 individuals were randomly split into 884 
reference sequences and 218 reduced to HD for validation.  

Haplotype probabilities. Probability formulas 
and computer algorithms were derived and tested on the 
simulated bovine and actual human sequence data. Phasing 
of known genotypes into haplotypes may be simple if 
parents and progeny are genotyped but somewhat more 
difficult if the genotyped individuals are less related. 
Imputing missing genotypes can be done simply by 



choosing the most frequent haplotype that does not conflict 
with the genotype, then obtaining the complement 
haplotype by subtracting known alleles in the first 
haplotype from the genotype, then searching for the next 
most frequent haplotype that agrees with the complement, 
and then filling any missing alleles in the 2 haplotypes if 
the genotype is homozygous (VanRaden et al., 2011). 
 Repeated application of inverse probability rules 
(Bayes theorem) can update haplotype probabilities with 
the new information provided by each individual’s 
sequence data (S). The steps are analogous to those used in 
some long-range phasing algorithms. The most likely 
haplotype (H1) and its complement (H2) are selected from 
a list, or a new haplotype is added if none in the list are 
likely. Then posterior probabilities that the alleles h1 and h2 
at a particular locus within H1 and H2, respectively, contain 
allele A are calculated from their prior probabilities (p1 and 
p2) and the individual’s sequence data at that locus (s). This 
updating process is repeated for each individual using the 
posterior probabilities in H1 and H2 as prior probabilities 
for the next individual containing either of those same 
haplotypes. This accumulates linkage information into the 
haplotype list instead of using multi-locus math to account 
for linkage as in Duitama et al. (2011). 
 The sequence data s are coded simply as the 
numbers of A (nA) and B (nB) alleles observed; the 3 main 
categories of observed data were only nA, only nB, or both 
nA and nB positive. With no sequencing error, the third 
category always indicates a heterozygote, but the first 2 
categories do not always indicate homozygotes because 
heterozygotes also produce only nA or only nB  observations 
at a rate of 0.5(nA + nB) each. For example, nA = 4 and nB = 0 
could result from an AA homozygote producing A alleles 
every time or an AB heterozygote producing only A alleles 
with frequency of 0.54 = 0.0625. With low-coverage 
sequence, nA and nB may both equal 0 at many loci, and 
those are treated as missing observations. Storage of nA and 
nB is more efficient than storing 3 genotype probabilities. 
 Prior probabilities that the 2 haplotypes contain an A 
at a particular locus are P(h1 = A) and P(h2 = A), and both 
initially are set to allele frequencies before processing the 
first individual. Posterior probabilities P(h1 = A|nA,nB) and 
P(h2 = A|nA,nB) are then obtained by jointly accounting for 
the 2 prior probabilities and using the standard inverse 
probability rule such as in Duitama et al. (2011): 
 

P(h1 = A|nA,nB) = P(nA,nB|h1 = A)[P(h1 = A)/P(nA,nB)]; 
P(h2 = A|nA,nB) = P(nA,nB|h2 = A)[P(h2 = A)/P(nA,nB)]. 

 
  Posterior probabilities accounted for the error in 
individual sequence reads (errate) using math similar to 
Druet et al. (2014), except that the probabilities were 
applied directly to haplotypes instead of first calling 
genotypes. For efficiency, probabilities of observing nA and 
nB given the 3 genotypes were calculated and stored 
AAprob, BBprob, and ABprob for later use when 
processing each potential haplotype. Factorial terms in the 
binomial distribution were not computed because they 
always canceled in the likelihood ratios: 
 

AAprob = P(nA,nB|AA) = erratenB (1 – errate)nA; 

BBprob = P(nA,nB|BB) = erratenA (1 – errate)nB; 
ABprob = P(nA,nB|AB) = 0.5(nA + nB). 

 

 The 2 prior probabilities P(h1 = A) and P(h2 = A) 
were labeled p1 and p2 for simplicity. From these, the 
conditional probability of observing nA and nB given that h1 
contains A or that h2 contains A were calculated from 
 

P(nA,nB|h1 = A) = p2 AAprob + (1 – p2) ABprob; 
P(nA,nB|h2 = A) = p1 AAprob + (1 – p1) ABprob. 

 
 The unconditional probability of observing nA and 
nB was computed by summing probabilities that the true 
genotype was AA, BB, or AB multiplied by the probability 
of observing nA and nB given each genotype. The overall 
probability for the population used the same formula except 
that population frequency p was substituted for the 
haplotype prior probabilities p1 and p2: 
 

P(nA,nB) = p1p2 AAprob + (1 – p1)(1 – p2) BBprob 
   + (p1 + p2 – 2p1p2) ABprob. 
 
 The H1 and H2 mostly likely to form the genotype 
were selected using likelihood ratio tests from a haplotype 
list that was sorted by descending frequency. The 
probability of observing s at each locus was divided by the 
probability that s would be observed if alleles were chosen 
randomly from the population (p2 = p), and these ratios at 
each locus in a potential H1 were multiplied to obtain the 
joint likelihood ratio P(S|H1)/P(S). A particular haplotype 
H1 was selected if the joint likelihood ratio was >1/n, 
where n is the number of loci with observed data in the 
haplotype. The H2 was selected if the joint likelihood of S 
given H2 and H1 divided by the likelihood given H1 [i.e., 
P(S|H1,H2)/P(S|H1)] was >1/{n[1 + (n/100)]}. Also, if the 
likelihood ratio was <1/n at any individual locus, the 
haplotype was discarded immediately to save computation. 
 The 2 selected H1 and H2 were updated by 
combining the formulas above to obtain their posterior 
probabilities of containing allele A given the sequence data 
and the 2 haplotype prior probabilities at each locus: 
 
 P(h1 = A|nA,nB) = [p2 AAprob + (1 – p2) ABprob] p1/ 
  [p1p2AAprob +(1 – p1)(1 – p2) BBprob  
  + (p1 + p2 – 2p1p2) ABprob]; 
 P(h2 = A|nA,nB) = [p1 AAprob + (1 – p1) ABprob] p2/ 
   [p1p2AAprob +(1 – p1)(1 – p2) BBprob 
   + (p1 + p2 – 2p1p2) ABprob)]. 

 
Results and Discussion 

Imputation of 1 million SNP on 1 chromosome for 
1,000 animals took 20 min using 10 processors and 5 
gigabytes of memory. Time required is only slightly more 
than findhap (VanRaden et al., 2011), but memory is almost 
twice because of storing 2-byte probabilities instead of 1-
byte haplotype codes. When imputing from HD to sequence 
using 16X coverage for 500 bulls, 98.4% of genotypes were 
correct with the new algorithm compared with 97.8% with 
version 2 of findhap (VanRaden et al., 2013). Slight 
improvements compared to the squared correlations from 



Beagle in Druet et al. (2014) also indicate that updating 
haplotype probabilities may be a more accurate strategy 
with high read depth and also allows including sequences 
with low read depth (Table 1). With 4X instead of 16X 
coverage, 97.0% of the imputed genotypes were correct for 
the sequenced bulls and 96.7% for bulls with 600K. High 
read depth is desired if the goal is direct investigation of the 
sequenced bulls, but lower depth is desired if the goal is 
imputation from HD. Sequencing twice as many bulls at 
half the read depth often gave more correct calls (e.g., 
95.3% using 250 bulls with 16X, 98.1% using 500 bulls 
with 8X, or 98.2% using 1,000 bulls with 4X).  
 
Table 1. Correctly imputed genotypes (%) and 
correlations (R) by read depth and number of bulls with 
sequence data containing 1% error and high-density 
(HD) markers 

Bulls 
Read 
depth 

From sequence 
 

From HD markers 
R  Correct R  Correct 

1,000  16 0.999  99.9  0.989  99.2 
  8 0.992  99.5  0.987  99.1 
  4 0.969  97.8  0.975  98.2 
  2 0.942  95.9  0.951  96.5 
  1 0.912  93.8  0.911  93.8 

500  16 0.999  99.9  0.977  98.4 
  8 0.988  99.2  0.974  98.1 
  4 0.958  97.0  0.954  96.7 
  2 0.919  94.1  0.917  94.1 

250  16 0.998  99.9  0.931  95.3 
  8 0.981  98.7  0.926  95.0 
  4 0.939  95.8  0.897  93.1 

 
Sequence reads with 1 or 4% error rates reduced 

imputation success slightly, but 16% error caused larger 
reduction (Table 2). For example, with 8X coverage, the 
500 sequenced bulls had 99.5% correct calls if sequence 
error was 0%, 99.2% if 1%, 98.4% if 4%, and 95.2% if 16% 
error. The HD bulls had 98.2, 98.1, 98.0, and 96.9% correct 
calls, respectively. With lower read depths, error rates 
caused larger differences in imputation success, but with 
1,000 bulls and 16X, >99% of genotypes for both 
sequenced and HD bulls were called correctly even if the 
read error rate was 16%. Exclusion of HD chip data for the 
sequenced bulls reduced accuracy with low read depth or 
high error, which was consistent with the results of 
Menelaou and Marchini (2012). For example, with 8X 
coverage and 4% error, imputation success dropped from 
98.4 to 97.8% for sequenced bulls and from 98.0 to 97.2% 
for HD bulls (Table 2) because detecting common 
haplotypes was difficult if the sequenced bulls had few data 
at the HD loci. Results were similar for HSA 22 but with 
lower maximums of 97.4% correct and correlation of only 
86% when imputing from HD because of rare SNPs and 
lower linkage disequilibrium in the human sequence data. 

Bull genotypes from less dense chips had 96.8% 
correct imputation from 60K or 91.7% from 10K chips 
when 1,000 bulls had sequence data with 1% error, read 
depth 8, and HD markers included. To include sufficient 
markers within each interval, maximum haplotype length 
was extended to 100,000 from the 50,000 used for imputing 

from 600K. When sequences with lower read depth were 
included, bulls had 99.1% correct from 2X coverage or 
99.0% correct from 1X coverage. A final analysis included 
bulls with 8X, 2X, 1X, 600K, 60K, and 10K all in 1 data 
set, but imputation accuracy was slightly reduced in some 
cases because haplotype lengths and other options were not 
optimal for all bulls. Further research may improve these 
strategies and the resulting accuracy of fast imputation. 
 
Table 2. Correctly imputed genotypes (%) and 
correlations (R) by error rate using 500 bulls with 
sequence data with read depth 8 that included or 
excluded high-density (HD) markers 

HD 
included? 

Error 
rate 

From sequence  From HD markers 
R  Correct R  Correct 

Yes 0.00 0.994  99.5  0.975  98.2 
 0.01 0.988  99.2  0.974  98.1 
 0.04 0.977  98.4  0.972  98.0 
 0.16 0.932  95.2  0.956  96.9 

No 0.00 0.991  99.4  0.973  98.1 
 0.01 0.985  98.9  0.970  97.9 
 0.04 0.969  97.8  0.961  97.2 
 0.16 0.911  93.8  0.874  91.5 

 
Conclusion 

Genotypes can be imputed more accurately by 
using each animal’s raw sequence reads to update allele 
probabilities within pairs of haplotypes when simulated 
sequences have high error rates or medium to low coverage. 
Sequencing tools offer a tradeoff between number of 
animals and average read depth. More efficient imputation 
will allow geneticists to locate and test effects of more 
DNA variants and to include those in future selection 
programs. 
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