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Abstract  

A method of accounting for differences in variation in components of test-day milk production 
records was developed. This method could improve accuracy of genetic evaluations. A random 
regression model is used to analyze data, and then a transformation is applied to the random 
regression coefficients. When evaluations with and without this transformation were compared, 
rankings of animals were similar but some re-rankings occurred. A correlation analysis showed a 
reduction in effect of production level on variation in regression coefficients, which indicated the 
success of the transformation. The method suggests a number of innovative solutions to problems 
related to heterogeneous variance structures. 
 
 
Introduction  

 
Accounting for heterogeneity of (co)variances 
among test-day observations is an important com-
ponent of test-day model developments. The fact 
that heterogeneity exists in both variances and co-
variances makes this issue complex to address. 
Both pre-adjustment and integrated methods have 
been considered. The objective of this paper is to 
demonstrate that a feature of random regression 
models (RRM) or random coefficient models can 
be used to adjust for heterogeneous (co)variance 
structures among observations. 

 
 

Materials and Methods  

 
(Co)variance structures among test-day yields. 
Consider the following RRM: 

∑ ++=
i

ii euQFfy , 

where y = vector of records, f = vector of fixed 
effects, F = incidence matrix linking y and f, Qi = 
matrix of regressors, ui = vector of random effects 
i, and e = vector of residuals. The test-day record 
is considered to be nested in a given lactation of a 
given animal. The (co)variances among observa-
tions for this lactation and animal then would be: 

( ) ( ) ( )∑ +′=
i

iii VarVarVar eQuQy  , 

which can be rewritten as: 

( ) ∑ +′=
i

iiiVar RQGQy . 

At this stage, the matrices of regressors can be 
used to generate (co)variance structures by model-
ing the (co)variances as functions of regression 
variables: 

( ) ∑ +′=
i

jijijijjVar RQGQy , 

where Gij are (co)variance matrices of effect i in 
environment j. If the transformation matrix (T) 
renders Gij independent of the heterogeneity strata 
( ijijiji0 TGTG ′= ), then 

( ) ( ) ( )∑ +′′= −−

i
jij

1
iji0

1
ijijjVar RQTGTQy . 

 
Conceptually this is a simple transformation 

*
ijT  of regressors, where the matrix of coefficients 

is "bent" through ( ) 1
ijij

*
ij

*
ij

−== TQTQQ ij to replace 

Gij, which differ by environment with matrix 

i0G and this for every effect i. This process allows 
modeling heterogeneous (co)variance structures 
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easily for both non-genetic and genetic effects. 
For the latter, the underlying assumption is that 
genetic correlations between environments are 
unity for every transformed regression. Although 
several possibilities exist for T, the obvious 
candidate is the inverse of the lower Cholesky 
decomposition because i0G  then becomes an 
identity matrix. 

 
This simple generalization of the standardiza-

tion of random effects approach is used in France 
(Robert-Granié et al., 1999). Here the order of 
random regressions can be chosen so that the first 
transformed regression is defined as the standard-
ized constant term. Also, heterogeneity in Gij can 

be modeled by modeling *
ijT . Therefore, if *

ijT  is 

assumed to be dependent on a continuous variate 
(e.g., production level within heterogeneity 
strata), the coefficient of that matrix can be 
modeled as a function of that variate. Updating of 
those matrices during solution of the mixed-model 
equations also would be possible. 

 
Heterogeneous error variances can be modified 

in a similar fashion by replacing Q with an iden-
tity matrix. Mixed-model equations then are 
adjusted by imposing weighting according to as-
sumed residual variance of a given record. 

 
Example computations. As a demonstration, a 

general data set was used to compute variance 
components in four sub-populations differentiated 
by production level. Herds could change produc-
tion level after 2 yr. The 222,679 first-lactation 
test-day yields from herds in New York, Wiscon-
sin, and California were grouped into four subsets 
of between 55,604 and 55,685 records. Yields 
were pre-adjusted additively for age and lactation 
stage. Adjustment factors were those of Bormann 
et al. (2002). Difference between means of cows 
in the highest and lowest production subsets was 
14.1 kg  (37.4 vs. 23.3). 
 

(Co)variance components were estimated using 
EM-REML and the following random regression 
model:  

e  pQ  aQ  hQ  Xt  y pah ++++= , 

where y = vector of test-day records for milk 
yields; t = vector of fixed herd, test-day, and 
milking-frequency class effects; h = vector of 
random herd and time (2 yr of calvings) effects; p 
= vector of random permanent environmental (PE) 
effects; a = vector of animal effects (breeding 

values); e = residual effect; X = incidence matrix 
linking y and t; Q = matrix of constant, linear, and 
quadratic modified Legendre polynomials: I0 = 1, 
I1 = 30.5x, and I2 = (5/4)0.5(3x2 − 1), where  
x = −1 + 2[(DIM − 1)/(365 − 1)]; hQ , aQ , and 

pQ = matrices of regressors (r0, r1, and r2) linking 

y with h, a, and p. The herd-time effect was 
introduced because earlier studies on the same 
data set showed that the portion of total variance 
explained by that effect was not negligible 
(Gengler & Wiggans, 2001). 
 

Estimated (co)variance components were 
transformed into lower Cholesky triangular ma-
trices: )(cholL ijij G= . Every coefficient k of the 

matrices was modeled as a constant, linear, and 
quadratic function of standardized production 
level p:  

2
jik2jik1ik0ijk ppl α+α+α= . 

 
Data were analyzed with and without adjust-

ment for heterogeneous variance (HV). Regular 
mixed-model equations using the mean coeffi-
cients ( ik0ijkl α= ) provided solutions without HV 

adjustment. Mixed-model equations with trans-
formed regressions, where T were from equations 
using standardized mean herd test-day production 
over 2 yr, provided solutions with HV adjustment. 

 
Rankings were computed for cows and for 

sires with ≥10 daughters from both unadjusted 
and HV-adjusted results. Estimated breeding 
value (EBV) was expressed on a 305-d lactation 
basis; EBV from the model including transforma-
tion were back-transformed to a mean scale. For 
cows, the same was done for the sum of EBV and 
PE effects. Second, variances of solutions for 
genetic and PE effects were computed in every 
herd, test-day, and milking-frequency class and 
compared with mean milk production level of that 
class. If adjustment was successful, correlation 
between those variances and mean production 
level should be reduced.  

 
 

Results and Discussion 

 
(Co)variance components for low-, medium-, 
and high-producing herds. Raw (co)variances 
were estimated and modeled. Only mean and ex-
treme values for p (−1, 0, 1) are reported. Figures 
1, 2 and 3 show heritabilities and relative vari-
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ances for PE and common herd environment, 
respectively. 
 

Heritabilities were substantially higher for 
high-producing herds Medium-producing herds 
were intermediate for heritability, which was only 
partially reflected in PE, however, as only high- 
producing herds differed substantially. 

 
Common herd-time environment did not show 

such a clear pattern. Low-producing herds showed 
a higher level of variance at the beginning of 
lactation, medium-producing herds at the end of 
lactation, and high-producing herds in the middle 
of lactation. 

 
As shown in Figure 4, the pattern of pheno-

typic variance over a lactation was not consistent 
across herd production levels. In low-producing 
herds, variances were nearly constant. In medium-
producing herds, variances increased slightly in 
later lactation, and in high-producing herds, the 
rate of this variance increase was substantially 
greater. Therefore, phenotypic variance correction 
should allow different corrections according to 
lactation stage. 
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Figure 1. Heritabilities in high-, medium-, and low- 
producing herds. 
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Figure 2.  Relative PE variances in high-, medium-, 
and low-producing herds. 
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Figure 3. Relative common herd-time environmental 
variances in high-, medium-, and low-producing herds. 

 
 
Although phenotypic correlations were re-

markably stable, genetic correlations decreased 
with production level, especially for very low-
producing herds.. Figures 5 and 6 show this for 
the correlation of day 5 with other days in milk. 
This finding could have a consequence on animal 
ranking because assuming correlations that are too 
high might produce some problems in early eval-
uations of dairy sires if a bull is tested in low-
producing herds and has only daughters in early 
lactation. 
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Figure 4.  Absolute phenotypic variances in high-, 
medium-, and low-producing herds. 
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Figure 5. Genetic correlations between day 5 and 
other days in milk in high-, medium-, and low- 
producing herds. 
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Figure 6. Phenotypic correlations between day 5 and 
other days in milk in high-, medium-, and low- 
producing herds. 
 
 

Comparison of rankings with and without HV 
adjustment. Rank correlations for EBV were over 
0.99 and over 0.98 for PE. However, some re-
ranking still occurred as shown in Tables 1 and 2 
for the top 10 cows and sires with ≥10 daughters 
with records, respectively. The greatest re-ranking 
occurred for EBV + PE. Although not totally free 
from re-ranking, EBV were quite stable. One bull 
with 211 daughters gained 10 positions, which is a 
large increase for an animal with that many 
daughters. 

 
Table 1. Comparison of rankings for 305-d lactation 
EBV and PE effects with and without HV adjustment 
for top 10 cows. 
 

Ranking without HV adjustment Ranking with 
HV adjustment EBV EBV + PE 
 1  1  5 
 2  3  4 
 3  2  7 
 4  4  9 
 5  5  3 
 6  8  1 
 7  6 10 
 8 15 24 

 9 11  2 
10 25 50 

 
 

 
 
 
 
 
 
 
 
 
 
 

Table 2. Comparison of rankings for 305-d lactation 
EBV with and without HV adjustment for top 10 bulls 
with ≥10 daughters with records. 
 

EBV ranking 
With HV 
Adjustment 

Without HV 
adjustment  Daughters (no.) 

 1  1   54 
 2  2   67 
 3  3  159 
 4 14   14 
 5  6  141 
 6 16  211 
 7  4   10 
 8 11   10 
 9  7   10 
10  9   12 

 
Comparison of intra-herd, test-day, and 

milking-frequency class variances with and with-
out HV adjustment. Table 3 shows that variances 
of genetic and PE regressions solutions within 
herd, test-day, and milking-frequency classes 
were less correlated with class mean yields with 
HV adjustment. However, the reduction in corre-
lation was less for genetic than for PE regressions, 
for which correlations became nearly 0. The most 
likely explanation is that the assumption of perfect 
genetic correlations across environments reduces 
effects of HV adjustment, which also could 
explain the low level of re-rankings. 
 
Table 3.  Correlations of Legendre coefficient vari-
ances with milk yield levels with and without HV 
adjustment. 
 

Genetic regression PE regression HV 
Adjustment r0 r1 r2 

 
r0 r1 r2 

No 0.47 0.57 0.56   0.48 0.56 0.54 
Yes 0.42 0.40 0.39   −0.02 0.12 0.10 

 
 

Conclusions 

 
An alternative way to address the issue of 
heterogeneity of test-day yield (co)variances is to  
transform regressors for random regression 
effects. Example computations to demonstrate the 
method showed that some animal reranking 
occurs because of the effect of this transformation 
on genetic and PE effects. In addition, correlations 
of intra-herd test-day frequency class variances 
for genetic and PE regressions with production 
level were reduced with HV adjustment. 
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Implications 

 
The presented HV adjustment suggests innova-
tive solutions for a number of problems. First, the 
general concept can be used in both pre-
adjustment (single transformation of regressors  
before data analysis) and integrated (transforma-
tion during analysis and updated) evaluations 
systems. Because every regression of every test-
day yield of a given cow can be adjusted, extreme 
flexibility can be achieved. For example, for 
multi-breed evaluation, differences in (co)vari-
ance structures among breeds can be accommo-
dated and even crossbreds included by interpola-
tion based on proportion of genes. This benefit 
could be especially important if breeds are to be 
evaluated together because of their simultaneous 
presence in contemporary groups or the existence 
of crossbreds (e.g., Jerseys and Holsteins in the 
United States and dual-purpose Belgian Blues and 
Holsteins in Belgium). 
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