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Introduction

Program Installation

A batch file is included on the distribution diskette which interactively prompts the user for

the compiler to be used (Microsoft Powerstation (MSP) , Microway NDP (MW) , Microsoft 5.1

(MS5.1), or "other") and the version of the program to install (SPARSPAK or FSPAK).  Based on

the user's selection a compressed copy of the files is expanded on the destination disk.  To install

the programs, first create a subdirectory for installation of the MTDFREML program files.  This

subdirectory should be the "active" subdirectory for that drive, i.e., when you chose that drive from

DOS, that subdirectory should be the current one. Finally to install the programs change the active

drive to the diskette drive containing the programs (e.g., A:) and type: install x <return>, where x is

the drive (often C) you want to install the program files.  No colon (:) should be included in this

command.  The install program currently supports drives C through H, but the batch file can be

modified to include other drives if your installation requires that change.  A set of commands that

will install the MTDFREML programs in subdirectory NEWREML on drive C from diskette drive

A is: 

C:

MD \NEWREML

CD \NEWREML

A:

INSTALL C

The subdirectory can be given any valid DOS subdirectory name; NEWREML is used only as an

example.  If the hard drive is something other than C, or the diskette drive is not A:, make the

appropriate changes to the above commands.  

After installation, the subdirectory will contain two batch files that can be used for

compiling the programs, setup.bat and compile.bat.  These files must be modified on systems other

than the MSP and MW FORTRAN compilers.  The MS files are included as an example only on

the MS5.1 and "other" installations.  The setup.bat file will need to be run only once on most
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systems.  This file compiles subroutine libraries that will not change (e.g., MTDFREML utility

subroutines, SPARSPAK, and FSPAK files).  These files will usually not need to be changed and

can be compiled once to create object files which can be linked to other programs as needed.  The

compile.bat file compiles the main MTDFREML programs, including MTDFNRM, MTDFPREP,

and MTDFRUN (and its main subroutine MTDFLIK). The MTDFNRM file will likely be changed

infrequently and may be moved to the setup.bat file if desired.  The remaining programs MUST be

recompiled if any changes are made to the PARAM.DAT file.  The only exception to that

requirement is a change to the sparse matrix storage vector length (MAXORDS, MAXNZE, or

NHASH), in which case only MTDFRUN and MTDFLIK need to be recompiled.

For users who will be running on systems other than PCs, it would be easiest to install the

programs to a PC temporarily and then move the files to the system where they will be run.  For

users without access to a PC, the files are compressed using PKZIP 2.04g, which is compatable

with GZIP, a public domain program available from GNU software.  The FSPOTH.EXE and

SPKOTH.EXE contain the FSPAK and SPARSPAK versions, respectively, of the MTDFREML

programs for the non-supported compilers.

Introduction and Flow Charts

For users who cannot wait to begin, the following two charts show the basic steps for

compiling and running the set of three programs for MTDFREML.  There are now two verstions of

the program, one based on the commercial version of SPARSPAK and one using the FSPAK

subroutines developed by Misztal and Perez-Enciso.  To use the SPARSPAK version of the

programs  a license from University of Waterloo, Ontario, Canada for the SPARSPAK subroutines. 

Because the license allows modification, the modified SPARSPAK subroutines will then be legal. 

The FSPAK version can be used without royalty for noncommercial puposes.  Commercial users of

the FSPAK version of the program should obtain a license for the FSPAK subroutines.  A version

of the commercial user invoice is included at the end of this manual.  Parameter statements that are

the same for programs MTDFPREP, MTDFRUN, and subroutine MTDFLIK are in an "include"

file called PARAM.DAT.  These statements may need to be modified for special models and
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available computer memory.  The first two chapters of this manual can be used to answer most

questions that come up and are likely to be essential for less experienced users.  This "short

version" is for the standard FORTRAN  77 source code statements on the distribution disk that

have been tested with a Microsoft Powerstation FORTRAN compiler on a DOS based personal

computer.  For any compilers other than the Microway NDP FORTRAN compiler, the file

MSTIME.FOR will need to be included in the file to link with all of the programs.  This file

contains the system dependent timing routines.

 Records must be arranged with integer fixed fields to the left (identification, levels of fixed

factors and other random factors) and real fields to the right (covariates and measurements of

traits).  Fields for missing measurements must contain a specified numerical indicator

corresponding to a missing observation for that effect (e.g., 0.0, -99.99).

Good luck.  If you need further help read Chapter 1, which gives step by step instructions

for compiling and executing, and Chapter 2 which contains numerical examples.  

Chapter 3 describes analyses for models other than animal models including non-genetic

models and also provides some cautions for the use of MTDFREML and sparse matrix methods. 

Chapter 4 describes the algebra involved in the computations while Chapter 5 outlines the

computational strategies which may help if modifications to the programs are attempted. 

Modifications are encouraged but the authors cannot provide much help if problems result.  The

difficulty of having to apply constraints to make the MME full rank as required by SPARSPAK has

been overcome as shown in Chapter 6.  A critical part of the MTDFREML programs is the Simplex

algorithm to find the set of parameter estimates to maximize the likelihood function given the data. 

The Simplex procedure is described in detail in Chapter 7.  Another non-linear maximization

algorithm is known as Powell's method.  The Simplex method and Powell's method are compared

in Chapter 8 and some suggestions for use of the Simplex method are made.
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Compile Summary

MTDFNRM Main program to compute A-1 and recode identification numbers of animal, sire, and

dam (or sire, sire of sire, and maternal grandsire of sire).  Key parameter to change

is MAXAN, maximum number of animals.  

Subroutines to be linked are in MTDFSUB.

MTDFPREP Takes data from history file of animal, recodes identification of animal (or sire)

based on MTDFNRM, recodes levels of fixed and random factors to create new data

file for MTDFRUN.  

Include 'PARAM.DAT', a file with key parameters for vector dimensions.

Subroutines to be linked are in MTDFSUB.

MTDFRUN Uses data prepared by MTDFPREP to search for variance-covariance matrices to

maximize the log likelihood with a DFREML algorithm.

Include 'PARAM.DAT', a file with key parameters for vectors.  Subroutines to be

linked are:

MTDFSUB Utility subroutines

MTDFLIK Subroutine to evaluate the logarithm of the likelihood for current values of the

parameters.

SPARSPAK Depending on the compiler and version of the programs installed (i.e., SPARSPAK

or FSPAK), there are additional files containing sparse matrix subroutines.  The

SPARSPAK subroutines are: in two files (SPARSPAK.FOR and MMDUPD.FOR)

for the MSP compiler (the compiler crashes if MMDUPD is compiled with

optimization and thus  is separated), in ten files for the MW compiler (SPARSN2.F,

SPARSN3.F, ... SPARSN10.F, and SPARSNG.F), in eleven files for the MS5.1

compiler (same as MW except SPARSN4.FOR is split into SPARSN4A.FOR and

SPARSN4B.FOR due to compiler limitations), and in one file (SPARSPAK.FOR)

for other compilers.
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CHAPTER ONE: User Notes for MTDFREML

Introduction

Multiple Trait Derivative-Free Restricted Maximum Likelihood, denoted as MTDFREML, is a

set of programs to estimate (co)variance components using animal models and derivative-free REML.

These programs can be used for single trait, bivariate, and multiple trait animal models with repeated

records including traits with sex limited expression.  Solutions for fixed effects, breeding values, and

uncorrelated random effects, sampling variances of solutions and contrasts and expectations of

solutions can also be obtained.  The statistical principles are shown in Chapter 4.

Animal models can incorporate additive genetic effects not only for animals with records, but also

for parents and other relatives without records included in the pedigree file.  One additional correlated

random effect, (e.g., maternal genetic) and several uncorrelated random effects can be used for each

trait in the analysis.  Fixed effects, covariates, and uncorrelated random effects are specified separately

for each trait.

Two versions of these programs are distributed.  The first version incorporates a sparse matrix

package, SPARSPAK (George and Ng,  1984).  A license from the University of Waterloo, Ontario,

Canada, is required to use SPARSPAK (Manager, Software Coordination, 200 University Avenue W.,

Waterloo, Ontario, N2L 3G1, Canada).  The second version of the programs uses the FSPAK programs

developed by Miztal and Perez-Enciso which use the public domain SPARSPAK (George and Lui,

1980) programs.  These programs were modified by Elzo to include the Kachman modifications to

handle singularity of the MME.    The FSPAK version can be used without royalty for noncommercial

puposes.  Commercial users of the FSPAK version of the program should obtain a license for the

FSPAK subroutines.  A version of the commercial user invoice is included at the end of this manual.

The size of analyses that can be run depends on the number of traits and animals in the analysis,

and computer speed and memory.  For the derivative-free method, convergence for (co)variance

component estimation is when the global maximum of the log likelihood function is found (see
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Chapter 7).  The description in this chapter assumes some mixed model, statistical and computer

knowledge.  Basic principles for DFREML can be found in Meyer (1991) and in Chapter 4.

Computing Considerations

All programs are written in FORTRAN 77.  The simplex algorithm used in the last program

(MTDFRUN) is based on Meyer's original univariate DFREML program (1988a,b).

The programs were developed on a 486 microcomputer using a Microway NDP FORTRAN 386

compiler, but should run with minor modifications on any platform with a FORTRAN compiler.  At

least 16 MB of memory is advisable, especially for the MTDFRUN program.

Currently, all programs have interactive input/output defined to standard FORTRAN 77 units of

5 (input from keyboard) and 6 (output to screen).  Two areas that may need modification on platforms

other than PC's are the input/output file connections and the timing routines.  Currently, the subroutine,

FCONCT (Meyer, 1988b), connects most input/output files to standard FORTRAN unit numbers.

FCONCT uses standard DOS file naming conventions to connect the FORTRAN unit numbers to the

program.  Obviously, this will not work on all systems.  Subroutines CTIME and ETIME calculate time

and elapsed time in format hh.mm.ss by calling DOSTIM (a Microway NDP FORTRAN compiler

function).  Timing routines for the Microsoft compilers are included in a file called MSTIME.FOR if

Microsoft or "other" compiler is requested.  For other compilers, modification of the two subroutines

in the file will be necessary.  On platforms where timers are not available values of zero can be

returned for all variables and timing output can be ignored.

Using an INCLUDE statement

The file PARAM.DAT contains maximum parameter definitions for variables and arrays in

programs MTDFPREP and MTDFRUN and subroutine MTDFLIK.  The INCLUDE statement brings

PARAM.DAT into MTDFPREP, MTDFRUN and MTDFLIK to provide consistent parameter

definitions.  In the PC environment, the INCLUDE statement looks like :

INCLUDE 'PARAM.DAT'

In MVS/TSO environments, the INCLUDE statement is :

INCLUDE 'QCAROL.PARAM.DAT'
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In CMS environments, a library must be created that contains the INCLUDE source code.  A possible

exec to create the library containing the INCLUDE source code:

/* An exec to use INCLUDE statement in MTDFREML  */

TRACE RESULTS

"MAC GEN LIB1 PARAM"

"GLOBAL MACLIB LIB1"

The PARAM file must have a filetype of COPY in the CMS environment.  After the library is created

on CMS, the INCLUDE statement in MTDFPREP or MTDFRUN has the form:

INCLUDE(PARAM)

Check the system documentation for variations of this code if problems arise. Alternatively, the source

code in PARAM.DAT could be placed directly into MTDFPREP and MTDFRUN programs and

MTDFLIK subroutine replacing the INCLUDE statement.  Note that if PARAM.DAT is changed,

MTDFPREP, MTDFRUN, and MTDFLIK must be recompiled, i.e., the programs must have the same

parameter definitions.

If these programs are run on a mainframe system, the type of memory used to run the programs

may require a program modification.  Two types of memory on mainframe machines are actual and

virtual.  If a mainframe has virtual memory available, known as above the line memory, accessing

virtual memory for MTDFRUN and possibly MTDFNRM may be required.  The MTDFLIK subroutine

of MTDFRUN may need memory above the line if the analysis requires large amounts of storage space

for the vector S (required for SPARSPAK).  The vector S holds all non-zero MME coefficients.

FORTRAN running on CMS and MVS/TSO systems requires that variables needing virtual memory

be placed in a named dynamic common block and uses the @PROCESS DC option.

Microsoft FORTRAN Powerstation

The programs have been migrated to this compiler and should compile and execute without

modification to source code or batch files.  For a desctiption of the compiler switches used, see the

Microsoft Powerstation Fortran User's Guide.

Microsoft FORTRAN 5.1

Support for this compiler is being phased out.  The following information is included for
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completeness and for information for those still using this compiler.  The distributed programs are no

longer tested with this compiler, and the following recomendations are based on older versions of

MTDFREML.

With the Microsoft FORTRAN compiler (ver. 5.1), it is advisable to use Microsoft Windows (ver.

3.1).  Using a version less than 3.1 may produce erratic results.  The following guidelines should be

followed:

1. All files with FORTRAN source code must have an extension of .FOR.

2. All programs must be run under Windows to use more than 1 MB of extended memory.  All

programs need > 1 MB extended memory.

3. To answer interactive questions through a file, unit 5 must be redefined to another unit. 

Microsoft only allows unit 5 to be input from the keyboard, e.g., change IUN5=5 to IUN5=8.

4. Make sure to link the MSTIME file for access to timing routines.

To compile and link programs:

1. MTDFNRM.FOR, MTDFSUB.FOR, and MSTIME.FOR.  Switches needed to compile and

link are /MW /AH and /Gt.  The /MW switch incorporates Microsoft Windows libraries.

Switch /AH defines huge memory models and /Gt allocates data outside the default data

segment for the huge memory modules.

2. MTDFPREP.FOR, MTDFSUB.FOR, and MSTIME.FOR.  Switches needed to compile and

link are /MW /AH and /Gt.

3. To compile and link MTDFRUN.FOR, each component must be compiled separately.

SPARSN4.FOR (which is a series of subroutines) may need to be broken into 2 parts because

it may be too large to compile using the Microsoft compiler.  

a) For each component, MTDFRUN.FOR, MTDFLIK.FOR, MTDFSUB.FOR,

MSTIME.FOR, SPARSNG.FOR and SPARSN2.FOR through SPARSN10.FOR, the

compiler switches need to be /MW /AH /Gt /c.  Switch /c indicates compile but do not

link.

b) In compiling each component, warning messages may appear for MTDFRUN, MTDFLIK

and MTDFSUB.  These are okay.  Error messages will appear during the compilation of

the SPARSPAK modules.  These are recoverable errors, so do not be alarmed.  A

statement that MTDFRUN and MTDFLIK are too large for post-optimization will appear.

This is okay.

c) A .TXT file is needed so MTDFRUN can be linked and become an executable file.  This

.TXT file could be RUN.TXT, but can be called any name.  The .TXT file must include

the following information:
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names of all programs separated by a space 

name of .exe file -- leave a blank line if want it called the first program name.exe

name of map file -- leave a blank line if a map file is not wanted

name of library file with options of /packd and /seg:256

path of where fl.def file is (make sure you place a hard return at the end of this line).

ex.  Sample of .txt file :

mtdfrun mtdflik mtdfsub mstime sparsng sparsn2 sparsn3 sparsn4 sparsn5 sparsn6 sparsn7 sparsn8 sparsn9 sparsn10 sparsn4a

mtdfrun.exe

/nod llibfew /packd /seg:256

c:\fortran\binb\fl.def

If the fl.def file is not found, check if Microsoft FORTRAN was installed for DOS and Microsoft

Windows.  The fl.def file is part of the Microsoft Windows installation.

d) Type in link @name of txt file.txt at C:> prompt and hit return.  This will create the

mtdfrun.exe file.

ex.  C:>link @run.txt  <return>

MTDFREML Programs

The three MTDFREML programs:  1) form the inverse of the relationship matrix, 2) prepare for

set up of the weighted least squares part of MME and 3) solve the MME for (co)variance components,

solutions for fixed and random effects, contrasts of solutions, sampling and contrast variances of the

solutions, expectations of fixed effect solutions, and prediction error variances (PEV) of animal

solutions.  The following programs and subroutines are needed:

MTDFNRM: Set Up A-1

MTDFNRM Forms non-zero elements of A-1 using an ASCII free formatted pedigree

file using the rules of Quaas (1976).  Program reorders animal, sire and

dam identification (for animal model) or alternatively, sire, sire of sire and

maternal grandsire of sire identification (for sire models). For groups

models, non-zero elements of W replace elements of A-1 using rules of

Westell (1988).

MTDFSUB Series of FORTRAN subroutines needed in MTDFNRM, MTDFPREP and

MTDFRUN.  Some routines written by K. Meyer (1988b), others by K.

Boldman and P. VanRaden.
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MSTIME Timing routines

MTDFPREP: Set Up MME

MTDFPREP From an ASCII data file, forms MME according to model specifications

supplied to the program.

MTDFSUB Series of FORTRAN subroutines needed in MTDFNRM, MTDFPREP and

MTDFRUN.

MSTIME Timing routines

MTDFP5.DAT This file is optional and will contain answers to interactive questions asked

in running MTDFPREP.  To use this file, FORTRAN statements to open

unit 5 must have comments removed in MTDFPREP in order for the

program to read answers to questions from this file instead of from the

keyboard.  An alternative for DOS and UNIX based systems is to execute

MTDFPREP using the following format:

mtdfprep.exe < mtdfp5.dat

This assumes that the executable program is called mtdfprep.exe and the

input file is mtdfp5.dat (note that any legitimate filename can be

substituted).  It is important to remember that filenames and commands are

case sensitive in UNIX!

PARAM.DAT FORTRAN code for INCLUDE statement that contains parameter

statements for maximum limits for variables such as maximum number of

animals and fixed effects.  If the user opts not to use the INCLUDE

statement, these source statements can be placed directly into source code

for MTDFPREP where the INCLUDE statement is located.

MTDFRUN: Solve MME for (Co)Variance Components and Solutions

MTDFRUN From coefficients of MME formed in MTDFPREP, estimates of

(co)variance components using the SIMPLEX algorithm, and solutions for

covariates, fixed and random effects, sampling and contrast variances and

standard errors of solutions and expectations for fixed effect solutions can

be obtained.

MTDFLIK Subroutine needed by MTDFRUN.F that creates and solves mixed model
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equations and calculates the log likelihood.

MTDFSUB Series of FORTRAN subroutines needed in MTDFNRM, MTDFPREP and

MTDFRUN.  

MSTIME Timing routines

PARAM.DAT FORTRAN code for INCLUDE statement that contains parameter

statements for maximum limits for variables such as maximum number of

animals and fixed effects.  If the user opts not to use the INCLUDE

statement, these source statements could be placed directly into source

code for MTDFPREP, MTDFRUN, and MTDFLIK where the INCLUDE

statements are located.  Be sure the same PARAM.DAT file is used for all

three locations, i.e., if PARAM.DAT is changed, recompile MTDFPREP,

MTDFRUN, and MTDFLIK.

SPARSPAK Series of SPARSPAK modules of subroutines written in FORTRAN

needed to store, factor and solve MME.  The file names and numbers of

files will vary with the compiler used. All versions include SPARSNG, a

version of SPARSPAK subroutines modified by S. D. Kachman that

automatically find dependencies in MME and set constraint equations to

zero in solving MME and calculating log likelihood.

MTDFR5.DAT This file is optional and will contain answers to interactive questions asked

by MTDFRUN.  If this file is used, MTDFRUN reads answers from this

file instead of from the keyboard.  To use this file, FORTRAN statements

to open unit 5 must have comments removed in MTDFRUN in order for

the program to read answers to questions from this file instead of from the

keyboard.  An alternative for DOS and UNIX based systems is to execute

MTDRUN using the following format:

mtdfrun.exe < mtdfr5.dat

This assumes that the executable program is called mtdfrun.exe and the

input file is mtdfr5.dat (note that any legitimate filename can be

substituted).  It is important to remember that filenames and commands are

case sensitive in UNIX!

MTDFNRM: Computing Inverse of Numerator Relationship Matrix

Pedigree information may be in a file separate from the data when animals without records

need to be included in the relationship matrix.  Animals can be repeated in the data file, e.g., dairy

cows may have multiple lactation records in the data set - the program will ignore duplicate pedigree
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information.  The file is assumed to be in free format (i.e., spaces between all variables).  The source

code can be easily modified to accommodate formatted read statements if animal identification

numbers are not separated by spaces.  The pedigree file needs to include numeric fields for:

* Animal ID, sire ID and dam ID (optionally sire ID, sire of sire ID and maternal grandsire

of sire ID for sire models).

* If both parents of an animal without a record are unknown, that animal does not

need to be in the pedigree file as an animal because it does not provide ties.

* If a sire ID or dam ID is missing, the missing parent ID must be coded as a 0. If Westell's

rules for group effects are used, the missing parent ID is the number for its group.

* If an animal has missing parent(s), and if the missing parent is needed to code for a

maternal or paternal correlated random effect, the missing parent must be coded with

a unique number other than 0. For the groups model, the number for the missing parent

must be in the animal field with its parents assigned to groups.

* The largest ID the program can accommodate is the maximum INTEGER the 

compiler can handle (231 - 1 = 2,147,483,647 for most FORTRAN compilers).  If IDs are

larger than this or include characters, IDs must be recoded prior to running MTDFNRM.

In the parameter statement of MTDFNRM, the maximum number of animals (MAXAN) in

the relationship matrix can be changed.  MAXAN represents both animals with records and base

animals.  [This program runs more slowly than the original DFNRM program of K. Meyer.  DFNRM

can be used to form the A-1, but it requires a binary pedigree file, MAXAN and MAXNRM

(maximum number of non-zero elements in A-1) must be changed in main program and all

subroutines, and the ratio between MAXAN and MAXNRM must be at least 1:10 for the program

to run correctly.  If DFNRM is used, the maximum ID is 99,999,999.  Files produced by DFNRM are

DF11 (binary) and DF44 (binary).  The read statement for unit IUN11 in MTDFPREP will also need

to be modified].

Running MTDFNRM

1.  Compile MTDFNRM.  MTDFSUB (subroutines) needs to be linked.

2.  Run MTDFNRM.  This program will calculate A-1.  The program asks :

a) Do you want to calculate A-1 for animal model (0) or sire-maternal
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 grandsire model (1)?

b) Maximum animal ID in pedigree file (used for data verification).

c) Minimum animal ID in pedigree file (used for data verification - 0 will work).

d) Name of free formatted file containing pedigree information,

e.g., ANIMAL.PED.

e) Write pedigree file with original and recoded Ids and inbreeding.

f) Number of integer fields in pedigree file.

g) Position of animal ID in vector of integers.

h) Position of sire ID in vector of integers.

i) Position of dam ID in vector of integers.

j) Number of genetic groups (if no groups enter 0).

The number of animals in A-1 will appear on the screen and in file MTDF56.  This number

is needed later for MTDFPREP.  MTDFNRM produces three output files :

MTDF11 number of animals, followed by vector of animal IDs sorted in ascending order

in ASCII format; recoded ID followed by original ID.

MTDF13 number of animals, followed by one line for each animal in the pedigree in the

following format:

Recoded ID Original ID Inbreeding Coefficient

Animal Sire Dam Animal Sire Dam Animal Sire Dam

MTDF44 .5 log*A* followed by A-1 coefficients in binary format.

MTDF56 log file of information for MTDFNRM run; number of animals, inbreeding

information, etc.

MTDFPREP: Preparation for forming mixed model equations
In the data file for MTDFPREP integer variables, such as animal ID, dam ID (for maternal or

permanent environment effects) and numerical identities of fixed effects must be first, followed by

real variables, which include covariates and trait measurements.  The data file should be in free format

with at least one space separating variables.  Otherwise, the source code can be modified for a

formatted read of unit IUN33.

Models can be different for each trait in the analysis.  The number of fixed effects, covariates
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or uncorrelated random effects are usually not limiting for a trait.  An INCLUDE file, PARAM.DAT,

contains maximums for several variables used in the programs.  The limits must be large enough to

accommodate the data set.  If not, error messages or wrong results will be obtained.  Limits that can

be changed in PARAM.DAT are :

MAXTRT maximum number of traits in the analysis

MAXINTR maximum number of integer variables on each record

MAXR8 maximum number of real variables on each record

MAXANIM maximum number of animals

MAXCOV maximum number of covariates per trait

MAXNFR maximum number of regression coefficients per trait

MAXFIX maximum number of fixed effects per trait

MAXNFL maximum number of levels for each fixed effect

MAXCONS maximum number of constraints

MAXRAN maximum number of uncorrelated random effects per trait

MAXNRL maximum number of levels for each uncorrelated random effect

MAXINV maximum order of submatrix to obtain inverse elements and

maximum number of elements in a contrast

MAXORDS used by SPARSPAK version only: maximum length of S (work)

vector for SPARSPAK  (holds non-zero MME elements),

also called MAXSA in SPARSPAK

MAXNZE used by FSPAK version only: maximum number of non-zero

elements in the coefficient matrix

NHASH used by the FSPAK version only: length of hash table used to build

list of non-zero elements of coefficient matrix.  This space is reused

as work space by FSPAK once the linked list is built.

Fields in the data file can be used for more than one trait and can have more than one name

within or across traits.  For example, for weaning weight in beef cattle, when additive, maternal and

permanent environmental random effects are in the model, the dam ID field can be used to indicate

both maternal genetic and permanent environment effects. More than one uncorrelated random effect

can be specified for each trait in the analysis.  Within trait, uncorrelated random effects will, of

course, be uncorrelated.  However, if the same uncorrelated random factor is used across traits, a

covariance can be estimated.

The MME set up by MTDFPREP have the following order :

covariate(s) trait 1

.
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covariate(s) trait n

fixed effect(s) trait 1

.

fixed effect(s) trait n

additive genetic animal effect trait 1

.

additive genetic animal effect trait n

additional correlated random effect trait 1 (e.g., maternal genetic)

.

additional correlated random effect trait n

uncorrelated random effect(s) for trait 1

.

uncorrelated random effect(s) for trait n

The number and types of equations in the MME depend on specific models and data.

Equations in the above list that do not apply to a specific analysis do not appear. All models will have

additive genetic animal effects.  Uncorrelated animal effects will result from a pedigree file with all

sires and dams missing.  Genetic variances cannot be estimated if A = I for an animal model but a sire

or non-genetic model can be used with A = I.

Running MTDFPREP

1. Compile MTDFPREP.  MTDFSUB (contains subroutines) needs to be linked and

PARAM.DAT must be available.

2. Run MTDFPREP.  The program reads MTDF11 and asks the following questions:

a) Name of data file (IUN33), e.g., ANIMAL.DAT

b) Description of analysis (up to 6 lines, terminated with a * in column 1 after last

comment line)

c) Number of integer variables in each line of data file

d) Number of real variables in each line of data file

e) Number of traits in the analysis 
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*** Questions f-y are repeated for each trait with the exceptions of q) and r)

f) Name of trait

g) Position for trait in list of real variables

h) Missing value designation for trait (e.g., 0,0.0, -999.9, etc.)

*** Questions j-l will be repeated for each covariate

i) Number of covariates

j) Name for first covariate

k) Position of first covariate in list of real variables

l) Type of covariate (linear, quadratic, etc)

*** Questions n-p will be repeated for each fixed effect

m) Number of fixed effects

n) Name of fixed effect

o) Position of fixed effect in list of integer variables

p) Write levels of fixed effect to unit 66 (MTDF66): 1 yes; 0 no

q) Position of animal ID in list of integers (same for each trait)

r) Number of animals in A-1  (from MTDFNRM)

*** If number of second animal effects > 0 answer questions t) and u)

s) Is there a second animal (e.g., maternal) effect (1 yes; 0 no)

t) Name of second animal effect 

u) Position of second animal effect in list of integer variables 

*** Questions w-y repeated for each uncorrelated random effect

v) Number of uncorrelated random effects (e.g., PE, litter)

w) Name of uncorrelated random effect 

x) Position of uncorrelated random effect in list of integers 

y) Write levels of uncorrelated random to unit 66 (1 yes; 0 no)

*** Question z will be asked if there is at least one covariate or fixed effect

z) Save labels to match with mean estimates for covariates and fixed effects in

MTGSRUN (1 yes; 0 no)

*** Question aa will be asked if there is at least one uncorrelated random effect

aa) Save labels to match with mean estimates for uncorrelated random effects in

MTGSRUN (1 yes; 0 no)
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If the option to write levels of fixed effects or uncorrelated random effects to unit 66

(MTDF66) is 1, summary statistics for each level will be written to the output log.  With many levels

of a fixed effect or uncorrelated random effect, answer no (0) to avoid a large output log.

After gaining familiarity with the program, putting all the analysis information in a file

(MTDFP5.DAT) for the program to read is easier than entering the data interactively.  However,

please enter the data interactively to become familiar with the questions the first few times.  If a

mistake is made answering questions interactively, the program must be started from the beginning.

To change the program to read answers from an input file, remove the appropriate comment lines in

MTDFPREP.F and/or MTDFRUN.F in the file definition section for unit 5 or for DOS and UNIX

systems with exe files execute MTDFPREP withmtdfprep<mtdfp5.dat.  See Chapter 2, Examples,

for how to set up MTDFP5.DAT.

MTDFPREP produces the following files :

MTDF21 - Labels for covariate and fixed effect labels if requested

MTDF22 - Labels for uncorrelated random effects if requested

MTDF50 - information on model used in MTDFRUN.  Information includes :

* Number of traits, effects, animals, regression coefficients, equations, and columns

that contain random effects.

* Number of covariates by trait.

* Number of regression coefficients by trait (if no. covariates > 0).

* Number of fixed effects by trait.

* Number of levels for each fixed effect by trait (if no. fixed effects > 0).

* Starting equation number for direct effects by trait.

* Number of second animal (or maternal) effects by trait.

* Starting equation number for maternal effects by trait (if no. maternal > 0).

* Number of uncorrelated random effects by trait

* Number of levels for each uncorrelated random group, column of uncorrelated

random group in data set (if no. uncorrelated random effects > 0).

* Starting equation number of uncorrelated random effects, uncorrelated random group

number, and column positions from original data of each uncorrelated random effect

by trait (if no. uncorrelated random effects > 0).
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* Maximum number of repeated records by trait

MTDF51 - recoded data for MTDFRUN in binary format

MTDF52 - summary for each animal by record in binary format

MTDF66 - program log that includes summary statistics and order and format of MME

Prior to running MTDFPREP, make sure that any previous output files to be saved from MTDFPREP

are renamed or copied elsewhere, e.g., MTDF66.  MTDFPREP will delete or overwrite output files

written in earlier runs of MTDFPREP.

MTDFRUN: Estimating Variance Components and Solving  MME

MTDFRUN has several options based on the MME and produces corresponding output --

(co)variance components, solutions for covariates, fixed, and random effects, sampling variances and

standard errors of solutions and contrasts, and expectations of solutions.  

The first two interactive questions in MTDFRUN to be answered are :

TYPE OF ANALYSIS :

Is this a continuation of previous run?

For variance components chose (continue, yes = 1) to read in previous and existing

simplex and continue iteration to improve local convergence or chose (n = 0, for start or

restart) to construct new  simplex and look for global maximum

For solutions to MME and standard errors of solutions chose (continue, yes = 1) to use

previous final estimate from variance component estimation to build MME or chose (no

= 1, for start or restart) to enter variance components for building MME.

and

OPTION FOR THIS RUN :

1 . . . iterate for variance components

2 . . . solutions for MME only
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3 . . . solutions for sampling variances only

4  ...  solutions for MME then sampling variances 

For expectations of solutions use option 3 or 4;

After contrasts are completed, you will be 

asked if expectations are wanted.

The rest of this section is divided into two parts.  The first part is devoted to beginning an

analysis.  The second part is devoted to continuation of an analysis.

Initial run or cold start of MTDFRUN

This option should be used when a new analysis is being started for the first time or as a fresh

restart to check if the log likelihood is the global maximum and not a local maximum for variance

component estimation.  The MTDF58 file, which contains the SPARSPAK reordering for a particular

set of MME may or may not be present. 

One question is :

No. of constraints for this analysis?

SPARSPAK requires that the MME be full rank.  If equations corresponding to fixed effects need to

be constrained to make the MME full rank, two answers are allowed.  The actual number of

constraints can be put in and then a prompt for each equation number to constrain will appear.

However, too many constraints must not be imposed because this may lead to incorrect solutions.

Alternatively, a 0 can be entered.  If a 0 is entered and model dependencies are found, modifications

in the SPARSNG subroutine (S. D. Kachman, Chapter 6)  find MME dependencies and constrain

those solutions to 0.   After convergence has been declared, zeroes in the solution vector identify

which equations were set to 0 and thus, the model dependencies.

Two additional interactive questions are asked that are apply only to OPTION 1 :

The number of parameters to hold constant?

This question is asked immediately after entering and verifying starting values (priors) for

(co)variance component.  This option is used to hold particular (co)variance components that are not

0, constant during the analysis.  If a (co)variance is put in as 0, it will not move from 0 and is

automatically held constant.  This option may be useful if priors are not known for multiple trait
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covariance(s) and good priors are desired for variances (see Chapter 3).  

The other interactive question that applies to OPTION 1 is :

convergence criterion: minimum V(-2logL).

A convergence criterion of 1.e-6 to 1.e-8 is usually used.

OPTIONS 3 and 4 allow calculation of diagonal blocks of the inverse of the coefficient matrix

of order up to 40 by 40 and of sampling variances and standard errors of individual solutions or

contrasts.  Inverse blocks, sampling variances, contrasts and standard errors of contrasts are written

to MTDF67.   Expectations of fixed effects can then be calculated and are also written to MTDF67.

With OPTION 3, standard errors of contrasts can be obtained from the coefficient matrix without

right hand sides but contrasts cannot be calculated because MME solutions are not obtained. 

Estimates of contrasts and their standard errors can be obtained with OPTION 4.   

Running MTDFRUN 

1. Compile MTDFRUN and MTDFLIK.  PARAM.DAT needs to be available and the

SPARSPAK or FSPAK files and MTDFSUB need to be linked.

2. Run MTDFRUN.  The program reads MTDF44, MTDF50, MTDF51 and MTDF52.  The

program needs MTDF21 and/or MTDF22 if merging of solutions and labels are

requested.  Answers to the following questions are needed for the respective options: 

OPTION 1 questions a through u

OPTION 2 questions a through s

OPTION 3 questions a through s and v through kk

OPTION 4 questions a through s and v through kk

a) Description of analysis (up to 6 lines, terminated with a * in column 1 after last

comment line).

b) Is this a continuation or restart from a previous analysis : 0, no; 1, yes.

c) Option for this run:  1, variance components;  2, solutions for MME; 3, sampling and

contrast variances; 4, solutions for MME, contrasts, sampling and contrast variances

and expectations of solutions.

d) Number of constraints: can be 0 if Kachman modification to SPARSPAK or FSPAK

is used.  During Choleski factorization dependencies are found and solutions for

dependent equations are set to 0.  Alternatively, the program asks for equations to

constrain.  If the number of constraints is > 0 then equation numbers corresponding

to fixed effects are requested (one equation number per line).

e) Have the MME been reordered (MTDF58 must exist) :  0 no; 1 yes
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f) Input of priors for additive and second animal (i.e., the Go matrix) (co)variances.  A

display comes up according to the model described in MTDFPREP.  With additive

and second animal effects, additive effects for all traits followed by second animal

effects will be displayed. The numbers following the effects, represent the trait.  For

example:

 a1 a2 m1

a1 1

a2 2 4

m1 3 5 6

Enter the position number and then the prior (co)variance corresponding to the

position.

 For example, for σ2
a1, an entry is :

1 100.d0 <return>    [1  100 <return> or 1 100. <return> also work].

For σA1A2;

  2 -25.d0 <return>.

The matrix is initialized to zero.  A prior is needed for each component to be

estimated (0 is a valid estimate for covariances.  If a covariance is put in as 0,

or if nothing is entered in that position, it will remain 0 during the entire

analysis.).  If an error has been made, type  -1 0.d0 <return> to show the position

numbers again.  Once all priors are entered, end the input by typing 0 0.d0

<return> [0 0 <return> also works].

g) The priors will redisplay and verification is requested : 0, no; 1, yes.

h) The number of parameters to hold constant.  Only applicable to OPTION 1.  Specific

genetic (co)variances can be held constant while estimating other (co)variance

components. If the answer is > 0, the prompt requests the position number(s) of the

priors to be held constant.

i) Input of priors for uncorrelated random effects, if applicable.  The format is the same

as for question f).  If the same uncorrelated random effect is used across traits, a prior

for the covariance across traits can be entered.  However, with more than one

uncorrelated trait present for a trait, there is no covariance between the uncorrelated

effects within trait (enter as 0 or make no entry for that position).  The program will

not allow non-zero covariances for effects not coded in the same column in the data

set.  Some effects coded in the same column may still need to be zero.  For example,

if data include traits for scrotal circumference measured on bull calves and pelvic

width measured on female calves, there would be no information to estimate a

maternal permanent environmental covariance for these two traits, and the covariance

should be restricted to zero.  End input with 0 0.d0 <return>.

The headings for the covariances correspond to the trait (T) and the column (C) of
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data which codes for the uncorrelated random effect.  For example, if there were two

traits and both traits had two uncorrelated random effects, with the effects coded for

the first trait in columns 3 and 7, and the uncorrelated randoms effects for the second

trait coded in columns 3 and 4, the display would appear as follows:

T1 C3 T1 C7 T2 C3 T2 C4

T1 C3 1

T1 C7 2 5

T2 C3 3 6 8

T2 C4 4 7 9 10

Non-zero covariances cannot be entered for elements: 2, 4, 6, 7, 9

j) The priors for uncorrelated random effects will redisplay and verification is

requested: 0, no; 1, yes.

k) Number of parameters to be held constant for uncorrelated random effects.  See h).

l) Input of priors for residual (co)variances.  See question f).  End input with 0 0.d0

<return>

m) The priors for residual variances will redisplay and verification is requested : 0, no;

1, yes.

n) Number of parameters to be held constant for residual error effects.  See h).  

o) Write covariate and fixed effect solutions to file MTDF77: 1, yes; 2, no.

If question o) is answered no, go to q)

p) Merge labels with solutions for covariates and fixed effect to file MTDF77: 1, yes;

2, no.  Note that the option for writing labels must have been requested in

MTDFPREP to use this option.

q) Write animal and second animal solutions to file MTDF78: 1, yes; 2, no.

r) Write uncorrelated random effect solutions to file MTDF79: 1, yes; 2, no.

If question r) is answered no, go to t)

s) Merge labels with solutions for uncorrelated random effect to file MTDF79: 1, yes;

2, no.  Note that the option for writing labels must have been requested in

MTDFPREP to use this option. If option 4, will solve and resume questions at v)

If option 1, will ask t) and u)

t) Convergence criterion value.  A suggestion is 1.e-6 to 1.e-8.

u) Number of simplex rounds.  Depending on model complexity and the data structure,

it may take 1000 simplex rounds or more to achieve convergence. To obtain timings,

enter 1 to obtain the initial SIMPLEX.  The simplex will contain one more than the

number of parameters to be estimated,

****  MME will now reorder and solve  ****

****  and iterate until t) or u) is satisfied and option 1 will stop ****

with option 4, questions resume

v) Calculate block of inverse; 0, no; 1, yes
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w) Enter the first and last rows for equations in block of inverse. The number of rows

must be # 40.  The prompts ask for the first equation number <return> and the last

equation number <return>.

x) After the block of the inverse has been calculated, do you want another block of the

inverse to be calculated?  0, no; 1, yes.  Question w) is repeated if answer is yes.  

*** Questions w) and x) will be repeated until no more block inverses are requested.

y) Calculate the variance of a contrast?  0, no; 1, yes.

*** if question y) is answered no, will go to question cc) 

z) Enter the number of elements in contrast vector, e.g., 2.

aa) For the number of elements in the contrast vector, enter the row and contrast

coefficient, one element and one coefficient per line <return>; (e.g., 4 1. <return>,

5 -1. <return>).

bb) Calculate another contrast? 0, no; 1, yes.

*** if question bb) is yes, repeat questions z - bb

cc) Calculate PEV and rt,i for consecutive animals and sequential traits?

0, no; 1, yes.  Note that rt,i will not be correct for group solutions or for PBV unless

group solutions are estimated perfectly.

*** if question cc) is no, will go to hh)

dd) Enter equation for first trait on first animal to be considered.

ee) Enter equation for first trait on last animal to be considered.

ff) Enter the first trait wanted for each animal.

gg) Enter the last trait wanted for each animal.  Note for ff) and gg) that second animal

effects are considered traits and can be included in list of traits - recall that the animal

effects are sequential for all traits followed by second animal effects.

hh) Calculate expectations for fixed effects; 0, no; 1, yes

*** if question hh) is no, finished

ii) Enter the first and last equation numbers for fixed effect parameters in expectations.

Difference should not be greater than the total number of fixed effect levels.  This

answer will determine the number of rows in the matrix that will be printed out.  The

prompt asks for the equation number of the first parameter and the equation number

for the last parameter. 

jj) Enter the first and last equation numbers representing solutions in block for

expectations.  The difference in these blocks cannot be larger than 40.  A prompt asks

for equation number for the first solution and the equation number for the last

solution. [Expectations are relatively slow].

kk) Do you want to calculate another set of fixed effect expectations?  0, no; 1, yes.

*** if answer to kk) is yes, questions ii) and jj) will be repeated.

End of questions.



20

Results and Output Files from MTDFRUN by OPTION

Results/ File OPTION 1 OPTION 2 OPTION 3 OPTION 4

Variance components T

MME solutions T T T

Sampling and contrast variances

and std errors

T T

Contrasts T

Expectations of solutions for

fixed effects

T T

MTDF4 - answers to

interactivequestions that can be

copied toTDFR5.DAT to use for

a cold restart 

T T T T

MTDF54 - final simplex

information

T  (empty) (empty)  (empty)

MTDF58 - reordered MME T T T T

MTDF59 - constraint

information (if > 0)

T T T T

MTDF67 - contrasts, sampling

variances and expectations

(empty) (empty) T T

MTDF68 - simplex history

by round

T  (empty) (empty)  (empty)

MTDF72 - predicts BV and SEP (empty) T (empty) T

MTDF76 - program log T T T T

MTDF77 - MME solutions for

covariates and fixed effects 

T T (empty) T

MTDF78 - MME solutions for

animal and 2nd animal effects 

T T (empty) T

MTDF79 - MME solutions for

uncorrelated random effects 

T T (empty) T

Continuation of previous run
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The continuation option can be used if the convergence criterion for (co)variance estimation

has not been met, or if solutions, contrasts and standard errors are wanted after convergence is

achieved.  This option allows use of previous (co)variance components and constraint information.

For continuation with all options, MTDF54, which contains SIMPLEX information when the

program finished previously, is needed to restart the program.  The previous log file MTDF76 will

be overwritten, so it should be renamed or copied elsewhere if it is to be saved.  The user would

usually print MTDF76 on completion of MTDFRUN.  Files MTDF44, MTDF50, MTDF51,

MTDF52, MTDF54, MTDF58, MTDF59 and MTDF68 must be available to the MTDFRUN

program. MTDF21 and MTDF22 must be available if solutions are to be matched with labels from

MTDFPREP.

Continuation with MTDFRUN 

Run MTDFRUN.  The program reads in MTDF44, MTDF50, MTDF51, MTDF52, MTDF54,

MTDF58, MTDF59 and MTDF68.  Answers to the following questions are needed for the

respective options: 

a) Description of analysis (up to 6 lines, terminated with a *).

b) Is this a continuation or restart from a previous analysis: answer 1, yes

c) Option for this run: 1, variance components; 2, solutions for MME; 3, sampling and

contrast variances; 4, solutions for MME, contrasts, and sampling and contrast

variances, and expectations of solutions.

d) Write covariate and fixed effect solutions to file MTDF77: 1, yes; 2, no.

If question d) is answered no, go to f)

e) Merge labels with solutions for covariates and fixed effects: 1, yes; 2, no.  Note that

the option for writing labels must have been requested in MTDFPREP to use this

option.

f) Write animal and second animal solutions to file MTDF78: 1, yes; 2, no.

g) Write uncorrelated random effect solutions to file MTDF79: 1, yes; 2, no.

If question g) is answered no, go to i)

h) Merge labels with solutions for uncorrelated random effects: 1, yes; 2, no.  Note that

the option for writing labels must have been requested in MTDFPREP to use this

option.

For option 4, skip to v) on page 19

For option 1, resume with i) and j).

i) Convergence criterion value.

j) Number of simplex rounds.
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Convergence???

Even though an analysis converges to the desired convergence criterion, it is essential that the

converged values be used as priors and a cold restart of MTDFRUN performed because the

MTDFREML algorithm sometimes will converge to a local, rather than a global maximum.  If

MTDFRUN is restarted and the FVALUE becomes smaller, the analysis has moved to a better

optimum.  If two or three cold restarts converge to the same FVALUE, the global maximum has

probably been found.  To perform a cold restart, answer interactive questions as for an Initial Start

or copy MTDF4 to MTDFR5.DAT and use for restart (see below). A cold restart is not a continuation

of a previous analysis.  Decrease magnitude of those covariances that yield correlations close to 1 or

-1.  Otherwise many non-permissible likelihoods may result.

Starting or Restarting MTDFRUN

On DOS or UNIX based systems, after gaining familiarity with the program, users may  want

to put the analysis information in a file for the program to read, which is easier than entering the data

interactively.  For restarts, users can copy MTDF4 to a restart input file.  MTDF4 contains the original

answers to the interactive questions except for the (co)variances, which are those obtained at the end

of the previous run.  However, please enter the data interactively to become familiar with the

questions the first few times.  If a mistake is made answering questions interactively, the program

must be started from the beginning.  To run the program using such an input file execute the program

using the form: 

mtdfrun.exe < input.fil

where mtdfrun.exe is the executable form of the MTDFRUN Fortran file and input.fil contains the

same entries that would be entered interactively.  If running the programs from a batch or script file

it may be useful to use the command:

 mtgsprep.exe < input.fil > output.fil

where output.fil is a file containing the prompts usually written to the terminal.  An alternative

approach is to change the file definition section for unit 5 in MTDFRUN to a physical file rather than

keyboard input (i.e., change the value for IUN5 and add an open statement for that file).
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CHAPTER TWO: Illustrations for MTDFREML

This chapter demonstrates models and analyses that can be run using MTDFREML.  The

examples presented are based on the mouse data distributed with DFREML (Meyer, 1991). Data are

available on diskette or by anonymous FTP.   The data files are distributed with example single and

multiple trait MTDFREML analyses.  The format of the pedigree file, MOUSE.PED, includes three

fields: animal, sire, and dam.  The data file, MOUSE.DAT, contains ten fields of data - seven integer

and three real.  The integers correspond to: animal, sire, dam, generation, sex, litter size (to use as a

class factor), and litter number.  The three real fields represent: litter size (for use as a covariate), body

weight, and feed intake.

 The purpose of this section is to illustrate interactive sessions with the programs and the types

of output generated as well as what to examine and expect from the output.  All analyses

demonstrated here were run on 486/33 or Pentium class microcomputers with 32 or 64 MB of

memory.

MTDFNRM

MOUSE.PED was the file used by MTDFNRM to produce the non-zero A-1 elements used

in MTDFRUN.  Two of the most important lines to note in the output file, MTDF56, are the number

of pedigree lines read and the total number of different animals which is needed in MTDFPREP.
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Results in MTDF56:

 Started 09:38:18.52 on 03/01/1995

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
PROGRAM "MTDFNRM"  -  Calculate A-1 for "MTFRUN" and recode IDs for "MTDFPREP"

Version to use Westell grouping strategy
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

 OPTION FOR CALCULATION OF A-1
     FOR ANIMAL   SIRE    DAM     TYPE ....    0
     FOR ANIMAL   SIRE    MGS     TYPE ...     1

 OPTION CHOSEN FOR THIS ANALYSIS                 =              0 see note 1

 MAXIMUM ID                                      =          41615
 MINIMUM ID                                      =              1
 PEDIGREE FILE OPENED, IUN33                     = mouse.ped
 REORDERED ANIMAL FILE OPENED, IUN11             = MTDF11
 FILE FOR A-1 ELEMENTS OPENED, IUN44             = MTDF44
  
 FILE FOR IDS AND INBREEDING COEFFICIENTS OPENED
   THIS FILE WILL CONTAIN ANIMAL, SIRE, AND DAM
   RECODED AND ORIGINAL IDS FOLLOWED BY THE
   INBREEDING COEFFICIENT FOR EACH
  
 NO. INTEGER FIELDS PER RECORD IN IUN33          =              4
 ANIMAL ID IN POSITION ......                                   1
 SIRE ID IN POSITION ........                                   2
 DAM (MGS) ID IN POSITION ...                                   3
 NO. OF GENETIC GROUPS FOR CALCULATION OF W      =              0
 The current time is:  09:38:18.74
  

 NO. OF PEDIGREES READ                           =            309 see note 2

 NO. OF DIFFERENT ANIMALS                        =            329 see note 3

 INCLUDES NO. OF GENETIC GROUPS                  =              0
  
 END OF FIRST PASS
 The current time is:  09:38:18.85
  
 END OF SORT
 The current time is:  09:38:18.85

 FIRST 10 REORDERED IDs          1         215 see note 4

 FIRST 10 REORDERED IDs          2         403
 FIRST 10 REORDERED IDs          3         615
 FIRST 10 REORDERED IDs          4         701

Note 1: The answers highlighted in gray were answers to the interactive question
asked by MTDFREML.  Check to make sure that they are correct

Note 2: Does this agree with your data?  This number should equal number of data
lines in pedigree file.  Animals can be repeated in data file.

Note 3: This is the number of animals plus the number of base animals.  Make
sure that the number of base animals is at least 0.  The number of base
animals is the number of different animals minus the number of pedigrees
read.

Note 4: Reordered animal identification numbers with original animal
identification.  These animal IDs should be reasonable given the data
set.
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 FIRST 10 REORDERED IDs          5         814
 FIRST 10 REORDERED IDs          6         904
 FIRST 10 REORDERED IDs          7        1314
 FIRST 10 REORDERED IDs          8        1602
 FIRST 10 REORDERED IDs          9        1701
 FIRST 10 REORDERED IDs         10        1813
  
 ID VECTOR WRITTEN IN ORDER TO IUN11
  
 The current time is:  09:38:18.90
  
 SIRE AND DAM IN PEDIGREE REORDERED IN IVECS AND IVECD
  
 The current time is:  09:38:18.96
  
 CALCULATION OF A-1 FROM ANIMAL  SIRE  DAM  (IOPT =   0)
  
 NON-ZERO HS ELEMENTS FOR NRM INVERSE            =           1241
 LOG DETERMINANT OF NRM                          =  -210.71674289
 NUMBER OF INBRED ANIMALS                        =              0
  ... WITH AVERAGE INBREEDING COEF               =      .00000000

 TOTAL NO. OF ANIMALS INCLUDING BASE see note 3

       AND GENETIC GROUPS                        =            329

Variance Component Estimation

Single Trait Model

The data for mouse body weight were analyzed with a model including additive (direct)

genetic effect, correlated second animal genetic effect and one uncorrelated random effect.  The data

include 284 observations for body weight in mice.  Additive direct genetic effect of animal, maternal

genetic effect of second animal (the dam) and a maternal permanent environmental effect are in the

model.  Three fixed effects were: generation, sex and litter size.

MTDFPREP

For this example, the option to write levels of information to MTDF66 for all fixed effects

was enabled and for the uncorrelated random effects was disabled.  The complete list of answers to

the interactive questions follow.

mouse.dat name of data file

Mouse data from Karin Meyer

Single trait analysis of body weight

* end of comments

7 number of integers on each line of data file

3 number of reals on each line of data file

1 number of traits in analysis

body weight name of trait 1
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2 position of trait in vector of real values

0.0 value of missing observation for trait 1

0 number of covariates

3 number of fixed factors

generation name for fixed factor 1

4 position of fixed factor 1 in vector of reals

1 write summary of fixed factor 1 levels to log file (MTDF66)

sex name for fixed factor 2

5 position of fixed factor 2 in vector of reals

1 write summary of fixed factor 2 levels to log file (MTDF66)

litter size name for fixed factor 3

6 position of fixed factor 3 in vector of reals

1 write summary of fixed factor 3 levels to log file (MTDF66)

1 position of animal effect in vector of integers

329 num. of animals in relationship matrix (from MTDFNRM)

1 include second animal effect

maternal genetic name of second animal effect

3 position of second animal effect in vector of integers

1 number of uncorrelated random factors

maternal perman env name of uncorrelated random factor

3 position of uncorrelated random factor in vector of integers

0 do not write summary of uncorrelated random factor to log

1 write labels for covariates and fixed factors to MTDF21

1 write labels for uncorrelated random factors to MTDF22

Results in MTDF66:
 Started 16:03:57.20 on 03/01/1995

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
          PROGRAM "MTDFPREP"  - Setup W=X:Z matrix for MT-IAM
                                Last revised 07-29-94
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

 Data set description :
  Mouse data from Karin Meyer                                                 
  Single trait analysis of body weight                                        

 No. of data lines in Unit 33                    =            284 see note 5

 No. of integer variables per record             =              7
 No. of real variables per record                =              3
 No. of traits                                   =              1
 No. of valid records                            =            284
 No. of RECORDS in Unit 33                       =            284
 No. of animals with valid records               =            284
 No. of animals in A-1                           =            329
 Order of MME (before constraints)               =            712
  
Note 5: Does this correspond to your data?
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Results for trait  1  - body weight           (position  2 ) see note 6

 No. of records =   284  (missing value:      .0000   No. missing =     0 )
 Trait   Mean      SD      CV      Min      Max    Std Min   Std Max
   1   24.0687  3.30236  13.72   14.600   34.500   -2.87      3.16

 No. of covariates =     0

 No. of fixed effects =     3
  1:     3 levels for  generation                    (MME rows:     1 -     3)
 Level     Value        No.        %       Mean

    1          1         93      32.75    23.724    see note 6

    2          2         84      29.58    23.063    
    3          3        107      37.68    25.158    
  2:     2 levels for  sex                           (MME rows:     4 -     5)
 Level     Value        No.        %       Mean

    1          1        150      52.82    22.656 see note 6

    2          2        134      47.18    25.650    
  3:     7 levels for  litter size                   (MME rows:     6 -    12)
 Level     Value        No.        %       Mean

    1          1         11       3.87    26.609    see note 6

    2          2         41      14.44    23.722    
    3          3         25       8.80    24.864    
    4          4         36      12.68    24.028    
    5          5         96      33.80    24.265    
    6          6         45      15.85    24.333    
    7          7         30      10.56    21.973    

 No. of animals in A-1 =   329                       (MME rows:    13 -   341)

 No. of 2nd animal effects =     1 see note 7

  1:   329 levels for  maternal genetic              (MME rows:   342 -   670)

 No. of uncorrelated random effects =     1 see note 8

  1:    42 levels for  maternal perman env           (MME rows:   671 -   712)

------------------------------------------------------------------------------

 Order of MME (before constraints) =        712 see note 9

 Fixed effects =          3
 Trait      No.      Name               Position    Levels         Rows
    1        1     generation               4          3          1 -      3
    1        2     sex                      5          2          4 -      5
    1        3     litter size              6          7          6 -     12

 Animal effects =          1
 Trait      No.      Name               Position    Levels         Rows
    1        1     Animal w/ full A-1       1        329         13 -    341
  
Note 6: Are these characteristics of your data reasonable?
Note 7: An equation is created for the second animal effect for all animals
Note 8: An equation is created for each level of an uncorrelated random effect
Note 9: Check number of levels and positions of fields in integer vector for

possible input errors and order of MME
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 2nd Animal effects =          1
 Trait      No.      Name               Position    Levels         Rows
    1        1     maternal genetic         3        329        342 -    670

 Uncorrelated random effects =          1 see note 9

 Trait      No.      Name               Position    Levels         Rows
    1        1     maternal perman env      3         42        671 -    712
------------------------------------------------------------------------------
 Files written:
   MTDF21 (ascii): Labels for covariates and fixed effects
   MTDF21 (ascii): Labels for uncorrelated random effects
   MTDF50 (ascii): Model information
   MTDF51 (binary): Recoded W=X:Z elements
   MTDF52 (binary): W summary for each animal
 The elapsed time was: 00:00:00.33

MTDFRUN

Answers to the interactive questions asked by MTDFRUN:

Mouse data from Karin Meyer
Single trait analysis of Birth Weight
* 
0 continuation: 0-no; 1-yes
1 run option: 1) var comp; 2) MME sol's; 3) sampling  var; 4) MME sol's, contrast, & samp var

0 # constraints see note 10
0 reordered: 0-no; 1-yes
1 4. animal effect starting value (direct genetic variance)
2 .5 animal effect starting value (genetic covariance of direct and maternal effects)
3 1.5 animal effect starting value (maternal genetic variance)
0 0 end of genetic (co)variance input
1 values are correct: 0=no; 1=yes; 2=redisplay screen
0 # parameters to hold constant
1 .5 uncorrelated effect starting value (maternal permanent environmental variance)
0 0 end of uncorrelated random (co)variance input
1 values are correct: 0=no; 1=yes; 2=redisplay screen
0 # parameters to hold constant
1 2. residual effect starting value (residual variance)
0 0 end of resdiual (co)variance input
1 values are correct: 0=no; 1=yes; 2=redisplay screen
0 # parameters to hold constant
1 write fixed effect solutions: 0=no; 1=yes
1 merge label information from MTDFPREP with solutions: 0=no; 1=yes
1 write animal solutions: 0=no; 1=yes
1 write independent random effect solutions: 0=no; 1=yes
1 merge label information from MTDFPREP with solutions: 0=no; 1=yes
1.D-6 convergence criterion
300 # Simplex rounds

Note 10: Number of constraints was entered as 0 because the Kachman modifications of

SPARSPAK will automatically find singularities.
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Results in MTDF76:
  
 Started 08:43:46.88 on 03/02/1995

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
          PROGRAM "MTDFRUN"  - Estimate Covariance Components for MT-IAM
                               Last revised          8/          5/         94
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  Mouse data from Karin Meyer                                                 
  Single trait analysis of Birth Weight                                       

 Cold start, i.e., not a continuation of previous run
 Run option 1: iterate for variance components

 0 constraints imposed by user

 (Co)variances in model:
  No. in likelihood calculation                  =       5
  No. to be held constant                        =       0
  No. to be maximized                            =       5

 Starting values for this run:

 G matrix:
    4.0     .5
     .5    1.5
 C matrix:
     .5
 R matrix:
    2.0
  
   ---------------------------------------
   **          Using SPARSPAK-A         **
   ** Rel. 3 ANSI Double Precision ver. **
   **     (C) Univ. of Waterloo  1/84   **
   ---------------------------------------
  
  ** reordering called **
  ** reordering completed **
 The elapsed time was: 00:00:00.11

  ** solve5 called **
  ** solve5 completed **
 The elapsed time was: 00:00:00.33

      SPARSPAK-A statistics.. see note 11

         Time:
           Ordering       =      .059 secs.  (    .001 mins.)
           Total/Solution =      .000 secs.  (    .000 mins.)
            Allocation    =      .000 secs.  (    .000 mins.)
            Factorization =      .000 secs.  (    .000 mins.)
            Solve         =      .000 secs.  (    .000 mins.)

Note 11: Information provided by commmercial SPARSPAK version.
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         Storage:
           No. equations                 =       712
           Non-zero hs elements in MME   =      9742
           Sparsity of MME               =     3.564%
           Maximum storage required      =     12304. (    .094 MB)
           Size of storage array (MAXSA) =    250000  (   4.922% used)

 *******  RESULTS FROM SIMPLEX *******

 OPTIONS SET FOR THIS RUN:
 MAXIMUM NO. OF SIMPLEX ITERATES ALLOWED         =     300
 MINIMUM VARIANCE OF FUNCTION VALUES IN SIMPLEX  =   .1000000000E-05

 RESULTS FOR THIS RUN:
 NO. OF SIMPLEX ITERATIONS CARRIED OUT           =      44
 NO. OF LIKELIHOODS EVALUATED                    =      79
 NO. OF NON-PERMISSABLE PARAMETER VECTORS        =       0
 NO. OF FAILED CONTRACTIONS                      =       0
 VARIANCE OF SIMPLEX FUNCTION VALUES             =   .2190791759E-06

    Convergence criterion attained See note 12

 Final Simplex: (++ best L; *** parameter held constant) See note 13

   1     753.7488165        3.6828     .5114    1.3544     .4240    2.2586
   2     753.7498457        3.6449     .4895    1.4246     .3877    2.2988
   3     753.7487708        3.7863     .5039    1.3423     .4449    2.2142
   4     753.7490006        3.6725     .4887    1.3914     .4260    2.2912
++ 5     753.7486078        3.6407     .4745    1.3861     .4140    2.2980
   6     753.7494189        3.7354     .5228    1.3221     .4393    2.2565
 -2 log L =      753.7486077658   ( 5)      Var =         .0000002191

 Estimates: see note 14

 GENETIC VARIANCES AND COVARIANCES :
             a1           m1 
   a1 :     3.64066      .47452
   m1 :      .47452     1.38608

 UNCORRELATED RANDOM VARIANCES AND COVARIANCES:
           T1 C3 
 T1 C3 :    .414033

 ENVIRONMENTAL VARIANCES AND COVARIANCES :
             e1 
   e1 :     2.29804

 PHENOTYPIC VARIANCES AND COVARIANCES :
             p1 
   p1 :     8.21333

Note 12: Was convergence criteria met?
Note 13: The table includes the final simplex.  The number of lines in the

simplex is one more than the number of parameters to be estimated.  The
values in the simplex are the FVALUE, which is -2LOG(Likelihood)
followed by the variance components in order of entry (i.e., genetic 1,
genetic 2,..., genetic g, uncorrelated random 1,..., uncorrelated random
u, residual 1,..., residual r.  The smallest FVALUE, which corresponds
to the largest likelihood value, is given as well as the variance of the
FVALUES, which is the convergence measure.

Note 14: The following estimates are based on the set of values with the smallest
FVALUE (largest likelihood).
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 HERITABILITIES AND GENETIC CORRELATIONS
            a1    m1 
   a1 :    .44
   m1 :    .21    .17

UNCORRELATED RANDOM EFFECTS PROPORTION OF TOTAL VARIANCE ON DIAGONALS,
CORRELATIONS ON OFF DIAGONALS
           T1 C3 
 T1 C3 :    .504098E-01

 ENVIRONMENTAL PROPORTION OF TOTAL VARIANCE  AND CORRELATIONS
            e1 
   e1 :    .28

           0 Constraints: see note 15

 Files written:
   MTDF4   (ascii): Parameter file (IUN5) for "cold" restart
   MTDF54  (ascii): Last simplex
   MTDF58 (binary): SPARSPAK reordering
   MTDF59  (ascii): Constraints imposed
   MTDF68  (ascii): Likelihoods by rounds
   MTDF67  (ascii): Sampling variances if requested
   MTDF72  (ascii): Predicted BVs and PEVs if requested
   MTDF76  (ascii): Program log file
   MTDF77  (ascii): Solutions for covariates and fixed effects if requested
   MTDF78  (ascii): Solutions for trait within animal if requested
   MTDF79  (ascii): Solutions for independent random effects if requested
  
 The current time is:  08:44:06.82
 Total time of analysis
 The elapsed time was: 00:00:19.45

Note 15: The number of constraints will be 0 unless constraints were imposed.
The program does not count the number of constraints imposed by the
Kachman modifications.

Multiple Trait Model

The data for mouse body weight and feed intake were analyzed with a multiple trait animal

model.  The model for body weight included additive (direct) genetic effect and one uncorrelated

random effect.  The data include 284 observations for body weight.  Additive direct genetic effect of

animal and a litter effect are in the model.  One covariate and one fixed effect were fit.  Litter size was

included as a covariate and generation was considered a fixed effect.  The model for feed intake also

included direct genetic effect and one uncorrelated random effect.  There were two fixed effects

included: litter size and generation.

Note that litter size is included as a covariate  for one trait and a fixed effect for the other.  The

use of factor as a covariate and fixed effect is possible because there are two fields set for the same

effect - one in the vector of integers and one in the vector of real values.  If the same effect is not to
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be used for two traits in the same analysis the same fields analysis and a fixed effect in a second

analysis by placing the fields analysis and as an integer in the second analysis.

MTDFPREP

For this example, the option to write summary information to MTDF66 for levels of  fixed

factors  was enabled for all fixed effects.  The option was enabled for the uncorrelated random effect

for body weight and disabled for feed intake.  The complete list of answers to the interactive questions

follow.

mouse.dat name of data file

Mouse data from Karin Meyer

Multiple trait analysis of 

Body Weight and Feed Intake

* end of comments

7 number of integers on each line of the data file

3 number of reals on each line of the data file

2 number of traits in the analysis

Body Weight name of trait 1 Trait 1

2 position of trait 1 in vector of real values *    
0. value of missing observation for trait 1 *    
1 number of covariates for trait 1 *    
Litter Size name of covariate 1 *    
1 position of covariate in vector of real values *    
1 maximum power of covariate *    
1 number of fixed effects for trait 1 *    
Generation name of fixed effect 1 *    
4 position of fixed effect 1 in vector of integers *    
1 write summary of fixed effect 1 levels to log file (MTDF76) *    
1 position of animal effect in vector of integers *    
329 number of animals in relationship matrix (from MTDFNRM) *    
0 include second animal effect for trait 1: 1=yes; 0=no *    
1 number of uncorrelated random effects for trait 1 *    
Litter name of uncorrelated random effect *    
7 position of uncorrelated random effect in vector of integers *    
1 write summary of uncorrelated random effect to log file (MTDF76) *    
Feed Intake name of trait 2 Trait 2

3 position of trait 2 in vector of reals *  *
0. value of missing observation for trait 2 *  *
0 number of covariates for trait 2 *  *
2 number of fixed effects for trait 2 *  *
Litter Size name of fixed effect 1 *  *
6 position of fixed effect 1 in vector of integers *  *
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1 write summary of fixed effect 1 levels to log file (MTDF76) *  *
Sex name of fixed effect 2 *  *
5 position of fixed effect 1 in vector of integers *  *
1 write summary of fixed effect 2 levels to log file (MTDF76) *  *
0 include second animal effect for trait 1: 1=yes; 0=no *  *
1 number of uncorrelated random effects for trait 1 *  *
Litter name of uncorrelated random effect *  *
7 position of uncorrelated random effect in vector of integers *  *
0 do not write sum. of uncorr. random effect to log file (MTDF76) *  *
1 write labels for covariates and fixed effects to MTDF21

1 write labels for uncorrelated random effects to MTDF22

Results in MTDF66:

   Started 09:19:20.24 on 03/06/1995

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
          PROGRAM "MTDFPREP"  - Setup W=X:Z matrix for MT-IAM
                                Last revised 07-29-94
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

 Data set description :
   Mouse data from Karin Meyer
   Multiple trait analysis of
   Body Weight and Feed Intake
   
 No. of data lines in Unit 33                    =            284
 No. of integer variables per record             =              7
 No. of real variables per record                =              3
 No. of traits                                   =              2
 No. of valid records                            =            568
 No. of RECORDS in Unit 33                       =            284
 No. of animals with valid records               =            284
 No. of animals in A-1                           =            329
 Order of MME (before constraints)               =            755

------------------------------------------------------------------------------

Results for trait  1  - Body Weight           (position  2 )
 No. of records =   284  (missing value:      .0000   No. missing =     0 )
Trait   Mean         SD         CV      Min        Max      Std Min    Std Max
   1    24.0687     3.30236    13.72   14.600     34.500     -2.87      3.16

 No. of covariates =     1
  1:     1 regression coefficients for  Litter Size       (MME rows:  1 -  1)

  Statistics for covariates:
Cov.    Mean         SD         CV      Min        Max      Std Min   Std Max
 1     4.47887     1.64829     36.80   1.0000     7.0000     -2.11     1.53

 No. of fixed effects =     1
  1:     3 levels for  Generation                         (MME rows:  2 -  4)
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 Level     Value        No.        %       Mean
    1          1         93      32.75    23.724    
    2          2         84      29.58    23.063    
    3          3        107      37.68    25.158    

 No. of animals in A-1 =   329                             (MME rows: 14 -342)

 No. of 2nd animal effects =     0

 No. of uncorrelated random effects =     1
  1:    42 levels for  Litter                              (MME rows:672 -713)
 Level     Value       No.     %      Mean
    1          1          8       2.82    23.800    
    2          2          7       2.46    23.014    
    3          3          5       1.76    22.880    
    4          4          7       2.46    24.129    
    5          5          8       2.82    21.687    
    6          6          8       2.82    18.300    
    7          7          7       2.46    25.471    
    8          8          7       2.46    27.186    
    9          9          7       2.46    23.514    
   10         10          8       2.82    28.375    
   11         11          7       2.46    22.943    
   12         12          6       2.11    23.467    
   13         13          8       2.82    23.750    
   14         14          8       2.82    24.212    
   15         15          4       1.41    25.400    
   16         16          8       2.82    19.113    
   17         17          6       2.11    27.317    
   18         18          8       2.82    23.850    
   19         19          6       2.11    24.750    
   20         20          6       2.11    25.067    
   21         21          4       1.41    21.925    
   22         22          6       2.11    21.033    
   23         23          5       1.76    24.180    
   24         24          8       2.82    23.537    
   25         25          7       2.46    22.386    
   26         26          8       2.82    19.462    
   27         27          7       2.46    24.843    
   28         28          7       2.46    25.429    
   29         29          8       2.82    25.175    
   30         30          8       2.82    22.950    
   31         31          7       2.46    25.457    
   32         32          8       2.82    23.450    
   33         33          6       2.11    23.983    
   34         34          2        .70    32.650    
   35         35          7       2.46    26.757    
   36         36          5       1.76    25.160    
   37         37          6       2.11    25.167    
   38         38          7       2.46    26.414    
   39         39          7       2.46    24.443    
   40         40          6       2.11    24.317    
   41         41          8       2.82    26.688    
   42         42          8       2.82    25.063    
------------------------------------------------------------------------------

Results for trait  2  - Feed Intake           (position  3 )
 No. of records =   284  (missing value:      .0000   No. missing =     0 )
Trait   Mean         SD         CV       Min        Max      Std Min   Std Max
   2    64.2556    5.93258     9.23    46.900      82.100     -2.93      3.01

 No. of covariates =     0

 No. of fixed effects =     2
  1:     7 levels for  Litter Size                         (MME rows:  5 - 11)
 Level     Value        No.        %       Mean
    1          1         11       3.87    58.355    
    2          2         41      14.44    61.578    
    3          3         25       8.80    65.020    
    4          4         36      12.68    61.531    
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    5          5         96      33.80    65.286    
    6          6         45      15.85    66.242    
    7          7         30      10.56    66.433    
  2:     2 levels for  Sex                                 (MME rows: 12 - 13)
 Level     Value        No.        %       Mean
    1          1        150      52.82    61.392    
    2          2        134      47.18    67.461    

 No. of animals in A-1 =   329                             (MME rows:343 -671)

 No. of 2nd animal effects =     0

 No. of uncorrelated random effects =     1
  1:    42 levels for  Litter                              (MME rows:714 -755)
------------------------------------------------------------------------------
 Order of MME (before constraints) =        755

 Covariates =          1
 Trait      No.      Name               Position    Coeff.         Rows
    1        1     Litter Size              1          1          1 -      1

 Fixed effects =          3
 Trait      No.      Name               Position    Levels         Rows
    1        1     Generation               4          3          2 -      4
    2        1     Litter Size              6          7          5 -     11
    2        2     Sex                      5          2         12 -     13

 Animal effects =          2
 Trait      No.      Name               Position    Levels         Rows
    1        1     Animal w/ full A-1       1        329         14 -    342
    2        1     Animal w/ full A-1       1        329        343 -    671

 Uncorrelated random effects =          2
 Trait      No.      Name               Position    Levels         Rows
    1        1     Litter                   7         42        672 -    713
    2        1     Litter                   7         42        714 -    755

------------------------------------------------------------------------------

 Files written:
   MTDF21 (ascii): Labels for covariates and fixed effects
   MTDF21 (ascii): Labels for uncorrelated random effects
   MTDF50 (ascii): Model information
   MTDF51 (binary): Recoded W=X:Z elements
   MTDF52 (binary): W summary for each animal

 The elapsed time was: 00:00:00.38

MTDFRUN

Answers to the interactive questions asked by MTDFRUN.

Mouse data from Karin Meyer

Multiple trait analysis of

Body Weight and Feed Intake

*                                                                               
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0         continuation: 0-no; 1-yes

1         run option: 1 var comp; 2 MME sol's; 3 PEV; 4 MME sol's & PEV

0            # constraints

0                 reordered: 0-no; 1-yes

1        7.87 animal effect starting value (σ2
A1)

2        2.50 animal effect starting value (σA1,A2)

3        9.99 animal effect starting value (σ2
A2)

0   0.D0 end of genetic (co)variance input

1         values are correct: 0=no, 1=yes, 2=redisplay

0         # parameters to hold constant

1        1.38 uncorrelated effect starting value (σ2
C1)

2       -1.58 uncorrelated effect starting value (σC1,C2)

3        2.98 uncorrelated effect starting value (σ2
C2)

0   0.D0 end of uncorrelated random (co)variance input

1         values are correct

0         # parameters to hold constant

1        2.66 residual effect starting value (σ2
R1)

2        2.61 residual effect starting value (σR1,R2)

3       11.13 residual effect starting value (σ2
R2)

0   0.D0 end of residual (co)variance input

1         values are correct

0         # parameters to hold constant

1         write fixed effect solutions: 0=no; 1=yes

1         merge label info. from MTDFPREP with solutions: 0=no; 1=yes

1         write animal solutions: 0=no; 1=yes

1         write uncorrelated random solutions: 0=no; 1=yes

1         merge label info. from MTDFPREP with solutions: 0=no; 1=yes

1.D-007 convergence criterion

200         # Simplex rounds

Results in MTDF76:
  
 Started 13:15:33.10 on 03/06/1995

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
          PROGRAM "MTDFRUN"  - Estimate Covariance Components for MT-IAM
                               Last revised           8/          5/        94
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  Mouse data from Karin Meyer
  Multiple trait analysis of
  Body Weight and Feed Intake

 Cold start, i.e., not a continuation of previous run
 Run option 1: iterate for variance components

 0 constraints imposed by user
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 (Co)variances in model:
  No. in likelihood calculation                  =       9
  No. to be held constant                        =       0
  No. to be maximized                            =       9

 Starting values for this run:

 G matrix:
    7.9    2.5
    2.5   10.0

 C matrix:
    1.4   -1.6
   -1.6    3.0

 R matrix:
    2.7    2.6
    2.6   11.1
  
   ---------------------------------------
   **          Using SPARSPAK-A         **
   ** Rel. 3 ANSI Double Precision ver. **
   **     (C) Univ. of Waterloo  1/84   **
   ---------------------------------------
  
  ** reordering called **
  ** reordering completed **
 The elapsed time was: 00:00:00.11

  ** solve5 called **
  ** solve5 completed **
 The elapsed time was: 00:00:00.44
 
     SPARSPAK-A statistics..
         Time:
           Ordering       =      .113 secs.  (    .002 mins.)
           Total/Solution =      .000 secs.  (    .000 mins.)
            Allocation    =      .000 secs.  (    .000 mins.)
            Factorization =      .000 secs.  (    .000 mins.)
            Solve         =      .000 secs.  (    .000 mins.)
         Storage:
           No. equations                 =       755
           Non-zero hs elements in MME   =     14521
           Sparsity of MME               =     4.831%
           Maximum storage required      =     16413. (    .125 MB)
           Size of storage array (MAXSA) =    250000  (   6.565% used)

 *******  RESULTS FROM SIMPLEX *******

 OPTIONS SET FOR THIS RUN:

 MAXIMUM NO. OF SIMPLEX ITERATES ALLOWED         =     200
 MINIMUM VARIANCE OF FUNCTION VALUES IN SIMPLEX  =   .1000000000E-06

 RESULTS FOR THIS RUN:
 NO. OF SIMPLEX ITERATIONS CARRIED OUT           =     161
 NO. OF LIKELIHOODS EVALUATED                    =     250
 NO. OF NON-PERMISSABLE PARAMETER VECTORS        =       0
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 No. of failed contractions                      =       0
 Variance of simplex function values             =   .8790870688E-07
    Convergence criterion attained

 Final Simplex: (++ best L; *** parameter held constant)
   1  1963.666166  7.8101  1.6200  9.4198   1.3629   -1.6779   2.8546   2.7235   3.2129   11.7849
   2  1963.665667  7.7670  1.5531  9.3912   1.3762   -1.6752   2.8575   2.7504   3.2503   11.7920
   3  1963.666198  7.7990  1.5676  9.3751   1.3742   -1.6856   2.8497   2.7314   3.2409   11.8130
   4  1963.666144  7.7988  1.5783  9.4316   1.3706   -1.6863   2.8664   2.7346   3.2539   11.8074
   5  1963.665959  7.8109  1.6270  9.4488   1.3665   -1.6844   2.8526   2.7321   3.2280   11.7932
   6  1963.665527  7.7794  1.5527  9.4424   1.3637   -1.6794   2.8355   2.7434   3.2502   11.7845
   7  1963.666056  7.8120  1.5862  9.3669   1.3632   -1.6831   2.8688   2.7315   3.2407   11.8161
   8  1963.665689  7.8089  1.6014  9.4493   1.3696   -1.6890   2.8582   2.7323   3.2326   11.7706
   9  1963.665825  7.7782  1.5636  9.4284   1.3798   -1.6919   2.8523   2.7391   3.2533   11.7830
++10  1963.665334  7.7892  1.5675  9.3645   1.3739   -1.7060   2.8809   2.7346   3.2467   11.8274

 -2 log L =     1963.6653344548   (10)      Var =         .0000000879
 

 Estimates:

 GENETIC VARIANCES AND COVARIANCES :
             a1           a2 
   a1 :     7.78922     1.56748
   a2 :     1.56748     9.36453

 UNCORRELATED RANDOM VARIANCES AND COVARIANCES:
           T1 C7          T2 C7 
 T1 C7 :    1.37390       -1.70597    
 T2 C7 :   -1.70597        2.88087    

 ENVIRONMENTAL VARIANCES AND COVARIANCES :
             e1           e2 
   e1 :     2.73456     3.24674
   e2 :     3.24674    11.82745

 PHENOTYPIC VARIANCES AND COVARIANCES :
             p1           p2 
   p1 :    11.89769     3.10825
   p2 :     3.10825    24.07285

 HERITABILITIES AND GENETIC CORRELATIONS
            a1    a2 
   a1 :    .65
   a2 :    .18    .39

 UNCORRELATED RANDOM EFFECTS
 PROPORTION OF TOTAL VARIANCE ON DIAGONALS, CORRELATIONS ON OFF DIAGONALS
           T1 C7          T2 C7 
 T1 C7 :    .115476    
 T2 C7 :   -.857493        .119673    

 ENVIRONMENTAL PROPORTION OF TOTAL VARIANCE  AND CORRELATIONS
            e1    e2 
   e1 :    .23
   e2 :    .57    .49

           0 Constraints:

 Files written:
   MTDF4   (ascii): Parameter file (IUN5) for "cold" restart
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   MTDF54  (ascii): Last simplex
   MTDF58 (binary): SPARSPAK reordering
   MTDF59  (ascii): Constraints imposed
   MTDF68  (ascii): Likelihoods by rounds
   MTDF67  (ascii): Sampling variances if requested
   MTDF72  (ascii): Predicted BVs and PEVs if requested
   MTDF76  (ascii): Program log file
   MTDF77  (ascii): Solutions for covariates and fixed effects if requested
   MTDF78  (ascii): Solutions for trait within animal if requested
   MTDF79  (ascii): Solutions for independent random effects if requested
  
 The current time is:  13:17:11.09

 Total time of analysis
 The elapsed time was: 00:01:37.49

Contrasts, Sampling Variances and
Expectations of Solutions

The multiple trait example is used to demonstrate calculation of contrasts, sampling variances

and expectations of solutions for all of the fixed effects for both traits..  Because continuation rather

than start (or restart) is chosen before doing option 4, MTDFRUN reads in the final simplex of the

restarted run to use as parameters for the mixed model equations.  If start or restart is chosen, a

prompt to enter (co)variance components is given.  Note that the option breeding values, prediction

error variances, and rTI should be used with caution, because it can take a great deal of time if

requested for a large number of animals.

MTDFRUN

Answers to the interactive questions asked by MTDFRUN:

Mouse data from Karin Meyer

Multiple trait analysis of 

Body Weight and Feed Intake

*

1 continuation: 0-no; 1-yes

4 run option: 1 var comp; 2 MME sol; 3 samp var; 4 MME sol, contrast, & samp var

1 write fixed effect solutions: 0=no; 1=yes

1 merge label information from MTDFPREP with solutions: 0=no; 1=yes

1 write animal solutions: 0=no; 1=yes

1 write uncorrelated random solutions: 0=no; 1=yes

1 merge label information from MTDFPREP with solutions: 0=no; 1=yes
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1 calculate block of inverse: 0=no; 1=yes

1 first equation for block of inverse

8 last equation for block of inverse

0 calculate another block of inverse: 0=no; 1=yes

1 calculate the variance of a contrast: 0=no; 1=yes

1 number of elements in the contrast

1 1. equation number of solution for contrast and coefficient for element 1

1 calculate the variance of another contrast: 0=no; 1=yes

2 number of elements in the contrast

4  1. equation number of solution for contrast and coefficient for element 1

2 -1. equation number of solution for contrast and coefficient for element 2

1 calculate the variance of another contrast: 0=no; 1=yes

2 number of elements in the contrast

13   1. equation number of solution for contrast and coefficient for that solution

12  -1. equation number of solution for contrast and coefficient for that solution

1 calculate the variance of another contrast: 0=no; 1=yes

1 number of elements in the contrast

14 1. equation number of solution for contrast and coefficient for that solution

0 calculate the variance of another contrast: 0=no; 1=yes

1 calculate predicted breeding values, prediction error variances, and rTI: 0=no; 1=yes

14 first equation for first animal for PBV, PEV, and rTI

18 first equation for last animal for PBV, PEV, and rTI

1 first trait for each animal

2 last trait for each animal

1 calculate the expected value of solutions: 0=no; 1=yes

1 first parameter number for expectation of solution

13 last parameter number for expectation of solution

1 first solution to calculate expectations

15 last solution to calculate expectations

0 calculate another set of expected value of solutions: 0=no; 1=yes

Results in MTDF76

 Started 16:26:56.43 on 03/06/1995

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
          PROGRAM "MTDFRUN"  - Estimate Covariance Components for MT-IAM
                               Last revised          8/          5/         94
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  Mouse data from Karin Meyer
  Multiple trait analysis of
  Body Weight and Feed Intake 
   
 Continuation of previous run
 Run option 4: solutions for MME, then sampling variances

 Solutions only for this run:
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 RHS are for MME:  X'R-1y
                   Z'r-1y

Estimates:

 GENETIC VARIANCES AND COVARIANCES :
             a1           a2 
   a1 :     7.78922     1.56748
   a2 :     1.56748     9.36453

 UNCORRELATED RANDOM VARIANCES AND COVARIANCES:
           T1 C7          T2 C7 
 T1 C7 :    1.37390       -1.70597    
 T2 C7 :   -1.70597        2.88087    

 ENVIRONMENTAL VARIANCES AND COVARIANCES :
             e1           e2 
   e1 :     2.73456     3.24674
   e2 :     3.24674    11.82745

 PHENOTYPIC VARIANCES AND COVARIANCES :
             p1           p2 
   p1 :    11.89769     3.10825
   p2 :     3.10825    24.07285

 HERITABILITIES AND GENETIC CORRELATIONS
            a1    a2 
   a1 :    .65
   a2 :    .18    .39

 UNCORRELATED RANDOM EFFECTS
 PROPORTION OF TOTAL VARIANCE ON DIAGONALS, CORRELATIONS ON OFF DIAGONALS
           T1 C7          T2 C7 
 T1 C7 :    .115476    
 T2 C7 :   -.857493        .119673    

 ENVIRONMENTAL PROPORTION OF TOTAL VARIANCE  AND CORRELATIONS
            e1    e2 
   e1 :    .23
   e2 :    .57    .49
   ---------------------------------------
   **          Using SPARSPAK-A         **
   ** Rel. 3 ANSI Double Precision ver. **
   **     (C) Univ. of Waterloo  1/84   **
   ---------------------------------------
  
 ** Reordering read from IUN58 **

  ** solve5 called **
  ** solve5 completed **
 The elapsed time was: 16:26:57.31

           0 Constraints:

      SPARSPAK-A statistics..
         Time:
           Ordering       =      .113 secs.  (    .002 mins.)
           Total/Solution =      .000 secs.  (    .000 mins.)
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            Allocation    =      .000 secs.  (    .000 mins.)
            Factorization =      .000 secs.  (    .000 mins.)
            Solve         =      .000 secs.  (    .000 mins.)
         Storage:
           No. equations                 =       755
           Non-zero hs elements in MME   =     14521
           Sparsity of MME               =     4.831%
           Maximum storage required      =     16413. (    .125 MB)
           Size of storage array (MAXSA) =    250000  (   6.565% used)

 Inverse block(s) written to iun67
 Contrast information written to iun67
 PBV, SEP, rTI written to iun72
 Expectation of solutions written to iun67

 Files written:
   MTDF4   (ascii): Parameter file (IUN5) for "cold" restart
   MTDF54  (ascii): Last simplex
   MTDF58 (binary): SPARSPAK reordering
   MTDF59  (ascii): Constraints imposed
   MTDF68  (ascii): Likelihoods by rounds
   MTDF67  (ascii): Sampling variances if requested
   MTDF72  (ascii): Predicted BVs and PEVs if requested
   MTDF76  (ascii): Program log file
   MTDF77  (ascii): Solutions for covariates and fixed effects if requested
   MTDF78  (ascii): Solutions for trait within animal if requested
   MTDF79  (ascii): Solutions for independent random effects if requested
  
 The current time is:  16:26:59.18

 Total time of analysis
 The elapsed time was: 00:00:02.31

Results in MTDF67:

  Block of inverse for equations          1 to          8

     1    .0257   -.0030    .0035    .0067    .0085    .0150    .0139    .0033
     2   -.0030    .6089    .4804    .4760    .0942    .0463    .0936   -.0086
     3    .0035    .4804    .6988    .5743    .1039    .0988    .0919    .1027
     4    .0067    .4760    .5743    .7513    .1158    .1127    .0889    .0911
     5    .0085    .0942    .1039    .1158   4.4029    .5758    .7904    .5171
     6    .0150    .0463    .0988    .1127    .5758   1.8164    .6410    .6922
     7    .0139    .0936    .0919    .0889    .7904    .6410   2.7326    .5160
     8    .0033   -.0086    .1027    .0911    .5171    .6922    .5160   1.8910

 Contrast          1   with no. elements          1
 Rows and coefficients for contrast
  Row          1   coefficient       1.000000000000000

  Contrast:          1 = -4.537962624977266E-001
          with SE =  1.604584640535971E-001

  Contrast          2   with no. elements          2
  Rows and coefficients for contrast
   Row          4   coefficient       1.000000000000000



43

   Row          2   coefficient      -1.000000000000000

  Contrast:          2 =       1.448625711542314
          with SE =  6.388771261621322E-001

  Contrast          3   with no. elements          2
  Rows and coefficients for contrast
   Row         13   coefficient       1.000000000000000
   Row         12   coefficient      -1.000000000000000

  Contrast:          3 =       4.328618734541770
          with SE =  4.548875893361996E-001

  Contrast          4   with no. elements          1
  Rows and coefficients for contrast
   Row         14   coefficient       1.000000000000000
   Contrast:          4 =       1.568272269873763
          with SE =       2.605093641450432

 Contributions of parameters            1 to         13
 To expectations for solutions          1 to         15

 Parameter:    Coefficients for solutions          1   to          15

                                      SOLUTION                         
 PARAMETER    1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
     1        1   0   0   0   0   0   0   0   0   0   0   0   0   0   0
     2        0   1   0   0   0   0   0   0   0   0   0   0   0   0   0
     3        0   0   1   0   0   0   0   0   0   0   0   0   0   0   0
     4        0   0   0   1   0   0   0   0   0   0   0   0   0   0   0
     5        0   0   0   0   1   0   0   0   0   0   0   0   0   0   0
     6        0   0   0   0   0   1   0   0   0   0   0   0   0   0   0
     7        0   0   0   0   0   0   1   0   0   0   0   0   0   0   0
     8        0   0   0   0   0   0   0   1   0   0   0   0   0   0   0
     9        0   0   0   0   0   0   0   0   1   0   0   0   0   0   0
    10        0   0   0   0   0   0   0   0   0   1   0   0   0   0   0
    11        0   0   0   0   0   0   0   0   0   0   1   0   0   0   0
    12        0   0   0   0   0   0   0   0   0   0   0   1   0   0   0
    13        0   0   0   0   1   1   1   1   1   1   1  -1   0   0   0

Results in MTDF72:

  If genetic groups are used in the model the SEP 
     are okay but the  rTI are incorrect unless
      group effects are estimated perfectly!!!
  
 Genetic variances used in order
        7.789224982322628        9.364531657354942
  
   animal    F     PBV    SEP  Rti       PBV    SEP  Rti       PBV    SEP  Rti
                   PBV    SEP  Rti       PBV    SEP  Rti       PBV    SEP  Rti
                   PBV    SEP  Rti       PBV    SEP  Rti       PBV    SEP  Rti
                   PBV    SEP  Rti       PBV    SEP  Rti       PBV    SEP  Rti
      215  .00   1.568   2.61  .36     1.277   2.91  .31
      403  .00   1.568   2.61  .36     1.277   2.91  .31
      615  .00   1.345   2.60  .36     1.324   2.89  .33
      701  .00   1.345   2.60  .36     1.324   2.89  .33
      814  .00   -.500   2.64  .33     1.000   2.92  .30
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There are several things that should be noticed in these results.  The variance components in

MTDF76 should match the converged values from the previous run if continuation was chosen (see

the results from the previous multiple trait analysis).  There is little other useful information found

in MTDF76 when the program is used for options other than variance component estimation.  The

block of inverse of the coefficient matrix is given in MTDF67.  There were 4 contrasts evaluated

corresponding to:

1) covariate of litter size for body weight,

2) difference of generations 3 and 1 for body weight,

3) difference of sex effects for feed intake, and

4) animal effect for the first animal and first trait with standard error of prediction.

By looking at the expectations of the solutions, it is clear that the covariate and generation effects are

estimable for body weight, because there is only one fixed effect.  However, the expectations for fixed

effects of the second trait (feed intake) show that the solution includes the underlying parameter but

also includes a function of the last level of the fixed effect for sex, which was constrained to zero.

Therefore, in order to evaluate sex effects for feed intake, the difference must be used (in this case

by using a one element contrast for equation 12, because equation 13 is constrained to zero: a two

solution contrast can also be used 12, 1. and 13 -1 with the same result).  The Kachman modifications

constrained the last level of the fixed effect for sex to be zero in this case, but it is important to note

that this will NOT always be the case.  Because the equations are reordered by SPARSPAK or

FSPAK, the user should not assume that the last level of second and later fixed effects are constrained

to zero.  You must still use complete estimable functions or check the estimability for a particular

solution by using the expected values of the solutions as was done here.  Finally, the use of

expectations and contrasts is not limited to fixed effects.  The expectations of solutions included two

animal effects to demonstrate that for this analysis the animal solutions did not include any of the

fixed effects.  In addition, the last contrast was used to calculate the standard error of prediction of

the  breeding value for the first animal for body weight.  The same information for genetic effects can

also obtained  in MTDF72 for predicted breeding values, standard errors of prediction, and accuracies

(rTI) for a selected group of animal effects.  It should be noted that these two methods yield identical

results for the prediction and standard error, i.e., equation 14 is the equation for the animal effect for

the first animal (original ID 215).
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CHAPTER THREE:  Alternative Models and Shared

Experiences with MTDFREML

Sex-Limited Traits and Genetic-Environmental Interactions

The programs can accommodate traits for which measurements are available for a trait on one

sex and for another trait on the other sex, e.g., scrotal circumference for males and age at first estrus

for females.  Such pairs of traits can be analyzed together with traits measured on both sexes.  For the

sex-limited traits, the ties between the traits are entirely from the relationship matrix, e.g., sires or

dams in common for male and female progeny.  Experience has shown a tendency in small data sets

for the across-trait genetic correlations to converge to 1 or -1.

The pedigree file for MTDFNRM will include all animals.  Fields for both traits must be

present for each animal in the data file for use in MTDFPREP.  For example, males will have fields

for both scrotal circumference and age at first estrus (always filled with the missing observation

indicator) and females will also have the same fields for both traits but with the field for scrotal

circumference filled with the missing observation indicator.  When running MTDFRUN, the

environmental covariance between scrotal circumference and age at first estrus must be zero.  With

MTDFREML combinations of sex limited and other traits can be considered.  Do not enter values for

environmental covariances that are not estimable, e.g., pairs of traits never measured on the same

animal.

Another application of the sex-limited type of analysis is to consider the same name trait to

be different traits in males and females.  The data file must have different fields for the male and

female traits with one field with the designated missing value.  Again, the environmental covariance

will be zero.

Yet another similar application is for some progeny of bulls to be exclusively in one

environment and other progeny to be exclusively in another environment.  Environments might be

breed of dam, locations; even male measures from one breed of dam and female measures from a

different breed of dam.  The combinations are nearly endless. Unfortunately, problems with

convergence for small data sets with poor relationship structures may also be nearly endless.
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Nevertheless, REML provides a unified method to attempt such analyses.

Sire Models

Although this set of programs may not be the most efficient for sire models because of

increased density of the coefficient matrix, such models can be run, e.g., the usual sire model, the sire

and maternal grandsire model, and the sire and dam model.

Sire model

For MTDFNRM, the pedigree file needs to be made for sires' having progeny with records.

The sire, sire of sire, maternal grandsire of sire option would be chosen.  The identification vector

would contain:

sire instead of animal

sire of sire instead of sire of animal 

maternal grandsire of sire instead of dam of animal

If some sires are related through females, e.g., are full sibs, then those connecting dams can be

included in the pedigree file in which case the animal, sire, dam option would be used with sires and

the connecting dams in the pedigree file:

sire and dam

sire of sire sire of dam

dam of sire       —

In MTDFPREP when the field for animal is requested, the field for sire would be given.

The MTDFRUN program works with whatever model is specified.  The output, however, is

formulated in terms of an animal model.  Therefore, for a sire model, heritabilities would need to be

recomputed, i.e., four times the heritability stated on the output.  Estimates of heritability for the

animal model are forced to be less than or equal to one.  With the program run as a sire model,

heritability from four times the sire variance may exceed one.  Solutions for sires will be for

transmitting ability or one-half of predicted breeding value.  Standard errors for sire solutions will be

for prediction error for transmitting ability.

Sire and maternal grandsire model

For data sets with too many animals for using an animal model, an option may be a model

including sire of the animal effect (.5 direct genetic of the sire) and maternal grandsire of the animal



47

(.25 direct genetic of mgs and .50 maternal genetic of mgs).

For MTDFNRM, the alternatives are as described for the sire model.

For MTDFPREP, the field for sire will designate the primary animal effect and the field for

maternal grandsire will designate the second animal effect.

With MTDFRUN, the parameter space for estimates is for an animal model.  Thus, estimates

for sire and mgs variances and sire-mgs covariance will be forced to have a sire-mgs correlation in

the usual bounds of -1 to +1.  For example, with one trait the heritabilities and correlations calculated

from

σ2
s = σ2

g/4

σ2
mgs = σ2

g/16 + σgm/4 + σ2
m/4

σs,mgs = σ2
g/8 + σgm/4

may not be in the parameter space.  To estimate the sire-mgs covariance as many sires as possible

should also be maternal grandsires.  Similar considerations hold for the covariances and variances for

two or more traits.

Sire and dam model

A sire and dam model depending on relationships among sires and dams may allow estimation

of genetic direct-maternal covariance but will not allow breaking out a dominance component from

the maternal variance.

For MTDFNRM, animals in the pedigree file will be sires and dams of animals with records

and their ancestors.  Use the option for A-1 corresponding to whether the pedigree file is for animal,

sire, and dam or (sire, sire of sire, and maternal grandsire of sire) and equivalent for dam.  

sire dam

sire of sire sire of dam

dam of sire or maternal grandsire of sire dam of dam or (—)

For MTDFPREP, enter either sire or dam as primary animal and the remaining parent as the

second animal.  Unfortunately, the way the program is set up, equations for a first animal and a

second animal effect will be set up for all sires and dams.  That should not affect the answers for

either sire and dam effects or for variance components but more equations and coefficients will be
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involved.  Some of the sires and dams must be related for estimating the sire by dam covariance.  The

parameter space considered for MTDFRUN will bound the sire-dam correlation but not heritabilities

and direct-maternal genetic correlations.  For example, with one trait the expectations of the variance

components:

σ2
s = σ2

g/4

σ2
d = σ2

g/4 + σ2
m + σgm/2

σsd = σ2
g/4 + σgm/2

can be used to estimate direct and maternal heritability and the direct-maternal covariance.  If some

dams have more than one progeny, then including an uncorrelated random permanent environmental

maternal effect probably is necessary.  The field  specified  for PE-maternal is the same as for the

dam.  Note that records of animals that are also sires and dams can be included but relationships will

not be considered correctly.

Models with Many Levels of a Fixed Factor

With sire or sire-mgs models, many levels of a fixed factor such as herd-year-season or

contemporary group effects would be likely.  Such effects can be argued to be fixed or random.  If

no association exists, e.g., between herd effects and sires, then such effects might be modelled as an

uncorrelated random factor.  Modelling the effects as fixed, however, adjusts for the associations but

with the cost of making all effective comparisons within levels of that factor.  Two suggestions for

using the MTDFREML program follow but have not been tested for the factor considered fixed.

First, the PARAM.DAT file can be changed to increase the maximum number of levels for each fixed

factor, MAXNFL.  In that case, the maximum number of traits, MAXTRT, and maximum number

of fixed effects for any trait, MAXFIX, should be reduced to a minimum.  These multiply together

in creating memory requirements.  If memory requirements are still too great, then a possibility is to

sacrifice the ability to obtain expected values by reducing the size of the commented matrix in

MTDFLIK to store expected values to a minimum but be sure not to ask for expected values.  

A second possibility is one that seems to work and may be a practical compromise to the

question of whether contemporary group effects are random or fixed.  The compromise is to enter the

field as an uncorrelated random effect in MTDFPREP.  Then in MTDFRUN assign a small variance
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for the effect that is held constant (with small depending on the situation; e.g., as small as .0001% of

the phenotypic variance for the trait).  The very small constant variance makes the factor "almost

fixed".

Standard Statistical Models Without Relationships

Most statistical models do not have random factors with correlated levels, such as are

considered with the inverse of the relationship matrix.  Such models can be used with MTDFREML.

Several possibilities exist; some would require program changes.  The following seems to work.

Create a pedigree file with no sire or dam identification.  The animal identification would be the

uncoded levels of one of the random factors.  A field with only zeroes could be specified for both sire

and dam in MTDFNRM.  The A-1 elements would then correspond to those for an identity matrix.

A second animal effect should not be specified because as with the sire and dam model, both a second

and a first animal effect will be included for each "animal" (i.e., levels in the first and second animal

fields).  Other uncorrelated random factors can also be specified.  Correlations among the

uncorrelated effects for a trait should have priors set to zero.

Derivative-free algorithms that take advantage of sparse matrices have greatly expanded the

magnitude of analyses that can be used to obtain REML estimates.  The algorithms, however, can be

just as frustrating and as susceptible to misuse as any statistical packages.

Local vs Global Maximization

The simplex algorithm is not guaranteed to converge to a global maximum (see e.g., Chapter

7).  The variance of the simplex (the convergence criterion) depends entirely on the current simplex

and if convergence is to a local maximum, that variance may become very small.  MTDFRUN should

ALWAYS be restarted with the estimates at apparent convergence as initial values.  For estimates

near zero, a small restarting value such as .0010 might be appropriate but not .0000.  In some cases,

further fresh (i.e., cold) restarts should be made.  A future option to be added to MTDFREML will

be for a cold restart with each parameter estimate in turn to be increased by a factor of .0002 and then

also to be decreased by the same factor (O'Neill, 1971).  If any FVALUE (-2 log likelihood) is smaller

than the FVALUE at apparent convergence, the simplex procedure should be continued from the

restart until the variance of the simplex is less than 1.e-9.  Second and later restarts may be necessary.
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Starting values that are much too large or starting covariances with the wrong signs seem to increase

number of rounds needed for convergence.  Crossing over from a positive to a negative covariance

is particularly slow.  Movement in the simplex is a small fraction of the previous estimate.  Thus,

small covariances do not move very fast.  Choose the variance component priors carefully.  Do not

choose covariance priors that give correlations close to -1 or +1 which will put the simplex

immediately on a boundary.

Standardization of Data

Some discussion has indicated that the DFREML approach may be susceptible to rounding

errors.  Rounding errors seem more serious for analyses for traits measured on greatly different scales,

e.g., milk yield and pelvic height.  The different scales also can create difficulty in reading the

MTDF76 file output from MTDFRUN.  That problem can be alleviated by assigning appropriate

format statements to some of the WRITE (IUN66,_) statements. [The MTDF68 file, however, will

contain the FVALUE and parameter estimates for each likelihood evaluation in free format.]  A

reasonable procedure may be to divide each trait by an approximate standard deviation.  At global

convergence, the (co)variance estimates can be rescaled to the original units, e.g., variance multiplied

by the square of the approximate standard deviation.

In one analysis of binomial data the FVALUE would not converge and, in fact, alternated

between two quite different values.  The variance components were quite small.  Multiplication of

the binomial measures by 100 resulted in convergence.  Except for rounding error, scaling should not

have affected minimizing the FVALUE.  Nevertheless, this experience suggests that successful use

of MTDFREML is not entirely "science" but is partly an "art".

Sparseness

MTDFREML is computationally efficient when the coefficient matrix is sparse.  The inverse

of the relationship matrix (A-1) is sparse but fixed effects can create enough density to slow the

SPARSPAK subroutines.  Covariates will slow SPARSPAK the most.  The covariate by covariate

block of the coefficient matrix is completely filled as will be much of the block for the covariate by

fixed classification factors.

Sparsity can be enhanced by using subclass models for fixed classification factors.  For
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example, the subclass block for herd by year effects will be diagonal but separate herd, year, and herd-

year effects will create more fill and more equations.  Unless residual degrees of freedom are a

problem or unless solutions for main effects are needed, subclass models will be more efficient

computationally.  The contrast option in MTDFRUN allows obtaining main effect estimates from the

subclass solutions after convergence.  For larger data sets, pre-adjustment of data for effects such as

sex and age of dam will also keep the coefficient matrix more sparse.

Contrasts

Contrasts and standard errors for fixed effects can be obtained relatively easily.  That option

does not check for estimatibility.  For example, suppose the contrast is for year 2 plus year 3 effects.

The expected value for the year 2 solution might be year 2 minus year 1 effects and for the year 3

solution the expected value would be year 3 minus year 1 effects.  The contrast (probably not a good

name when misused) would be calculated and the standard error of year 2 plus year 3 solutions would

be calculated but would have little meaning unless the expectations were known.  Therefore, a

recommended procedure is to use the expected value option for each solution used in a contrast.

Number of Traits

Running more than 3 or possibly 4 traits at a time is probably not a good idea, especially with

complex models, e.g, several correlated random effects.  The number of evaluations for convergence

will be considerable due to the many parameters to estimate.  Covariance components that go to

correlation boundaries and variances that go to zero markedly increase the number of likelihoods to

be calculated.  With many traits and components some of these situations are likely.  A useful strategy

might be the following.

Strategy for Estimation of Covariances with Multiple Traits

The following strategy for complex multiple trait models may be useful.

1) Run each trait separately to convergence at moderate level of convergence, e.g., 1.e-6

by setting all covariances = 0.d0.

2) Cold start with variance estimates from single trait analyses held constant and use

guessed covariances as starting values for multiple trait analyses.
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3) Run multiple trait analysis to low level of convergence, e.g., 1.e-3 or 1.e-4.

4) Do not hold variances constant and cold restart from apparently converged estimates

from 3).  Run to low level of convergence, e.g. 1.e-3.

5) Repeat cold restarts until -2 log likelihood does not change in units (tens?) position at

low level of convergence.

6) Then run to high level of convergence, e.g., 1.e-9.

7) To make sure of global convergence, cold restart from converged estimates.  Run to

high level of convergence.  Repeat if a larger log likelihood

(or small -2 log likelihood) is found.  Changes in -2 log likelihood beyond the third

decimal position are not usually important.

Insufficient Memory

An insufficient memory error may occur for a multiple trait model with numerous covariates

and fixed effects with many levels.  The matrix EXPMAT used for expectations of solutions would

use a large amount of storage.  Suppose an analysis has three traits, maximum number of covariates

is three, maximum number of regression coefficients is two, maximum number of fixed effects is four

with 2000 levels.  Then the EXPMAT matrix requires 7506 MB of memory.

Two possible solutions require recompiling MTDFLIK and MTDFRUN:

1) Reduce maximums for number of traits, covariates, regression coefficients, fixed effects

and levels in PARAM.DAT to the minimums needed.

2) Replace the EXPMAT matrix definition with EXPMAT(1,1).  Then expectations of

fixed effects and covariates can not be calculated. 
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CHAPTER FOUR: Theoretical Considerations for
MTDFREML

Mixed Models

In matrix notation the general mixed model for an observation vector, y, is:

y = Xß + Zu + e, where

 ß = vector of fixed effects associated with records in y by X, and

u = vector of random effects associated with records in y by Z.

Now E[ y ] = Xß, but with V( u ) = G, V( e ) = R, and E[ ue' ] = 0; V( y ) = ZGZ' + R, where some

covariances among the y's, ZGZ', are introduced by having random effects in common.

In a common animal breeding application for a single trait analysis, u is a vector of breeding

values with V( u ) = G = Aσ2
g, where A is the numerator relationship matrix and σ2

g is the additive

genetic variance (variance of breeding values) and R = Iσ2
e.

Henderson's Mixed Model Equations

Henderson's mixed model equations (e.g., 1950, 1963, 1975, 1984a) simplify for many

situations the calculation of ß^  and û.  In general form the MME are:

Although R is of order the number of records, R is usually assumed to be diagonal for single

trait analyses, often Iσ2
e, and block diagonal (blocks of order of number of traits) for multiple trait

analyses, so that calculations with R-1 are easy.  Henderson et al. (1959) proved the ß^  from his

equations are BLUE as from generalized least-squares and Henderson (1963) proved the û are BLUP.

MME for Variance Component Estimation

The use of MME for prediction of breeding values has become commonplace.  The story of

the MME for estimation of variance components may not be so well known. In a 1968 paper

Cunningham and Henderson (1968) described an iterative procedure for estimating variances and

fixed effects which may have been the forerunner of what is now known as restricted maximum
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likelihood (REML), the current method of choice. In 1969, Thompson (1969) corrected the error in

the denominator of the Cunningham and Henderson estimator of the residual variance (the number

of random effects should not be subtracted in calculation of degrees of freedom). Two years later,

Patterson and the same Thompson (1971) presented what is now known as REML. They maximized

the part of the multivariate normal likelihood associated with the random effects after essentially

adjusting for estimates of the fixed effects. Their derivation was for a function of y, K'y, that has

E[K'y] = E[K'Xß] with the restriction, K'X = 0, so that the values of the variance components that

maximize the likelihood are invariant to constraints to obtain ß^ .  

The logarithm of the restricted multivariate normal likelihood can be written as:

Λ = -.5[(n - p)log(2π) + log|K'VK| + y'K(K'VK)-1K'y] .

Although K'X = 0 guarantees invariance, the maximization of Λ does not require knowing K'.  A

somewhat more familiar identity with constraints already imposed on X is:

Λ = -.5[constant + log|V| + log|X'V-1X| + (y - Xß^)'V-1(y - Xß^)] .

Note that (n - p)log(2π), the constant, is not affected by choice of V to maximize Λ, where n is the

number of records and p is the rank of the part of the coefficient matrix due to fixed effects.  The

familiar terms are:

1) V = ZGZ' + R, the variance of y,

2) X'V-1X, the coefficient matrix for GLS estimation of ß^ , and

3) the last term is the generalized residual sum of squares with residuals weighted by the

inverse of V. Harville (1977) and Searle (1979) developed an equivalent form of Λ that is important

for derivative-free REML (DFREML):

Λ = -.5[constant + log|R| + log|G| + log|C| + y'Py] where,

C is the full-rank coefficient matrix for the MME and 

y'Py with P=V-1-V-1X(X'V-1X)-1X'V-1, although formidable in appearance, is the generalized

residual sum of squares.

Obviously to work comfortably with Λ, a refresher course on determinants, particularly the logarithms

of determinants is desirable.  Although desirable, that can not be done here, but the patterns can be

worked out easily with examples and Searle's (1982) matrix algebra book.  Derivative methods such

as EM-REML to obtain estimates of G and R involve derivatives of Λ with respect to unique

variances and covariances in G and R which are non-linear in G and R and require non-linear
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iteration.

Derivative-Free REML

Smith and Graser (1986) and Graser et al. (1987) broke with tradition and proposed not taking

derivatives or expectations. The derivative-free method, very simply, is to try different R and G (e.g.,

σ2
e of R = Iσ2

e and σ2
g of Aσ2

g) until the combination that maximizes the log likelihood, Λ, is found for

the data, y. That simple approach is not quite as simple computationally as it first seems, but is

perhaps simpler than approaches such as EM-REML involving derivatives, expectations, and

inverses. A simple example will be used to demonstrate the difference between derivative and

derivative-free approaches to maximizing a function. The example is not of maximizing a likelihood

but describes finding the maximum of a function with a defined equation. The figure describes the

problem.  A baseball is thrown into the air at 144 ft/sec. Gravity pushes back.  The equation for height

above the ground is:  s = function(t = time in sec) = 144t - 16t2.  

The figure is a plot of height and time.  The plot itself actually shows the number of seconds when

the maximum height is reached.  Plotting all such points for complicated functions, however, would

be inefficient.  The derivative method of finding t to maximize s is to take the derivative of s with

respect to t and equate to zero:

ds/dt = 144 - 32t = 0.

Thus t = 144/32 = 4.5 sec is obtained directly.

The derivative-free method is similar to making the plot.  Values of t are put into the equation

until the maximum is found.  For a problem as simple as this one the logic for the search is fairly



56

straight forward:  try a small value, a larger value, and then successively try to bracket the maximum

until the maximum is found, as for example:

 step                t                     s       

  1               1.0               128.00

  2               4.0               320.00

  3               5.0               320.00

  4               4.4               323.84

  5               4.6               323.84

  6               4.5               324.00

For estimating variance components the equation to be maximized based on the MME has

already been described:

Λ = -.5[constant + log|R| + log|G| + log|C| + y'Py] .

This form of the likelihood is completely general in R and G and the sample of records, y.  The

important point is that R and G can be simple or complicated, for a single trait or multiple traits.  As

the structures of R and G become more complicated, the problem of searching efficiently for better

sets of R and G becomes more and more difficult.  In Λ the constant term can be ignored.  

Often evaluating the log likelihood is less confusing if instead of maximizing Λ, -2Λ is

minimized; i.e.,

 -2Λ = constant + log|R| + log|G| + log|C| + y'Py .

In the expression to be minimized, the constant is ignored.  At each round the other four terms  must

be calculated.  The easy terms are log|R| and log|G|.  For  example,  with R = Inσ
2
e, 

log|R| = nlog(σ2
e) and with G = Aσ2

g, log|G| = log|A| + qlog(σ2
g) where q is the order of A, the

numerator relationship matrix.  If, for a model with correlated direct and maternal genetic effects and

permanent environmental effects with p levels and variance, σ2
p:
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Then, log*G* = 2log*A* + qlog  + plog(σ2
p).
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The log|A| is also a constant but if wanted can be computed easily as a by-product of a one-time

calculation of A-1 according to the rules of Quaas (1976) which account for inbreeding.  At the end

of his algorithm, his vector, v, corresponds to the square roots of the elements of the diagonal vector

of the Choleski  factor  of A,  i.e., v2
i = Rii.   

Thus, since A = LL':

log|A| = log|L| + log|L'|, so that log|A| = 2Σlog(Rii) = 4Σlog(vi).

Similarly, multiple trait versions of log|R| and log|G| are not difficult to calculate.

The difficult terms of Λ to evaluate are log|C| and y'Py.  The strategy proposed by Smith and

Graser (1986) to calculate those terms is based on Gaussian elimination (GE) which is often used to

obtain solutions to sets of equations, although in this case solutions are not needed.  GE is commonly

described in computer science courses.  Smith and Graser (1986) took advantage of the steps in GE

to calculate log|C| as well as y'Py.  As a simple example suppose the equations are:

X'Xß^  = X'y with ß^  = (X'X)-1X'y .

Then the residual sum of squares is:

(y'y - ß^ 'X'y) = y'y - y'X(X'X)-1X'y .

As taught in computer science courses for doing GE, Smith and Graser augmented X'X as follows

with X'y and y'y, the total sum of squares:

X'X X'y

y'X y'y

Gaussian elimination essentially involves absorbing X'X into y'y which can be done one equation at

a time.  The log|X'X| is calculated as the sum of logs of the successive leading diagonals that arise
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at each step of the absorption, e.g.,

After completion of absorption of X'X into y'y, the entry for y'y has been replaced

by y'y - y'X(X'X)-1X'y which is the residual sum of squares needed for y'Py.  In this case, y'Py = [y'y

- y'X(X'X)-1X'y]/σ2
e  with σ2

e in the denominator because in setting up the OLS the equations were

multiplied through by σ2
e.

The same procedure works for the general MME:

X'R-1X X'R-1Z X'R-1y C r

Z'R-1X Z'R-1Z+G -1 Z'R-1y =   r'  y'R-1y

y'R-1X y'R-1Z y'R-1y

On completion of absorption of C, log*C* has been computed as the sum of the logs of the successive

leading diagonals on absorption and y'R-1y is replaced by y'R-1y - r'C-1r=y'Py which is the

generalized residual sum of squares and which does not need to be divided by σ2
e because the structure

of R-1 is included in the MME, RHS's and total generalized sum of squares, y'R-1y.

Karin Meyer (1988,1989,1991) incorporated the ideas of Smith and Graser (1986) into a

remarkable series of DFREML programs that took advantage of the sparseness of C using linked list

techniques (e.g., Tier and Smith, 1989).  Gaussian elimination is more efficient than inversion to

obtain solutions and sparse matrix GE is generally much more efficient in terms of both memory

requirements and computing time.  The programs include calculation of A-1 with the rules of Quaas

(1976).  The search strategy for updating R and G for the MME was the simplex method of Nelder

and Mead (1965) which is a generally efficient method for non-linear optimization and easily

accommodates constraining R and G to parameter space.  Meyer's single-trait programs popularized

DFREML and have been widely used.  The procedure does not require solutions for ß^  or û so another

program is needed to obtain solutions for ß^  and û after convergence for estimates of R and G,
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probably by iteration.

The DFREML programs expanded by a factor of 5 to 10 the number of equations that could

be managed with REML estimation and reduced the computing time for estimation of REML

estimates of variance by at least as great a factor.  The flatness of the likelihood, might, however,

create problems of convergence to local maxima with the search strategies employed with DFREML.

DFREML with Choleski Factorization

Naturally as computers become faster and as more efficient computing algorithms are

developed, animal breeders increase the size of analyses they want to do even more.  So---what might

be more efficient than GE and DFREML?  Karin Meyer has continued to make her programs more

efficient and more general.  Misztal (1990) showed that sparse matrix techniques could reduce time

and memory requirements for EM-REML algorithms.  He also suggested use of such techniques for

DFREML computation.  Boldman and Van Vleck (1991), based on the suggestion of Misztal, worked

at trying to incorporate sparse matrix routines other than GE into an algorithm to calculate Λ.  Their

strategy was based on Choleski factorization and solves using sparse matrix routines in SPARSPAK

(George et al., 1980; George and Ng, 1984; Chu et al., 1984).  Choleski factorization is a matrix

technique involved in many advances in animal breeding computing, e.g., the rules for A-1, simulation

of multiple trait data sets, canonical transformation for certain multiple trait analyses (e.g., Meyer,

1985) and sequential transformation to standardize residual variances for one class of multiple trait

analyses with chronological selection on the traits (e.g., Pollak and Quaas, 1982; Walter et al., 1986).

The Choleski factor, L, for  a  symmetric positive definite matrix, C,  is  such  that LL' = C

with L, a lower triangular matrix.  For example:

L can be calculated easily from the obvious (after you have done it once) recursive pattern.

For MME of the form:  Cs = r  ,

the two difficult terms of Λ, log*C* and y'Py,  can be calculated easily and, with sparse matrix
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techniques, very rapidly for many animal breeding analyses.

First, find L such that LL' = C, then LL's = r.

Let d = L's so that Ld = r.

The down-solve to calculate the vector d is obviously easy.

Next up-solve L's = d for s which is just as easy.

From s, y'Py can be calculated as y'R-1y - s'r.

From the relationship C = LL', log|C| = log|L| + log|L'|.

The log determinant of a lower triangular matrix is simply Σlog(Rii) where the Rii are the diagonals of

L.  Also obvious is that log|L| = log|L'|.  Thus log|C| = 2 Σ[log(Rii)] which is a trivial step.  The other

steps in the Boldman and Van Vleck (1991) algorithm are the same as with the original DFREML

programs and make use of the Simplex routine in updating R and G to maximize Λ.

The decrease in computing time with the SPARSPAK-Choleski strategy over the original GE

with linked list was nearly unbelievable.  For a problem with 3661 equations, the time to calculate

the likelihood decreased from 462.7 to .5 sec on an IBM 3090 supercomputer, from 2591.4 to 3.3 sec

on an IBM 4381 mainframe, and from 3271.2 to 12.0 sec on a 386/20 personal computer--decreases

in computing time of 200 to 900 times.  The SPARSPAK  algorithm,  however, requires a  one-time

reordering for each design matrix which for the example took 28.7, 153.3, and 243.9 sec for the three

computers.  The number of likelihoods evaluated to obtain convergence for the example was 157 and

is often more for other data sets and models.  The Choleski factorization is not more efficient than

Gaussian elimination.  The advantage with SPARSPAK is in reordering but SPARSPAK does not

have the GE option.  K. Meyer (1991, personal communication) by obvious reordering found GE to

be nearly as fast as SPARSPAK in newer versions of her programs.

Other packages for sparse matrix routines are SMPAK and MATLAB, an interactive,

programmable matrix package often used for examples in teaching.  The key to the efficiency with

SPARSPAK is that a particular data structure needs to be reordered only once to minimize steps that

occur each round in Choleski factorization.  The package remembers the reordering when the

coefficients of C and the RHS's, updated for new guesses of R and G, are entered each round.

The SPARSPAK factorization requires that the coefficient matrix be of full rank; i.e., that

constraints be imposed on the coefficient matrix.  In some cases determining the proper constraints

is difficult and in most cases is a decided nuisance.  Kachman (Chapter 6) modified the Choleski

factorization of SPARSPAK so that zero-out type constraints are imposed automatically during the
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factorization step.

The general approach is easily adapted to multiple trait problems and seems to be the most

efficient procedure available, at least until a better one is developed. A simple two trait analysis with

one trait measured only on males and the other trait measured only on females with 52,192 equations

took about 9 and 13 minutes per likelihood evaluation on personal computers with Intel 486/50-25

and Intel 486/33 processors.  For EM-REML, the matrix of order 52,000 would need to be inverted

each round, an impossibility with standard inversion programs even with the fastest super computers.

The symmetric half-stored form of the matrix would also require 11,000,000,000 bytes of memory!!

Therefore DFREML-SPARSPAK can do the impossible in 9 to 13 minutes on a PC and with a little

over 16,000,000 bytes of memory.  Misztal (1990) with sparse matrix inversion inverted the

coefficient  matrix for  a  single  trait  model of order 74,199 once in 5 hr using 64MB of memory on

a CRAY supercomputer and then sampled elements of the inverse in succeeding rounds.

The procedure outlined here is completely general--single traits, multiple traits, direct genetic

effects, maternal genetic effects, permanent environmental effects, litter effects, numerator

relationships, dominance relationships, and cytoplasmic effects.  Multiple traits can have different

fixed factors, traits can be missing, traits can have repeated measures, and sex-limited traits of both

sexes can be included.  The most obvious problem with such a general procedure with possibly many

parameters in R and G even for only 3-4 traits, is whether convergence to estimates of R and G that

maximize Λ will occur. At the least, MTDFREML programs should be restarted with what are

considered converged estimates to determine whether a local maximum was found (Groeneveld and

Kovac, 1990).  A larger Λ on restart indicates the original maximum was local.  Experience and,

perhaps, luck may be necessary to obtain the global maximum for Λ.  A cold restart that yields a

larger log likelihood in the units or tenths position probably indicates the previous convergence was

to a local maximum.  A particular problem with small data sets, which may be a function of poor

design matrices for separation of direct and maternal genetic effects, is a tendency for the genetic

correlation to converge towards 1 or -1.

Hypothesis Tests and Prediction Error Variance

The Choleski based algorithm lends itself to calculation of standard errors for solutions, for

standard errors of linear (estimable) functions of solutions, and for prediction error variances for
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random effects such as breeding values.  Harville (1979) presented what he called the mixed model

conjugate normal equations based on a suggestion in Henderson (1974).  Beneath the complicated

name was a method waiting to exploit the rapid solution time with the sparse Choleski factorization.

The algebra of the method is simple.  Let s' = (ß^ ' û') be the solutions at convergence for R and G.

Then from mixed model theory under the pretense that R and G are known exactly:

where C is the full rank coefficient martix for the MME.  To test the significance of an estimable

function of the ß^ 's, e.g., k'(ß^ ' û'-u')' = 0 the variance of (ß^' û'-u')' is needed, i.e., k'C-1k.  The

question is how to obtain k'C-1k without knowing C-1?

The approach is to use the contrast vector, k, as the RHS vector of the MME and let Φ be the

solution:

CΦ = k, so that algebraically Φ = C-1k.

Then premultiplying Φ by k' gives k'Φ = k'C-1k which is what is needed.  Rather than use C-1 in

calculation of Φ, the Choleski factor of C, L, is used to obtain Φ  just as s was obtained (and just as

quickly and with the same reordered structure, see Table 1).  For the ith linear contrast, ki's, the

standard error is (ki'Φi)
.5 which can be used for t-tests or the ki'Φi for the orthogonal contrasts within

a factor can be summed to obtain a F-test. 

As an example, assume three levels of the first factor, then:

k = (1  0  -1  0  0 ...  0)' 

is the contrast to test level 1 minus level 3 of factor one.

Prediction error variances can be obtained similarly.  In such cases, k will contain all zeroes

except for a 1 in the jth spot corresponding to the equation for the jth breeding value.  Again solve

LL'Φj = kj for Φj and then calculate V(ûj - uj) as kj'Φj which can be used to obtain accuracy of

prediction or to put a confidence range about uj.

Again, the reminder.  The mixed model conjugate normal equation procedure is general--

single, multiple traits, messy, balanced data, etc.

Multiple Trait MME for DFREML

The basic computing strategy for calculating the general MME is fairly simple.  The problem

is in creating enough flexibility to handle missing records, multiple traits, multiple genetic and other

random factors, different fixed factors for different traits, repeated measures as well as incorporating
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relationship matrices especially for multiple genetic effects such as direct and maternal genetic

effects. 

Expectations of Solutions

The Choleski algorithm also leads to relatively easy determination of the expected values of

solutions.  Even with constraints imposed explicitly, expectations of solutions are not  always

obvious.  With  the  constraints  imposed  by  the Kachman modifications of SPARSPAK, knowledge

of expected values of the solutions becomes even more important.  A property of MME is that

predictions of u have expected values of zero.  Thus, verification that expected values of û are zero

may be an aid in debugging.  

Algebra of Expected Values

With  the generalized inverse of the coefficient matrix, s = (ß^ ' û')', the solutionC
C C

C C

XX XZ

ZX ZZ

−

+
=
L
NM

O
QP
,

vector, and  the right hand side vector:r
X R y

Z R y
=

′

′

L
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O
QP

−

−

1

1
,

s = C-r and E[s] = E[C-r] = C-E[r],

then

Let c '
i be the ith row of C-.

Then

Note that the expectation of the ith solution in s:
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coefficient matrix associated with the ß equations.  Thus, multiplication of the ith row of C- by each

of the first p columns of C gives the coefficients of ß in E[si].  Note that ci can be obtained by solving

Cci = Ii where Ii is the ith column of I (a 1 in the ith element and zeroes elsewhere).  As with

determining s the solution vector, ci can be determined by a Choleski solve from LL'ci = Ii.  To

calculate coefficients of ß in E[si], ci is multiplied by non-zero coefficients of the first p columns of

C while reading the least squares coefficients as is done in setting up the MME.  This process is

repeated for each expected value.  Because the coefficient matrix needs to be factored only once, the

costs for each expected value are:  1) to change the RHS to insert zeroes and a 1 corresponding to

solution i, 2) to use a Choleski solve to find ci, and 3) to do sparse multiplication of c '
i by non-zero

coefficients of C corresponding to the ß equations. Reading the coefficients of C is most costly but

is not prohibitive for sets of solutions such as for all levels of certain fixed factors or for a few levels

of random factors for verification of the zero expected values.  (See Table 1 for an example of the

time required for one expected value).

Table 1.  Relative computational times (seconds on a 486/33) for various options: iterate for
variance components, solution to mixed model equations, calculation of standard errors

and standard deviations of prediction errors, and calculation of expected values for a single
trait analysis with 3,111 animals and 7,303 equations

Variance Components

(Data dependent)

Solutions MME
(Data & VC dependent)

1) Reorder           (98.20)

2) Factor            (44.60) 2) Factor                   (44.60)

3) Solve             ( 1.32) 3) Solve                    ( 1.32)

4) Repeat 2) & 3)    (45.92)

until convergence

Standard Errors
(Data & VC dependent)

Expected Values
(Design dependent)

2) Factor       (44.60) 2) Follows SE

3) Solve        ( 1.32) 3) Solve                ( 1.32)
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4) Repeat 3) for each  ( 1.32)
          contrast

4) Mult. X'R-1X, Z'R-1X ( 4.01)

5) Repeat 3 & 4)        ( 5.33)
     for each E[ ]
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CHAPTER FIVE: Computing Strategies for MTDFREML

Estimation of variance components via MTDFREML consists of two distinct and independent

steps: 1) an orderly method to update G and R in an attempt to locate the values which maximize the

log likelihood for the sample of data, Λ (equivalently, minimize, FVALUE = -2Λ), and 2) formation

and solution of the MME to evaluate -2Λ for specific values of G and R.  The derivative-free search

procedure used in MTDFREML is the Simplex method of Nelder and Mead (1965) described in

Chapter 7.  The procedure used for formation and solution of the MME will be described in this

section.

The use of a sparse matrix package such as SPARSPAK which uses a Choleski factorization

greatly reduces both computing time and amount of programming required to obtain MTDFREML

estimates.  Several characteristics of SPARSPAK make the routines especially well-suited for

forming and solving the MME in MTDFREML.  First, individual elements of the MME can be

entered in any order and are accumulated  by SPARSPAK.    Thus, elements of X'R-1X, Z'R-1X, and

Z'R-1Z and X'R-1y and Z'R-1y can be accumulated one animal at a time. After all records have been

processed, elements of G-1 can then be added individually to elements of Z'R-1Z.  Second,

SPARSPAK stores diagonal elements of the Choleski factor, L, of the coefficient matrix, and the

right-hand side vector, r, and solution vector, s, in separate vectors so the quantities 3log(lii) and s'r

required to evaluate Λ in each round can be easily obtained.  Third, (see Chapter 6), Choleski

factorization of SPARSPAK can be easily modified to impose zero-type constraints automatically

during the factorization step so that the user need not define particular constraints, although the option

to impose specific constraints is available.  In addition, the reordering, factorization, and solution

steps performed by SPARSPAK are invisible to the user so that knowledge of the details of reordering

algorithms or techniques for storing and manipulating sparse matrices is not required.  The

MTDFREML programs simply provide the non-zero elements of the lower-half of C, the MME

coefficient matrix, and r, the MME right-hand sides.  SPARSPAK then reorders the system (but once

only) and obtains for each evaluation of Λ, the Choleski factor and solution vector s, which are then

used to calculate log *C* and s'r.

MTDFREML consists of three programs: MTDFNRM which forms the non-zero elements

of A-1; MTDFPREP which forms the non-zero elements of (X Z)=W for each animal; and

MTDFRUN which updates G and R, forms and solves the MME and calculates Λ in each round of

iteration.  Because only minor modifications have been made to the original version of DFNRM

written by Karin Meyer (1988), following the method of Quaas (1976), the strategy used in that
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program will not be described.  In contrast, MTDFPREP and MTDFRUN were written specifically

for MTDFREML so the strategies used in each will be explained to facilitate modifications for

analyses not currently supported.  Basically, MTDFPREP forms the part of the MME which is

independent of the values of G and R used in each round, i.e., W=(X Z) and y.  In addition, the

program determines the non-zero structure of R for each animal and the structure of G-1 to be added

to the MME.  During each round of iteration in MTDFRUN, R and G are updated.  Then Wi and yi

are read for each animal i and the non-zero elements of the weighted least-squares equations are

generated by forming W'
iRi

-1Wi and W'
iRi

-1yi.  The weighted sum of squares is accumulated from

y'
iRi

-1yi.  Next, the non-zero elements of G-1 are added to the weighted least-squares equations to form

the MME.  Finally, SPARSPAK is used to solve the MME and obtain the terms required to calculate

-2Λ.   MTDFREML can accommodate a wide range of models (see Chapters 2 and 3).

MTDFPREP

With appropriate modification of the include file (PARAM.DAT), this program can fit any

number of fixed effects (both discrete and continuous) and several random effects in addition to the

required animal effect.  Models can be different for each trait and missing observations are permitted.

Repeated records can be fit but the possible variance structures are limited in the current version.

Other options will likely be added as the need arises.

MTDFPREP reads the data from unit 33 (ascii) which is set up with integer variables followed

by real variables.  The data file is read twice, first to determine the number of levels for each discrete

factor and the simple statistics for each continuous variable (covariates and traits), and second to

recode levels of factors to correspond to the order of the MME and to express each continuous

variable as a deviation from its mean.

To illustrate the strategy used in the programs, data from Meyer (1991) will be used.  Records

are body weight (t1) and intake (t2) measured on 284 animals.  The pedigree file includes 55 base

animals for a total of 339 animals in A.  For each trait the model of analysis includes random animal

(a) and uncorrelated litter (lit: 42 levels) effects.  Fixed effects are litter size (lsc: covariate) and

generations (gen: 3 levels) for body weight, and litter size (lsd: 7 levels) and sex (sex: 2 levels) for

intake.  The first two records in the data file (7 integers and 3 reals) are:

animal sire dam gen sex lsd lit lsc t1 t2

20101 11012 10101 1 1 4 1 4.0 22.5 59.1
20102 11012 10101 1 1 4 1 4.0 22.6 0.0
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Note that litter size appears twice in the data, both as the sixth integer (lsd) and as the first real (lsc)

variable.  In addition, intake was missing for animal 20102 so the field for t2 is coded as 0.0 which

is used as the missing value.

The first step is to run MTDFNRM which forms A-1 and writes the sorted vector of 329 animal

IDs to unit 11 (ascii) and the lower-half stored non-zero elements to unit 44 (binary).  MTDFPREP

is then run with the following parameters in batch file, MTDFP5.DAT (see Chapter 2):

MUEX2UR.DAT            name of data file
test of MTDFPREP with km mouse data
2 traits
* end of comments
7 # integers
3 # reals
2 # traits
weight trait name trait 1
2 trait position in reals *    
0.0 value for missing *    
1 # covariates *    
litter size name cov. 1 *    
1 cov. 1 position in reals *    
1 order for cov. 1 *    
1 # fixed effects *    
generation name fixed 1 *    
4 fixed 1 position in integers *    
0 write levels to unit 66: 1 yes; 0 no *    
1 animal position in integers *    
339 animals in A-1 *    
0 2nd animal *    
1 uncorrelated random *    
litter name uncorrelated 1 *    
7 uncorr. 1 position in integers *    
0 write levels to unit 66: 1 yes; 0 no *    
intake trait name trait 2
3 trait position in reals * * 
0.0 value for missing * * 
0 # covariates * * 
2 # fixed effects * * 
litter size name fixed 1 * * 
6 fixed 1 position in integers * * 
0 write levels to unit 66: 1 yes; 0 no * * 
sex name fixed 2 * * 
5 fixed 2 position in integers * * 
0 write levels to unit 66: 1 yes; 0 no * * 
0 2nd animal * * 
1 uncorrelated random * * 
litter name uncorrelated 1 * * 
7 uncorr. 1 position in integers * * 
0 write levels to unit 66: 1 yes; 0 no * * 
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The subsequent steps are:

1. Read the number of animal IDs from unit 11 and compare to the number entered by the user as
read from the log of MTDFNRM (e.g., 339).  If these numbers are not equal, the program
terminates because the wrong pedigree file is probably being used.  If the numbers are equal, the
sorted vector of IDs is read from unit 11.

First read of data:

2. The 284 lines of data are then read sequentially from unit 33.  For each line, all (7) integer
variables are read into an integer vector and all (3) real variables are read into a real vector.  Each
of the j = 2 traits is then processed:

a) If the value for the trait is equal to the missing value (0.0), skip to the next trait.
b) If the value for the trait is valid:

i) increment the count, sum, and sum of squares for each real variable,
ii) compare the value of each fixed factor and uncorrelated random factor (e.g., litters) to

the unique numeric (but unsorted) list of current values stored in memory; if the value
is not already in the list, it is added at the end and the number of levels for the effect is
incremented by one.

3. After all lines of data have been read into memory, sort the vectors of levels for each discrete
fixed and uncorrelated random factor.

4. Calculate the mean and variance for each real variable.

5. Based on the sequence of the MME and the number of levels for each factor, determine the
starting row of each factor in the model.  The starting row is expressed as one less than the actual
position.  For the example data the structure is:

Factors (starting row MME)-1 No. rows

t1: linear covariate for litter 0 1

t1: fixed effect for 1 3

t2: fixed effect for litter size 4 7

t2: fixed effect for sex 11 2

t1: random animal 13 339

t2: random animal 352 339

t1: random litter 691 42

t2: random litter 733 42

For this example, there are 775 equations in the MME.  The means for trait 1 are 4.4789 for the

litter size covariate and 24.0687 for weight, and for trait 2 the mean for intake is 64.2975.

Second read of data:

6. The 284 lines of data are then reread sequentially from unit 33.  For each line, all (7) integer

variables are read into an integer vector and all (3) real variables are read into a real vector.  Each
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of the j = 2 traits is then processed:

a) If the value for the trait is equal to the missing value (0.0), skip to the next trait.

b) If the value for the trait is valid, the value and position of each value in W and y is then

determined:

i) covariates and observations are deviated from their corresponding means, e.g., the

deviations  for  the  first  record  are:  4.0-4.4789=-0.4789 (litter size), 22.5-

24.0687=-1.5687 (weight), and 59.1-64.2975=-5.1975 (intake).

ii) the W row position of each regression coefficient is determined from the sequence and

order (linear, quadratic, etc.) of the covariates,

iii) the position of each discrete factor in W is determined by looking up its position in the

corresponding vector of sorted levels and then adding this position number to the

starting row position for the factor; e.g., for the first record, the value of 4 for litter size

(trait 2) is found at position 4 in the sorted list of levels (1, 2,..., 6, 7) so 4 is added to

the starting position (4) for litter size to give the row position in W of 8.

7. After each line of data is read, the values and positions of elements in Wij and the value for yij

are written to unit 51 (binary); the length of Wij is determined by the total number of model

effects and the number of valid traits, and the number of Wij rows is equal to the number of valid

traits.

8. After all lines of Wij have been written to unit 51 for a record, the column positions are written

to unit 51 and a summary for each animal is written to unit 52; this information consists of animal

number and number of data lines, effects, traits (rows in Wij), and structure (i.e., pattern of

missing values) of observations for the animal.

For the record of animal one, the values written to unit 51 and 52 are (subscript denotes trait

number; text in parentheses is not written):

unit 51 - values and positions for Wij:

(lsc1) (gen1) (lsd2) (sex2) (a1) (a2) (lit1) (lit2) (yi)
(t1) -0.479 1.0 0.0 0.0 1.0 0.0 1.0 0.0 -1.5687
(t2)  0.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 -5.1975
(row)    1   2 8 12 69 408 692 734
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unit 52 - summary of information for first animal (two lines):

(No. data lines
in unit 33 for

(Anim no.) the animal)
1 1

(No. (No (Trait structure)
effects) traits) (code) (p1) (p2)

8 2 3 1 1

Trait structure values are used to indicate the form of R-
i
1 to be used in W'

iRi
-1Wi and W'

iRi
-1yi, and

consist of a value (pj) for each trait of 1 or 0, if the trait is present or missing, respectively, and

a code calculated as (pj*2)(j-1).'
j

In the record of the second animal, trait 2 (intake) is missing so a single Wij row of four effects

is written to unit 51:

(lsc1) (gen1) (a1) (lit1) (y1)
(t1:) -0.4789 1.0 1.0 1.0 -1.4687

(row) 1 2 70 692

The information written to unit 52 is (two lines):

(No. data
(Anim no.) lines)

2 1
(No. (No (Trait structure)

effects) traits) (code) (p1) (p2)
4 1 1 1 0

9. After all lines of data have been read, information describing the models and MME (e.g., number
of traits, starting position and number of levels for each effect) is written to unit 50 (ascii) and
trait names and original identification for levels of factors to unit 67 (ascii).  A summary of the
model and data is then written to unit 66 (MTDF66 in ascii); unlike other files written in
MTDFPREP, this file is not read by MTDFRUN.

MTDFRUN

In this program, the information on Wi and structure of Ri for each animal is read and the MME

are formed for the current values of G and R.  In the main section of MTDFRUN, the starting values

of G and R are input (first round) and the initial Simplex is setup and updated in each subsequent

round.  The current values of G and R are passed to the subroutine MTDFLIK which sets up and

solves the MME via SPARSPAK and returns the value of -2Λ = FVALUE.  (The constant, N log(2H)

is not included.)
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For the first run, the sequential steps in MTDFRUN are (also see Chapter 2):

1. Information on the models and MME is read from unit 50 (ascii).  The program will query

for user-designated constraints (optional) to make the MME full rank and then ask if the

MME have already been reordered.  Based on the model information, the program will query

for starting values for the covariance matrices in the order animal (required) and second

animal (optional), uncorrelated random (optional), and residual effects (required).  The option

to hold any starting value constant is provided.  Then the matrices of starting values are

transformed to a single vector to be passed to subroutine MTDFLIK.  Convergence criterion

and maximum number of Simplex rounds are also input.

2. The value of -2Λ for the starting values of the covariance components is calculated in

MTDFLIK.  These starting values correspond to the first vertex of the initial Simplex.  If any

of the starting values are non-permissible, e.g., h2 greater than 1, the likelihood is not

evaluated and the program is stopped. If the initial point is permissible, an additional Simplex

vertex is evaluated for each (co)variance component that is not held constant.  The additional

points are obtained by multiplying each (co)variance component in turn by 1.2, i.e., step size

of 0.2.  If the parameter values for any of the original vertices are non-permissible, the

component is multiplied by .7 until it is permissible.  After the points of the initial Simplex

are evaluated, in each round the worst point of the Simplex (largest -2Λ value) is replaced as

described in Chapter 7 until convergence is attained or the maximum number of rounds is

reached. 

In each round of iteration, the (co)variance priors for which to evaluate -2Λ are determined in

MTDFRUN and passed to subroutine MTDFLIK to be evaluated.  The sequential steps in subroutine

MTDFLIK are:

1. Information on model and MME is read from unit 50 (ascii).  The phenotypic variance is

calculated for each trait.  Values of all parameters (e.g., h2, c2, rc, rg, re, and rp) are checked for

permissibility.  If all are valid, each of 2r-1 possible forms of Ri is set-up, where r is the order of

the full Ri matrix for an animal, i.e., number of traits.  The inverse of each Ri matrix is obtained,

along with the inverses of covariance matrix of genetic animal effects, Go and covariance matrix



74

of uncorrelated random effects, Co.  Before inverting these matrices, the eigenvalues are

calculated as an additional permissibility check.  If any parameter is invalid or any eigenvalue is

negative, the likelihood is not evaluated but instead a very large likelihood value (1.e+37) is

assigned to the set of priors which will force a contraction in the Simplex.  The sums of the logs

of the eigenvalues are also used to calculate log|Go| and log|Ri|. If all priors are valid, the

corresponding MME are set up one animal at a time using SPARSPAK.  The reordering

performed by SPARSPAK is dependent on the location of non-zero elements in MME (which

do not change over rounds of iteration).  Therefore, in the first round of iteration when the MME

have not yet been reordered, only the positions of the non-zero elements are input to

SPARSPAK; in later rounds when the reordering is known both positions and values of the non-

zero elements are input to SPARSPAK. 

a) The two lines of summary information for each animal are read from unit 52: line 1 for

animal number and number of data lines; and line 2 for number of effects, traits (rows in Wij),

and structure (i.e., pattern of missing values) of observations for the animal.  The structure

of observations determines the appropriate form of Ri to be used in W'
iRi

-1Wi and W'
iRi

-1yi and

the contribution to log|R|.

b) The values of Wi and yi for each animal are then read from unit 51 into a matrix and after all

rows of Wi for an animal are input, the corresponding column positions are read from unit

51.  For the example data, the Wi | yi values for the first animal (two records) are:

-.04789 1.0 0.0 0.0 1.0 0.0 1.0 0.0 * -1.5687
0.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 * -5.1975

and the column positions read for Wi are:

1 2 8 12 69 408 692 734
c) The correct form of R-

i
1 is then used to form W'

iRi
-1Wi and W'

iRi
-1yi for each animal.  Let the

prior values for the full Ri be:

1.7 1.0

1.0 12.6

The full form of R-
i
1 for animals with records for both traits is:

.617 &.049

&.049 .083

For the first animal with both traits recorded,  W'
iRi

-1Wi is (row and column positions in

parentheses):
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(1) (2) (8) (12) (69) (408) (692) (734)
(1) .1415 -2955 .0235 .0235 -.2955 .0235 -.2955 .0235
(2) -2955 .6170 -.0490 -.0490 .6170 -.0490 .6170 -.0490
(8) .0235 -.0490 .0833 .0833 -.0490 .0833 -.0490 .0833

(12) .0235 -.0490 .0833 .0833 -.0490 .0833 -.0490 .0833
(69) -.2955 .6170 -.0490 -.0490 .6170 -.0490 .6170 -.0490

(408) .0235 -.0490 .0833 .0833 -.0490 .0833 -.0490 -.0833
(692) -.2955 .6170 -.0490 -.0490 .6170 -.0490 .6170 -.0490
(734) .0235 -.0490 .0833 .0833 -.0490 .0833 -.0490 .0833

and W'
iRi

-1yi is:

(1) -.5854
(2) 1.2225
(8) -.5095

(12) -.5095
(69) 1.2225

(408) -.5095
(692) 1.2225
(734) -.5095

These non-zero elements are then input for SPARSPAK to accumulate, e.g., .1415

corresponds to position (1,1) of the left-hand side of the MME and -.5854 corresponds to row

one of the right-hand side.  W'
iRi

-1yi elements are summed and stored in a vector and then

input into SPARSPAK after all records are processed.

For the second animal with only trait  one recorded,  with  covariate = -.4780, record = -

1.4687, and R-
i
1=1/1.7=.5882, W'

iRi
-1Wi is:

   (1) (2) (70) (692)
(1) .1349 -.2817 -.2817 -.2817
(2) -.2817 .5882 .5882 .5882

(70) -.2817 .5882 .5882 .5882
(692) -.2817 .5882 .5882 .5882

         
and W'

iRi
-1yi is:

(1)       .4137
(2) -.8639

(70) -.8639
(692) -.8639

d) Along with W'
iRi

-1Wi and W'
iRi

-1yi, the contribution of each animal to the scalar y'
iRi

-1yi is also

accumulated.
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2. After the non-zero elements of the weighted least-squares portion of the MME for records of all

animals have been processed and accumulated in SPARSPAK, the elements of G-1 are then

added to form the complete MME.  

a) Each non-zero element aij (and its row and column position) of lower-half stored A-1 is then

read from unit 44 (binary) and multiplied by the appropriate elements of the current G-
o
1.  For

the example data with two traits and no additional correlated random effect, each diagonal

element of A-1 contributes three values to the MME, i.e., aiig11, aiig12, and aiig22 and each

off-diagonal element of A-1 contributes four values to the MME (the covariance section is

full-stored so the transpose of aijg12 is also added).  Row and column positions are determined

by adding to the row and column positions of aij, the starting row for each animal effect.

b) Elements of the inverse of the covariance matrix of uncorrelated random factors

corresponding to uncorrelated random effects are then added to the MME.  These

contributions consist of the inverse elements multiplied by an identity matrix of order equal

to the number of levels of the effect.  For the example data with the same uncorrelated

random factor (litter) for each trait, these contributions are I*c11, I*c12, and I*c22, where

I is of order 42.

3. After all non-zero elements of the MME have been passed to SPARSPAK, the MME equations

are then either reordered (initial round of iteration) or solved (later rounds) for s. When the

system is reordered, the reordering information is saved to unit 58 (binary) for use in continuation

of a run or for fresh starts.

4. When the MME are solved, i.e., from a system already reordered, then except for the constant

including log(2H), -2Λ = log|R| + log|G| + log|C| + y'Py is calculated from quantities obtained

during set-up and solution of the MME:

log|R|= Nilog|Ri| where Ni represents the number of animals having ith combination of traits'

w

i'1

with w=2r-1 possible combinations of r traits. The values of the w combinations of log|Ri| are

calculated at the beginning of MTDFLIK from the eigenvalues of |Ri| used to check for

permissibility (see 1. above).

log|G|=NAlog|Go|+NTlog|A| where log|Go| is calculated from the sum of logs of the eigenvalues

of Go used to check permissibility and NA is the number of animals in A and NT is the total

number of direct and maternal traits.  As explained in Chapter 4, log|A| is obtained during

formation of A-1 in MTDFNRM and read in each round of iteration from unit 44 (binary).  The
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term NTlog|A| is a constant for a particular model of analysis, but may be needed to compare

alternative models via a likelihood ratio test.  If uncorrelated random effects are present, log|G|

also includes Nclog|Co|+log|I| where Nc is the number of levels and log|Co| is obtained from the

sum of logs of eigenvalues of Co calculated in MTDFLIK.  Note that log|I| equals zero.

log|C| is obtained in SPARSPAK during the Choleski factorization of C as explained

in Chapter 4.  y'Py is calculated as y'R-1y-s'W'R-1y.  y'R-1y is accumulated by animal along

with the right hand side vector W'R-1y.  SPARSPAK stores the solutions, s,  in order at the

beginning of the general purpose vector used by SPARSPAK so s'W'R-1y can be easily

obtained.  The SPARSNG modification described in Chapter 6 returns the solutions to the

vector, SOLUT.

The value of -2Λ = FVALUE is then returned to MTDFRUN and used in the Simplex to

determine the next values of the covariance components for which to evaluate -2Λ.

Calculations of contrasts, variances of contrasts, and expected values of solutions are

described in Chapter 4 and make use of the reordered and factored MME coefficient matrix.
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CHAPTER SIX: Modifications to SPARSPAK to Find
Constraints

In calculating the likelihood, estimating fixed and random effects, and estimating standard

errors we are often faced with solving a linear system of equations.  More specifically we need to

solve the following set of equations

Cs = r (1)

where C is a n × n symmetric positive semi-definite matrix, s and r are n × 1 vectors, and s is

unknown.  Because C may not be positive definite there may be more than one solution.  For the cases

we are interested in at least one solution is guaranteed.

The general approach that SPARSPAK takes in solving (1) is to perform a Cholesky

factorization of C into LL', and then to solve for s using the factorization.  The algorithm can be

presented as follows

(1) Factor C into LL' where L is a lower triangular matrix.

(2) Solve Ld = r for d. 

(3) Solve L's = d for s.

The details both for the factorization and for solving triangular systems of equations can be found for

example in Stewart [1973, chap. 3].

SPARSPAK can handle the case where C is positive definite but not the case where C is only

positive semi-definite.  Alternatives when working with positive semi-definite matrices are 1) to

reformulate the problem to remove the linear dependencies, 2) to add additional constraints, or 3) to

modify the algorithms to detect linear dependencies.  Modification of the algorithms will now be

described.

Cholesky Factorization

cij = the element in row i and column j of matrix C,

ri = the element in row i of vector r,

λij = the element in row i and column j of matrix L,

di = the element in row i of vector d,

Ck = the leading principal sub-matrix of order k,

C1 = c11
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The Cholesky factorization proceeds by sequentially finding the Cholesky factorizations (Lk)

of each of the leading principal sub-matrices (Ck).  The Cholesky factorization of the first principal

sub-matrix is simply .  Subsequent factorizations are found as follows:L C1 1 11= = c

(1) Solve Lk-1lk = ck

(2) Set  λ kk kk k kc= − ′l l .

The Cholesky factorization routine (GSFCT) within SPARSPAK -A assumes that in step 2,

ckk is always greater than zero which will be true if C is positive definite.  When C is only positive

semi-definite then at least one of the ckk will be zero.  However due to round-off the calculated ckk -

l '
klk may not be exactly equal to zero.  The first modification is to set λkk equal to zero whenever ckk -

l '
klk is less than a tolerance parameter (τ) times the original diagonal element.

Solving Triangular Systems of Equations

The remaining modifications to SPARSPAK involve solving systems of upper and lower

triangular systems of equations.  Because of the great similarity in solving upper and lower triangular

systems of equations, only the details for the lower triangular system are presented:

Ld  = r.

  A solution for d proceeds by sequentially finding solutions to

(2)

A solution for d1 is simply a solution to λ11d1 = r1.  If λ11 =/  0 then d1 = r1/λ11.  If λ11 = 0 then d1 = 0 will

be a solution.  Subsequent dk are found as follows:

(1) If λkk = 0 then set dk = 0 as a solution.
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The SPARSPAK routine (GSSLV) that solves a triangular system of equations assumes that

λkk is always greater than zero.  The only time λkk is not greater than zero is when it is set to zero in

the Cholesky factorization.  The remaining modifications involve simply checking when λkk is equal

to zero and then setting dk equal to zero.  This modification needs to be made in step 1 of the

Cholesky factorization and when solving for s and d.

Uniqueness of the Constraints

While for positive semi-definite matrices there exist an infinite number of possible constraints,

the constraints that will be found by this algorithm depend only on the order of the rows and columns

in the matrix.  Because the order of the rows and columns is determined once and remains fixed the

constraints will remain the same unless additional linear dependencies are added or removed.  For a

given set of linear dependencies, the algorithm always yields the same set of constraints.

Example

The modifications will be illustrated for the following example.

Starting with the Cholesky factorization of C.

(1)  λ11 11 1 1= = =c

(2)  L l c1 2 2=

(3)   λ 22 22 2 2 4 2 2 0= − ′ = − × =c l l

    In practice if c c22 2 2 22 0− ′ < × =l l τ λ then set 22 .

       L2

1 0

2 0
=
L
NM
O
QP
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(4)  L l c2 3 3=

(5)  λ 33 33 3 3 25 9 4= − ′ = − =c l l

Because, λ22 is set equal to zero, the constraint s2 = 0 has been selected for the final solution.  With

the Cholesky factorization of C solve for d:

(1)  d1 = 7/1 = 7

(2)  d2 = 0 because λ22 = 0

(3)  d3 = (53 - 3 × 7)/4 = 8

   Finally, solve for s:

(1) s3 = 8/4 = 2

(2) s2 = 0 because λ22 = 0

(3) s1 = (7 - 3 × 2)/1 = 1.

Therefore, a solution for s is 
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Modified SPARSPAK Routines

The three SPARSPAK-A routines modified to allow for positive semi-definite matrices are

SOLVE5, GSFCT, and GSSLV.  The modified routines were renamed SOLV5G, GSFCTG, and

GSSLVG.
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CHAPTER SEVEN: A Description of the Simplex Method
for DFREML

Simplex (Polytope) Method

The Simplex (polytope) method described by Nelder and Mead (1965) is a procedure designed

to locate the minimum of a function with respect to several variables.  The method is used in

MTDFREML to locate the minimum of -2 log of the likelihood function, -2Λ, in models with

multiple parameters, i.e., in models with several random effects.  The (co)variance components that

minimize -2Λ also maximize the log likelihood function and are REML estimates.  The Simplex

method is sometimes called the polytope ('many places') method to distinguish it from the simplex

method for linear programming.

The polytope algorithm begins with a set of p+1 parameter vectors t0, t1,..., tp-1, tp and their

corresponding function values for -2Λ, designated F0, F1,..., Fp-1, Fp and ordered such that F0 # F1 #...#

Fp-1 # Fp, where p is the number of parameters to be estimated.  The parameter vectors form the

vertices of a polytope or geometrical figure in p dimensions.  At each round of iteration, a new

polytope is formed by generating a new point  to  replace  the  worst point  tp,  i.e.,  the  point  with

the highest function value for -2Λ = FVALUE.  The new point is generated as a linear combination

of existing points by three operations: reflection, expansion, and contraction.

A round of iteration begins with the calculation of tm, the centroid (center) of the best p

vertices t0, t1,..., tp-1 from:

                                                             tm = (3ti) / p                                                             [1]

for i=0, 1,..., p-2, p-1.  This vector tm consists of the average value (excluding the worst point) for

each parameter to be estimated.  A new point tr is then generated by a reflection step in which the

worst point tp, i.e., the point corresponding to the largest function value, is reflected towards the

center:

                                                        tr = tm + α(tm - tp)                                                        [2]

where α (α,0) is the reflection coefficient.  The function -2Λ is then evaluated for tr to yield Fr.  

Three outcomes are possible:

1. F0 # Fr # Fp-1

The reflected point tr is neither a new best nor worst, i.e., it is intermediate.  In this case, tp is

removed from the Simplex and tr is added and the vectors are reordered such that F0 < F1 ....
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2. Fr + F0

The reflected point has the smallest function value and is therefore the new best point.  The

direction of reflection is assumed to be good and an attempt is made to find an even better point

by expanding the reflection point further in the same direction to give an expanded point te:

                                                         te = tm + γ(tr - tm)                                                          [3]

where γ (γ>1) is the expansion coefficient.  The function Fe is then evaluated with two possible

outcomes:

a) Fe < Fr - the expansion was successful and te replaces tp to end the round, or

b) Fe > Fr - the expansion failed so te is discarded and the reflected point tr replaces tp to end the

round.

3. Fr > Fp-1

In this case the reflected point is worse than any of the beginning p points.  This indicates that

the reflected polytope is too large and should be contracted.  One of two alternative contraction

steps is used; the choice is determined by the relative values of Fr and Fp:

a) Fr < Fp - the reflected point tr is better than the old maximum point tp and a contracted point

is calculated

from:

                                                           tc = tm + β(tr - tm)                                                           [4]

where β (0<β<1) is the contraction coefficient.

b) Fr $ Fp - the reflected point tr is not better than the old maximum point tp and a  contracted

point tc is calculated from:

                                                           tc = tm + β(tp - tm)                                                          [5]

Fc is then calculated from [4] or [5] with two possible outcomes:

a) Fc < min{Fr,Fp} - the contraction was successful and tc replaces tp to end the iterate, or

b) Fc > min{Fr,Fp} - the contraction failed and the complete polytope is shrunk by moving each

of the parameter vectors t1, t2,..., tp-1, tp halfway toward the best point t0:

                                                              t '
i = (ti + t0) / 2                                                             [6]

for i = 1,...,p.  The function is then evaluated for points t1,...,tp and a new round begins.

The polytope changes shape each round and moves across the likelihood function until

convergence is reached.  Nelder and Mead (1965) calculated the variance of the function values of

the p+1 polytope points and stopped iteration when this variance dropped below a particular
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convergence value, e.g., 1.e-6.

The basic moves of the polytope algorithm will be illustrated for a polytope in three

dimensions as presented in Press et al. (1989).  The polytope consists of four points and forms a

tetrahedron.  Let F0 to F3 be the function values corresponding to parameter vectors t0 to t3,

respectively, each consisting of values for the three parameters.  The parameter vectors are ordered

such that t0 is the best (i.e., smallest FVALUE) and t3 is the worst (i.e., largest FVALUE) point.  The

polytope at the beginning of the step is drawn with solid lines and the centroid of t0, t1, and t2 is

denoted tm:

The first step is a reflection away from the worst point t3 through tm to tr:

If F1 < Fr < F3, the reflected point is intermediate and replaces F3 to form a new polytope

(drawn with dashed lines) for the next round.  If α, the reflection coefficient, is equal to 1, then the

volume of the new polytope should be the same as the volume of the original polytope.

In the second possible outcome, the reflected point is a new minimum (Fr < F0) and is further

expanded away from the largest point t3 to yield te:
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If Fe < Fr, the expansion was successful and te replaces t3 for the next round.  If Fe > Fr, the expansion

failed and the reflected point tr replaces t3.  A failed expansion can result if the reflection moved the

polytope into a valley but at an angle to the valley so that further expansion results in a movement up

the opposite slope.

In the third possible outcome, Fr > F2, i.e., the reflected point is worse than any of the

remaining points.  This indicates that the original polytope was at a valley floor and the reflection

moved up a hill.  The polytope is then contracted to tc by moving tr toward tm if Fr < F3:

or by moving t3 toward tm if Fr $ F3:
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If Fc < min{Fr,F3}, the contraction was successful and tc replaces t3.  On the other hand, if Fc >

min{Fr,F3}, the contraction failed.  This is a rare event but can occur when a valley is curved and the

polytope is 'unbalanced', i.e., one point is much further from the valley bottom than the others (Nelder

and Mead, 1965).  Contraction of the reflected point may result in a movement away from the valley

bottom instead of towards it.  In this situation all points of the polytope are contracted towards the

smallest point and eventually all points should be brought into the valley:

The changes in the polytope volume resulting from the operations of reflection, expansion,

and contraction are determined by the coefficients α, γ, and β, respectively.  Nelder and Mead (1965)

recommended the use of α=1.0, γ=2.0, and β=0.5.  These values are used in the subroutines presented

by O'Neill (1971) and Press et al. (1989) and also in Meyer (1988).

The polytope method is applicable to the minimization of a function with respect to any

number of variables, including one, but the number of iterations required for convergence is expected

to increase with the number of variables.  The polytope procedure will be demonstrated for an

example data set consisting of measures on 282 animals (Meyer, 1989).  The model used to analyze

the data is the same model used to generate the data which consisted of fixed mean and generation

effects and random animal (a), maternal (m), litter or common environment (c), and residual (e)

effects.  The assumed covariance structure for the model corresponds to Meyer's model 8:

For  this  model,  the vector  of  random  effects  corresponding  to  the  general  model  is u'=(a' m'

c') and Var(u)=G.   The  log  determinant  of G  required  for  evaluation  of -2Λ is (e.g., Meyer,
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1989):

           log*G* = NA [log σ2
a + log σ2

m + log (1-r2
am)] +

                    2 log*A* + NC log σ2
c                           [7] 

where NA is the number of animals in A, ram is the genetic correlation between a and m, and NC is

the number of common environments (litters).  SPARSPAK is used to solve the MME and provide

the terms needed to calculate the portion of -2Λ that is not constant.

Note that for this single trait model, R = INσ
2
e so the MME can be written as:

For this model and except for a constant (e.g., Meyer, 1989):

            -2Λ = (N - NF - 2NA-NC) log σ2
e + log*G*

                + log *C** + y'y - ××××'r*)

where NF is the rank of X'X, and N is the number of records.

From these equations, -2Λ can be evaluated for any vector of (co)variances and the vector which

minimizes the function can be determined via the polytope algorithm.

The polytope method is started with p+1 points defining an initial polytope where p is the

number of parameters to be estimated.  Because in Meyer's single trait DFREML program the residual

variance is estimated by ^σ2
e=y'y - ××××'r*(N - NF), only four components need to be estimated for the

example and so the polytope consists of five points.  The elements of each prior vector are expressed

in DFREML as a proportion of σ2
p, the phenotypic variance, i.e., Θa=σ

2
a/σ

2
p, Θm=σ2

m/σ2
p, Θam=σam/σ2

p, and

Θc=σ
2
c/σ

2
p, where σ2

p=σ
2
a+σ

2
m+σam+σ2

c+σ
2
e.  λj=σ

2
e/σ

2
j  (where the j subscript is a, m, am, or c) is required

for the formation of the MME and can be found as λj=Θe/Θj where Θe=σ
2
e/σ

2
p=(1-Θa-Θm-Θam-Θc).  After

^σ2
e has been estimated, ^σ2

p can be estimated as ^σ2
p=

^σ2
e/Θe.  The other (co)variance components can then

be similarly obtained by multiplying the corresponding Θj parameter by ^σ2
p.

The user supplies a vector of p (co)variance priors for a single point and the other p points

(covariance vectors) of the polytope are then generated by multiplying each of the n elements of the

initial vector in turn by a step value greater than 1.  A stepsize of .2 is used (new parameter = original

parameter + .2 original parameter) to generate the initial polytope.  Therefore, for an initial parameter

vector of Θa=.40, Θm=.15, Θam=-.05, and Θc=.10, the initial polytope would consist of the following

five points and function values:
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               )))))))))))))))))) Parameter vector )))))))))))))))))))  
No. Θa Θm Θam Θc     -2Λ ti

 1 .40 .15 -.05 .10 1901.24972055 1

 2 .48 .15 -.05 .10 1902.54968558 4

 3 .40 .18 -.05 .10 1902.10903471 3

 4 .40 .15 -.06 .10 1901.00920006 0

 5 .40 .15 -.05 .12 1901.82477533 2

which would be used in the first round of iteration.  In order to calculate the centroid for the four best

points, the initial points are ordered t0 through t4 such that F0 < F1 < F2 < F3 < F4, i.e., from lowest

(best) to highest (worst).  From [1], the centroid of t0, t1, t2, and t3 is tm=(.4  .1575  -.0525  .105).  The

first step is to generate a new point tr by reflecting the worst point t4=(.48  .15  -.05  .10) toward the

centroid tm according to [2].  For a reflection coefficient of α=1.0, the reflected point is tr=(.32  .165

-.055  .11) and, on calculation, Fr=1900.84252207.  Because the reflected point is a new best point

(Fr < F0), the reflected point is expanded in the same direction according to [3].  For an expansion

coefficient of γ=2.0, the expanded point is te=(.24  .1725  -.0575  .115) with Fe=1900.65155928.  The

expansion was successful, i.e., Fe < Fr < F0, so t4 is discarded, tr is assigned to t0, and the former t0

through t3 are reassigned to t1 through t4, respectively, and the first round of iteration is complete.  The

first round required two new likelihood evaluations, one for the reflected point and one for the

expanded point, for a total of seven.  The polytope at the end of round 1, ordered by function value,

is:

               )))))))))))))))))) Parameter vector )))))))))))))))))))  
No. Θa Θm Θam Θc     -2Λ ti

 7 .24 .1725 -.0575 .115 1900.65155928 0
 4 .40 .15 -.06 .10 1901.00920006 1
 1 .40 .15 -.05 .10 1901.24972055 2
 5 .40 .15 -.05 .12 1901.82477533 3
 3 .40 .18 -.05 .10 1902.10903471 4

The variance of the five function values corresponding to the new points of the polytope is .35344680.

The second round begins with the calculation of a new centroid tm=(.36  .155625  -.054375  .10875)

and reflected point tr=(.32  .13125  -.05875  .1175).  For the example data, the reflection point of the
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second round is a new best point (Fr=1900.36183550) and the subsequent expansion with te=(.28

.106875  -.063125  .12625) is successful so te=t0 is added to the polytope instead of tr and t4 is

discarded.  The polytope at the beginning of round three is:

               )))))))))))))))))) Parameter vector )))))))))))))))))))  
No. Θa Θm Θam Θc     -2Λ ti

 9 .28 .106875 -.063125 .12625 1900.29696043 0

 7 .24 .1725 -.0575 .115 1900.65155928 1

 4 .40 .15 -.06 .10 1901.00920006 2

 1 .40 .15 -.05 .10 1901.24972055 3

 5 .40 .15 -.05 .12 1901.82477533 4

and the centroid is tm=(.33  .14484375  -.05765625  .1103125).  The reflected point is tr=(.26

.1396875  -.0653125  .100625) with Fr=1900.26603219, a new best point.  The expanded point is

te=(.19  .13453125  -.07296875  .0909375) with Fe=1901.65701486.  Because Fe > Fr, the expansion

is unsuccessful and te=t0 is added to the polytope and t4 is deleted to complete round three.  Rounds

4 to 6 of iteration proceed as follows:

a) Round 4 - 

   Initial polytope:

               )))))))))))))))))) Parameter vector )))))))))))))))))))  
No. Θa Θm Θam Θc     -2Λ ti

10 .26 .1396875 -.0653125 .100625 1900.26603219 0

 9 .28 .106875 -.063125 .12625 1900.29696043 1

 7 .24 .1725 -.0575 .115 1900.65155928 2

 4 .40 .15 -.06 .10 1901.00920006 3

 1 .40 .15 -.05 .10 1901.24972055 4

  centroid tm=(.25000000  .14226563  -.06148438   .11046875)

  reflection tr=(.19  .13453125  -.07296875  .12093750)

with Fr=1901.17966292

Because Fr > F3, a contraction is required.  The reflected point is better than the worst point, i.e., Fr

< F4 so equation [4] is used with a contraction coefficient of β=0.5 to calculate the contraction point
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tc=(.2425  .13839844  -.06722656  .11570313) with Fc=1900.40869337.  Because Fc < Fr=min{Fr,F4},

the contraction is successful, tc=t2 is added to the polytope and t4 is deleted.

b) Round 5 - 

   Initial polytope:

               )))))))))))))))))) Parameter vector )))))))))))))))))))  
No. Θa Θm Θam Θc     -2Λ ti

10 .26 .13968750 -.0653125 .100625 1900.26603219 0

 9 .28 .106875 -.063125 .12625 1900.29696043 1

13 .2425 .13839844 -.06722656 .11570313 1900.40869337 2

 7 .24 .1725 -.0575 .115 1900.65155928 3

 4 .40 .15 -.06 .10 1901.00920006 4

  centroid tm=(.2556250  .13936523  -.06329102  .114394531

  reflection tr=(.111250  .12873047  -.06658203  .12878906)

with Fr=1903.41542350

Because Fr > F3, a contraction is required.  The reflected point is worse than the worst point, i.e., Fr

> F4, so equation [5] is used to calculate the contraction point tc=(.3278125  .14468262  -.06164551

.10719727) with Fc=1900.38019626.  Because Fc < F4= min{Fr,F4}, the contraction is successful, tc=t2

is added to the polytope and t4 is deleted.

c) Round 6 - 

   Initial polytope:

               )))))))))))))))))) Parameter vector )))))))))))))))))))  
No. Θa Θm Θam Θc     -2Λ ti

10 .26 .13968750 -.0653125 .100625 1900.26603219 0

 9 .28 .106875 -.063125 .12625 1900.29696043 1

15 .3278125 .14468262 -.06164551 .10719727 1900.38019626 2

13 .2425 .13839844 -.06722656 .11570313 1900.40869337 3

 7 .24 .1725 -.0575 .115 1900.65155928 4

  centroid tm=(.27757812  .13241089  -.06432739  .12443848)

  reflection tr=(.31515625  .09232178  -.07115479  .10988770)
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with Fr=1900.39163330

The reflected point tr is intermediate, i.e., F2 < Fr < F3, so it is retained and t4 is deleted.  At the end

of six rounds, 16 likelihoods have been evaluated and the polytope is:

               )))))))))))))))))) Parameter vector )))))))))))))))))))  
No. Θa Θm Θam Θc     -2Λ ti

10 .26 .13968750 -.0653125 .100625 1900.26603219 0

 9 .28 .106875 -.063125 .12625 1900.29696043 1

15 .3278125 .14468262 -.06164551 .10719727 1900.38019626 2

16 .31515625 .09232178 -.07115479 .10988770 1900.39163330 3

13 .2425 .13839844 -.06722656 .11570313 1900.40869337 4

and the variance of the function values is .00398640.  If this value is less than the convergence

criterion, then t0, the parameter vector with the minimum function value, would be used to estimate

the variance components.  For this parameter vector, residual variance estimated from ^σ2
e=y'Py/(N -

NF) is ^σ2
e=53.53557453 and Θe=(1-Θa-Θm-Θam-Θc)= .565.  Therefore, ^σ2

p=
^σ2

e/Θe=94.75322925,  

^σ2
a=

^σ2
pΘa=24.63583960,   ^σ2

m= ^σ2
pΘm=13.23584171,   ^σam= ^σ2

pΘam= 

-6.188570285, and ^σ2
c=

^σ2
pΘc= 9.534543693.  If a smaller convergence criterion was desired, then

reflection, expansion, and contraction steps would continue.  The following results were obtained for

smaller convergence criteria:

Convg.   ))))Number))))          )))))))))))))))))))))))Parameters))))))))))))))))))))))
  Crit.      Rounds   Likeli.              Θa             Θm             Θam            Θc              

^σ2
e 

10-5         17                37          .308667    .132939    -.065397    .094833    50.839485

10-6         22                47          .315677    .144102    -.066962    .082729    50.513202

10-7         27                56          .318319    .139051    -.066477    .086184    50.373084

10-8         30                62          .314638    .140445    -.066394    .086756    50.529405

10-9         36                73          .316798    .139305    -.066488    .086865    50.432655
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These results agree with Meyer (1989) who reported that a convergence criterion of 1.e-5 to 1.e-6 is

usually sufficient in terms of changes in parameter estimates.

The polytope search procedure can now be evaluated in terms of the three desirable

characteristics of a search strategy listed by Meyer (1989):  a) number of likelihood evaluations

required, b) robust and relatively free from problems of numerical accuracy, and c) accomodate

constraints on the parameter space.

Likelihood Evaluations Required

    After formation of the initial polytope which requires p+1 likelihood evaluations, each round of

iteration requires one or two likelihood evaluations unless a contraction is unsuccessful and the

polytope must be shrunk; in this situation, p+2 likelihoods must be evaluated.  Fortunately, a failed

contraction is very rare (Nelder and Mead, 1965).  For the example illustrated, a convergence criterion

of 1.e-9 required 36 rounds of iteration and 73 likelihood evaluations as follows:

Polytope
operation No. ×

Likelihoods/
operation =

Total
likelihoods

initial polytope 1 5 5
reflection only 4 1 4
reflection, expansion 6 2 12
reflection, contraction 26 2 52
reflection, contraction, shrinkage

0 6 0

73

Therefore, most rounds required two evaluations and a failed contraction did not occur.  Meyer (1989)

found that starting values close to the final estimates reduced the number of rounds required to reach

convergence and suggested that a small stepsize might be more efficient for good starting values.

Compared to a stepsize of 0.2, a stepsize of 0.1 for the same initial parameter values in the example

data required three fewer polytope iterations and eight fewer likelihood evaluations to reach a

convergence criterion of 1.e-9.  O'Neill (1971) stated that the polytope algorithm will work

successfully for all starting values and stepsizes but those far from optimum will require more

iteration to reach convergence.  Press et al. (1989) note that other multidimensional minimization

algorithms, e.g., Powell's method (see Chapter 8), may be faster but the polytope method is often

preferred because of its simplicity and generality.
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Robust and Relatively Free from Problems of Numerical Accuracy

According to Gill et al. (1981), minimization techniques such as the polytope method which

are based on function comparison are not susceptible to rounding errors but few guarantees can be

made concerning convergence.  A potential problem for all minimization methods, especially with

multiple parameters, is false convergence to a point other than the minimum.  On the basis of limited

investigation, Meyer (1989) reported that while the number of likelihoods required for convergence

varied with the starting values, final estimates were invariant to the starting values selected and

suggested that local maxima are not a problem with REML estimation via the DF algorithm.  Kovac

and Groeneveld (1989) used the polytope procedure in a multiple trait animal model to estimate

additive genetic and residual covariance matrices of two traits (backfat thickness and daily gain) from

649 field test records of boars.  They found that different starting values converged to two distinct

estimated parameter sets and concluded that local maxima can exist in multivariate data sets.

Boldman and Van Vleck (1990), working with the simulated data of Meyer (1989) found that

different direct-maternal correlation (ram) priors converged to different final estimates.  They found

that the EM algorithm, however, converged to the same final estimates which indicated that the

variation in estimates for the DF algorithm may result from the failure of the polytope algorithm to

locate the global maximum rather than the existence of local maxima.  Further study (Boldman and

Van Vleck, Chapter 8) indicated that when the analyses utilizing the polytope method were restarted

at the claimed minimum with an initial stepsize of 0.2 then the same final parameter vector was

obtained in all analyses.  The increased reliability of the final estimates would seem to be well worth

the additional likelihood evaluations required for a restart.  For this restart, a reduced stepsize, i.e.,

< 0.2, is likely to be sufficient (MTDFREML can be easily modified to utilize the smaller stepsize).

A technique used to test for convergence to a local minimum in the polytope subroutine

described by O'Neill (1971) is to calculate the function values for 2p points consisting of the predicted

minimum t0 plus and minus 0.001 times the original stepsize.  If all 2p of these values are greater than

F0, then t0 is accepted as the minimum.  If one or more of the 2p points has a function value less than

F0, then the initial convergence point was a local minimum.  In this case, the polytope is contracted

around the new lowest point and restarted.  Modification of MTDFREML to utilize this convergence

criterion should be straight forward.  The polytope method should be compared with other

multidimensional minimization algorithms to determine if the polytope method is best in terms of

number of likelihood evaluations required and reliability of estimates.
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Accommodate Constraints on the Parameter Space

Animal models with several random effects require several constraints on the parameter space.

For example, in the model described above, parameters Θa, Θm, Θc, and the absolute value of

parameter Θam must be between 0 and 1 in addition to the sum of the parameters.  Because the genetic

correlation between direct and maternal effects must be between -1 and 1, this also implies that Θ2
am

# ΘaΘm.  Even if the vertices of the initial polytope are within the parameter space, subsequent

reflection or expansion steps can move parameters outside the parameter space.  In MTDFREML,

before the likelihood is evaluated for a particular set of parameters a check is made to determine if

all parameters are within the parameter space.  If not, then the likelihood function is not evaluated but

instead, a large positive function value (1.e+37) is assigned to the parameter vector.  As previously

illustrated, if the function value of a new point is worse (higher) than any of the remaining points then

the polytope will be contracted away from the high point.  Therefore, any movement of the polytope

outside of the parameter space will be followed by one or more contraction steps which will

eventually move estimates back within the bounds.  One of the advantages of the polytope method

for multidimensional minimization is the ease with which restrictions on the parameter space can be

imposed.
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CHAPTER EIGHT: Comparison of Simplex and Powell's Search 
Methods for DFREML

Introduction

REML estimation of (co)variance components is generally considered the best method for

unbalanced animal breeding data.  For a particular data set and assumed model, REML estimation

involves maximization of the log of the likelihood function (Λ) of the data which is independent of

any fixed effects and includes a nonlinear function of the (co)variance components.  The values of

the (co)variances within the allowable parameter space which maximize Λ, or equivalently minimize

-2Λ, are the REML estimates.  Several different REML algorithms have been developed but most

methods are iterative and require formation and manipulation of the mixed model equations.  Iterative

procedures to determine the maximum of a function can be assigned to one of two general classes:

gradient methods, which utilize partial derivatives of the objective function; or direct search methods,

which use only evaluations of the function.

Most REML algorithms commonly used in animal breeding research are gradient methods,

e.g., the method of scoring utilizes expected values of second derivatives of Λ and the expectation-

maximization (EM) algorithm requires expected values of first derivatives.  A major limitation of the

gradient-type algorithms is that they require inversion of the coefficient matrix of the MME.

Traditional dense matrix inversion algorithms are of limited use with an animal model (AM) where

the order of the MME often exceeds the number of records.  Misztal (1990) demonstrated, however,

that storage and time requirements for an EM-type REML algorithm can be greatly reduced by the

use of sparse matrix methods in which operations on zero elements are avoided.

A direct search type algorithm to obtain REML estimates of variance components in an AM

with only one random effect was presented by Graser et al. (1987).  In this method, termed the

derivative-free (DF) approach, Λ and the residual component of variance are obtained via Gaussian

elimination of the mixed model coefficient matrix augmented by the right hand side and the sum of

squares of the data.  The method requires only a one-dimensional search because Λ is maximized with

respect to a single parameter, the ratio of animal variance to residual variance, r=σ2
a/σ

2
e.  For the one-

dimensional search, Graser et al. (1987) repeatedly fit a quadratic in r to Λ and used the maximum

of the estimated quadratic to obtain a new value of r to maximize Λ.  They reported that convergence

usually required only a few likelihood evaluations.  The main advantage of the DF method over the

EM algorithm is that the former requires solution instead of inversion of the MME.  Misztal (1990)
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reported that with sparse-matrix techniques, Gaussian elimination of the MME for a typical AM

requires only about 5% of the time needed to obtain a full inverse.

The DF algorithm is flexible and can be extended, for example, to models with several

random effects in which Λ is maximized with respect to several parameters.  Meyer (1988) developed

a set of computer programs, named DFREML, for parameter estimation in single trait animal models

with up to three random effects and five (co)variance components.  The Simplex method (Nelder and

Mead, 1965) was selected as the multidimensional direct search method because of its ease of use,

lack of numerical accuracy problems, and ability to accommodate constraints on the parameter space.

A potential problem with all maximization methods, especially for multiple parameters, is

convergence to a point other than the global maximum.  On the basis of limited investigation, Meyer

(1989) reported that, while the number of likelihood evaluations required for convergence varied,

parameter estimates obtained via the Simplex method were invariant to the starting values selected.

More recently, convergence to different estimates when using different starting values for the same

data was noted for the Simplex method in a multiple trait AM (Groeneveld and Kovac, 1990) and an

AM with correlated direct and maternal genetic effects (Luis Gama, personal communication, 1990).

Misztal (1990) suggested that sparse matrix EM-REML might be preferable to DFREML methods

because of potential problems with false maxima.  Alternative multidimensional direct search

algorithms may be better suited to maximization of Λ with DFREML methods.  For example,

Powell's method (1964) is generally considered to be more efficient than the Simplex method (Box

et al., 1969; Press et al., 1989) but the latter may be more robust (Parkinson and Hutchinson, 1972).

The purpose of this study was to compare, in terms of robustness and efficiency, the Simplex method

(SM) and Powell's method (PM) for maximization of Λ in an AM with correlated direct and maternal

genetic effects.

Multidimensional Direct Search Algorithms

Most direct search algorithms locate the minimum of a function but in REML can be

maximized by locating the minimum of -Λ or -2Λ.  Two general classes of multidimensional direct

search algorithms are sequential methods and linear methods (e.g., Jacoby, et al., 1972).  In the first

category the objective function is evaluated at the vertices of a geometric figure in the parameter

space, and the figure is moved toward the function minimum.  Linear methods generate direction

vectors to move from the current set of estimates toward the minimum.  Box et al. (1969) stated that

SM is the most efficient sequential method and that PM is probably the most effective linear method.

The use of these algorithms to locate the minimum of a function such as -Λ will be outlined.
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Simplex Method

A Simplex is a geometric figure formed by a set of n+1 points in n-dimensional space.  For

example, a Simplex of two dimensions is a triangle and of three dimensions is a tetrahedron.  In SM,

the n-dimensional space is the parameter space of the n independent variables and each of the n+1

vertices of the Simplex is a parameter vector of length n and its corresponding function value, e.g.,

-Λ.  In each round of iteration, a new Simplex is formed by generating a new point to replace the

worst, i.e., the point with the largest function value, so the Simplex gradually moves "downhill"

through the parameter space toward the minimum.

The vertices of the initial Simplex are parameter vectors of length n designated ti for i=0, 1,

2,..., n and their corresponding function values Fi.  At the beginning of each round, the points are

ordered so that F0 < F1 <...< Fn-1 < Fn, i.e., the function value for parameter vector t0 is the smallest

and for tn is the largest.  Because the search is for the minimum of the function, tn is the worst vertex

and will be replaced to form a new Simplex.  The single new point is generated as a linear

combination of existing points by three operations: reflection, expansion, and contraction.  See

Chapter 7 for a more complete description of the Simplex method.

Powell's Method

Linear methods to minimize a function of n independent variables generally utilize a series

of one-dimensional minimizations in each of n directions.  Most methods initially search along the

coordinate directions but differ in the procedure used to generate new directions.  In PM an attempt

is made to generate after n rounds of iteration a set of n direction vectors which are mutually

conjugate or non-interfering, so any reduction in the function value obtained during minimization in

one direction is not lost when searching in a subsequent direction.  A set of mutually conjugate search

directions will minimize a quadratic function in a single round of linear searches along the directions

and is quite efficient even for non-quadratic functions (Press et al., 1989).  PM also assures that the

direction vectors do not become linearly dependent because dependent directions will find the

minimum of the function only over a subspace of the full n-dimensional parameter space.  Thus PM

to locate the minimum of a function is both relatively efficient and, more importantly, accurate.

Each round of iteration for PM begins with a parameter vector pk
0, which like ti of SM consists

of the current value for each of the n independent variables, and a set of n direction vectors ξk
1, ξ

k
2,...,ξ

k
n

each of length n where the superscript k indicates the current round of iteration and the subscript is

the search direction.  The value of the function at this starting point pk
0 is denoted Fk

0 and the objective

is to search in turn along each of the n directions to find new values of the independent variables
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which will result in a smaller function value.  For each direction ξk
r for r=1, 2,..., n, a one-dimensional

search is conducted to determine the scalar  step  length λk
r  so  that  the  function  evaluated  at (pk

r-

1+λ
k
rξ

k
r) is a minimum along direction ξk

r, and pk
r=(pk

r-1+λ
k
rξ

k
r) then becomes the starting point for the

next direction of the current round.  At the end of the round, after all n directions have been searched,

the starting point pk
0 has been moved to pk

n which has a function value denoted Fk
n with Fk

n<Fk
0, i.e., it

is closer to the minimum.

In PM the initial search directions are parallel to the coordinate axes, i.e., columns of an

identity matrix, and thus linearly independent but an attempt is made to generate a new conjugate

search direction at the end of each round to replace one of the old directions.  If a new direction is

added, it is defined as ξ=(pk
n-p

k
0), the vector of total progress in the iteration.  This new direction vector

ξ could replace any of the n old directions, but Powell (1964) shows that the proper action is to

discard the direction vector along which the function made its largest decrease in the previous round.

As pointed out by Press et al. (1989), this direction to be replaced, denoted ξm, is likely to be a major

component of the new direction ξ, so discarding ξm avoids buildup of linear dependence.

Under certain conditions, however, it is better not to add a new search direction, but instead

to retain the old direction vectors for the next round.  Powell's advice is to add the new direction

vector ξ only if the resulting set of direction vectors remain linearly independent, i.e., span the entire

n-dimensional parameter space.  The criterion requires function values obtained during the current

round of iteration.  Along with Fk
0 and Fk

n, the function values at the beginning and end of the current

round, two additional quantities are required.  First, ∆ is defined to be the magnitude of the function

decrease along ξm, the direction of largest decrease in the current round, i.e., ∆=(Fk
m-1-F

k
m).  Second,

define Fk
e to be the function value at an expanded point pk

e={pk
n+(pk

n-p
k
0)}, which is the endpoint pk

n

moved a further step equal to (pk
n-p

k
0), the distance moved in the current round.  Because ξ=(pk

n-p
k
0) is

the proposed new direction, the expanded point indicates the efficiency of the new search direction.

After calculation of ∆ and Fk
e, a test is performed to determine if ξm should be replaced by the new

direction vector ξ.  The criterion, derived by Powell (1964), is based on the determinant of a function

of the search directions which will increase if a more efficient yet independent search direction is

added.  Specifically, Powell shows that if either Fk
e$Fk

0 and/or {2(Fk
0-2Fk

n+Fk
e)(F

k
0-F

k
n-∆)2}${∆(Fk

0-F
k
e)

2}

then the old search directions should be retained for the next round, i.e., ξk
r
+1=ξk

r for r=1,..., n and the

endpoint pk
n is used for pk

0
+1, the starting point for the next round.  Otherwise the step length λ is found

so that the function evaluated at (pk
n+λξ) is a minimum along the new direction ξ and this point is then

used as pk
0

+1.  For the next iterate, ξk
m, the direction of largest decrease in the previous round, is
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discarded from the list and ξ is added at the end, that is (ξk
1

+1, ξk
2

+1,..., ξk
n

+1)=(ξk
1, ξ

k
2,..., ξ

k
m-1, ξ

k
m+1,..., ξ

k
n,

ξ).  The search is continued in the next round for the new starting point and set of direction vectors.

Convergence is assumed when the values for the independent variables between successive iterations

are less than the required accuracy.  Because one of the previously generated conjugate directions may

be replaced in a subsequent round, or the same set of directions may be reused, a set of n mutually

conjugate directions is rarely obtained after n rounds.  As a result, the number of function evaluations

required to reach convergence may be increased, but this is required to insure the accuracy of the

estimates.  A flow diagram illustrating the basic steps of PM is given in Figure 1.

The unidimensional search used in PM to locate the value of λk
r for r=1,..., n which minimizes

the function through the point pk
r-1 in direction ξk

r is based on a quadratic approximation to the

function.  In this iterative method a quadratic equation q2λ
2+q1λ+q0=F(λ) is fit where F(λ) are the

function values corresponding to the three current values of λ.  The three initial values of λ should

be chosen so that the three (co)variance vectors (pk
r-1+λ

k
rξ

k
r) span the parameter space.  The minimum

of the estimated parabola gives a new value for λ denoted λ' which, along with its function value,

replaces the λ furthest away in the previous set of three.  The process is then repeated beginning with

the calculation of a new parabola.  Convergence is assumed when the λ' predicted from the quadratic

differs by less than the required accuracy from the λ corresponding to the smallest function value in

the current set of three.  Powell (1964) presents several refinements of the basic quadratic

approximation method which ensures stable and efficient convergence.

Like SM, PM is usually classified as an unconstrained minimization method but can

accommodate constraints on the parameter space by assigning a large function value to any non-

permissible parameter vector.  Even if the starting point for an iterate pk
0 is within the parameter space,

subsequent actions can move parameters out of the parameter space.  For example, during a linear

minimization the predicted minimum of the parabola may correspond to a point outside the range of

the three existing points.  If this point is outside of the parameter space and is assigned a large positive

function value, then the new step length predicted from the parabola fit through this point and the two

old points adjacent will automatically be moved away from the non-permissible vector.  In addition,

the expanded point pk
e={pk

n+(pk
n-p

k
0)} used to determine if a new direction should be added can move

outside of the parameter.  If a large function value is assigned to Fk
e in this situation, then Fk

e$Fk
0 and

the old search directions will be retained for the next round.
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A Numerical Comparison

Data

A simulated data set (see Chapter 7) from Meyer (1989) with correlated direct and maternal

effects was used to compare the performance of SM and PM.  Data consisted of 282 animals with

records in two generations.  Each generation consisted of 18 full-sib families of size 6 to 10, with

each sire mated to three dams.  The 24 parents of generation one (base animals) did not have records,

yielding a total of 306 animals.  Records were generated from an AM with a mean of 200, a fixed

generation effect with two levels assigned values of 0 and 20, and random additive direct animal (a),

additive maternal (m), common environment (c) (e.g., litter) and residual effects with associated

(co)variances σ2
a=40, σ2

m=15, σam=-5, σ2
c=10, and σ2

e=50.  The assumed covariance structure for the

model was:

where A is the numerator relationship matrix of order 306, and the identity matrices are of order 36

and 282 for σ2
c and σ2

e, respectively.

Analysis

The model used to estimate (co)variance components via DFREML was the same AM used

to generate the data.  Because residual variance can be estimated directly from terms arising during

formation and solution of the MME, the direct search to maximize Λ was with respect to only four

components σ2
a, σ

2
m, σam, and σ2

c.  The four elements of each prior vector are expressed in Meyer's

(1988, 1989) DFREML program as a proportion of the phenotypic variance, σ2
p, i.e., Θa=σ

2
a/σ

2
p,

Θm=σ2
m/σ2

p, Θam=σam/σ2
p, and Θc=σ

2
c/σ

2
p, where σ2

p=σ
2
a+σ

2
m+σam+σ2

c+σ
2
e.  Thus, Θa and Θm correspond to

heritability of direct effects and maternal effects, h2
a and h2

m, respectively.  After ^σ2
e has been estimated,

^σ2
p can be estimated as ^σ2

p=
^σ2

e/Θe where Θe=
^σ2

e/
^σ2

p=(1-Θa-Θm-Θam-Θc).  The other (co)variance

components can be obtained by multiplying the corresponding Θ by ^σ2
p.  Starting values Θa=.40,

Θm=.15, and Θc=.10 were used in each analysis but the starting value of Θam was changed for each of

18 analyses, resulting in a prior for ram, the genetic correlation between direct and maternal effects,

which ranged from -.98 to .98.

Several researchers have presented variants of SM or PM method with modifications designed

to increase efficiency and/or robustness.  For this investigation, however, the original version of each

method was used.  The SM as described by Nelder and Mead (1965) with reflection, expansion, and
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contraction coefficients α=1.0, γ=2.0, and β=.5 is used in the MTDFREML program and in Meyer's

(1988) DFNRM program.  The program is supplied with a vector of n Θ parameters for a single

vertex and the other n vertices of the Simplex are then generated by multiplying each of the n

elements of the initial vector in turn by a step size value greater than 0.  MTDFREML program uses

a step size of .20 to generate the original Simplex, i.e., new parameter = original parameter + .2

(original parameter).  For the model used with four independent parameters, the Simplex consists of

five points.  Therefore, for an initial parameter vector of (Θa Θm Θam Θc)=(.40 .15 -.05 .10), the

original Simplex would consist of this vector and four other vectors (.48 .15 -.05 .10), (.40 .18 -.05

.10), (.40 .15 -.06 .10), and (.40 .15 -.05 .12).  Several rounds of iteration consisting of reflection,

expansion and contraction steps were then conducted until the variance of -2Λ for the five vertices

of the Simplex was less than 1.e-9 which is smaller and thus more demanding than the value of 1.e-8

recommended by Meyer (1988).

The implementation of PM presented by Kuester and Mize (1973) was used in the analyses

after correction of an error (Karin Meyer, personal communication, 1990) in the published code.  The

convergence criterion was set to an accuracy 1.e-1 (Kuester and Mize, 1973) and as recommended

by Powell (1964) the procedure was continued until an iteration caused the change in each

independent  variable to be less than one-tenth of the required accuracy or, i.e., 1.e-2. The initial step

size for the linear search was set to .01 and the linear search was continued until λ', the step size

predicted from the quadratic, differed by less than 3% from the step size corresponding to the smallest

function value in the current set of three.  For example, assume the original parameter vector is p1
0=(Θa

Θm Θam Θc)=(.40 .15 -.05 .10) and the function value for this vector is F1
0.  Because the original search

directions are parallel to the coordinate axes, ξ1
1=(1 0 0 0) and the other two points for the first

quadratic would then be (p1
0+.01ξ1

1)=(.41 .15 -.05 .10) and either (p1
0+.02ξ1

1)=(.42 .15 -.05 .10) or (p1
0-

.01ξ1
1)=(.39 .15 -.05 .10), depending on whether the function value at (.41 .15 -.05 .10) is less than or

greater than F1
0, respectively.  These three function values and step lengths are then used in the first

quadratic to predict the step length λ' which minimizes the function.  The search in the first direction

is terminated when (*λ'-λm*/λ')#.03 where λm is the step size corresponding to the smallest function

value in the former set of three.

Robustness

In a comparison of alternative direct search procedures the most important criterion is the

reliability of estimates obtained.  According to Gill et al. (1981) direct search methods are not

generally susceptible to rounding errors associated with complicated numerical processes but few if

any guarantees can be made concerning convergence.  Ideally, for a given data set, convergence to

the same point should result from any prior parameter vector.
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Simplex Method

Estimates obtained at convergence with SM were not invariant to the prior value for ^Θam

(Table 1).  For seven of the ^Θam priors, the minimum of -Λ (omitting constants) was identified as

950.060 corresponding to ^Θa=.33, ^Θm=.16, ^Θam=-.09, and ^Θc=.08.  This point was accepted as the

global minimum because a larger value for -log Λ was obtained for all other parameter estimates.  The

other nine solutions indicate failure of SM to locate the global minimum for all priors.  Jacoby et al.

(1972) point out that false convergence can result if the Simplex contracts into a valley and stops

prematurely, resulting in convergence to a local rather than a global minimum.  Continuation of

iteration to a smaller convergence criteria may only contract the Simplex further into the valley.  Press

et al. (1989) suggested that any multidimensional minimization procedure should be restarted at the

claimed minimum.  If, after initial convergence, the Simplex is regenerated around the best point t0

then one or more of the new vertices may be moved out of the valley and subsequent steps may move

the Simplex to the global minimum.  Restarts of SM using the initial converged values as priors

resulted in the same final estimates for all initial priors except .10 (Table 3).  The analysis for the Θam

prior .20 was not restarted because the estimates at initial convergence were the same as the priors,

i.e., the Simplex did not move.

A restart of SM was effective for most occurrences of false convergence but is inefficient if

the values at initial convergence are at the global minimum.  For example, restarting the procedure

with the estimates ^Θa=.33, ^Θm=.16, ^Θam=-.09, and ^Θc=.08 and a step size .20 resulted in the same

estimates at reconvergence but 42 additional likelihood evaluations were required.  Ideally, a criterion

exists which could be used to test for convergence to a local minimum.  In the Simplex subroutine

presented by O'Neill (1971), after convergence the function value is calculated at the 2n points

consisting of the suspected minimum t0 plus and minus .001 times the original step size along the axis

corresponding to each of the n independent variables.  For example, if the suspected minimum was

( ^Θa=.33, ^Θm=.16, ^Θam=-.09, and ^Θc=.08) and the original step size was .20 then -Λ would be evaluated

at the eight points (.33±.0002 .16 -.09 .08), (.33 .16±.0002 -.09 .08), (.33 .16 -.09±.0002 .08), and (.33

.16 -.09 .08±.0002).  If all eight of the function values are greater than F0, the function value

corresponding to the solution, then t0 is accepted as the global minimum.  If at least one of the eight

function values is smaller than F0 then the Simplex is contracted around the new lowest point and the

procedure is continued.  A disadvantage of this method is that the criterion is dependent on the step

size used to generate the initial Simplex.  A better approach would be to use a step size that is a

function of the size of the Simplex at convergence.  Gill et al. (1981) suggested a restart with a

Simplex of center t0 and side **t0-tn+1**, the Euclidean distance between the best and worst point of

the Simplex at initial convergence.  Similarly, in each analysis -Λ was evaluated at the eight points

calculated from t0 plus and minus **t0-tn+1** in each direction.  The test, which requires only 2n
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additional likelihood evaluations, was always correct in determining whether the estimate at initial

convergence was a local or global minimum and should routinely be incorporated into SM to increase

the confidence that the global minimum has been found.

The vector of estimates obtained for the Θam prior .10 did not converge to the global minimum

even after restarting with a new Simplex but was identified as a local minimum by the method of Gill

et al. (1981) described above.  Compared to the analyses which converged to the global minimum on

the first or restart run, the initial analyses for .10 and .20 were characterized by a relatively large

percentage of rounds consisting of a failed contraction and subsequent shrinkage of the Simplex.  This

action occurred in 10 of 57 rounds with a Θam prior of .10 and in all 16 rounds with a prior of .20 but

in at most one round for all other priors.  Failed contractions may cause the Simplex to shrink into

a valley and result in false convergence.  Therefore, if the first run consists of several failed

contractions, the best action is probably to restart the procedure with a set of priors different from

those obtained at initial convergence.  Because a failed contraction and shrinkage requires n+2

likelihood evaluations, the ratio of the number of likelihoods to the number of rounds of iteration will

be large if there are several failed contractions.  For these analyses, this ratio was 2.11 and 6.31 for

priors of Θam of .10 and .20 but ranged from only 1.63 to 2.03 for the others (Table 1).

Another characteristic unique to the analyses with Θam priors of .10 and .20 was the large

REML estimate for σ2
p relative to observed variance estimated from the total sum of squares.  The

latter estimate, calculated within each of the two generations, averaged 98.4.  The estimate calculated

as the sum of components from MT of REML should not in general be equal to this value, but it

should be close.  For the priors which converged to the global minimum initially or after a restart, σ^ 2
p

ranged from 96.3 to 96.5, but the estimates for priors .10 and .20 were 105.0 and 176.4, respectively.

Comparison of the variance estimates from the two methods may be helpful in determining when a

new set of priors should be used and calculation of total sum of squares would be inexpensive for

most analyses.
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TABLE 1.  Rounds of iteration and log likelihood evaluations required and parameter estimates

by the Simplex method at initial convergence1 using different prior values for s
am____________________________________________________________________________________________________________

    Prior                                                                      Estimates                    

           ram        Rounds     Likelihoods       -2Λ                                                   r^am
s

am
σ̂

2

p ŝ
a

ŝ
m

ŝ
am

ŝ
c

____________________________________________________________________________________________________________ 

                                                                                           

-.240   -.980          85           147         950.0604    96.4    .329     .156     .084   -.086 -.381 

-.200 -.816    65 113 950.0604    96.3    .328     .158     .083   -.088 -.384

-.150 -.612    61 107 950.0604    96.3    .330     .157     .083   -.088 -.385

-.100 -.408    58 100 950.0604    96.4    .330     .157     .084   -.088 -.384

-.050   -.204    36  73 950.0617    96.3    .317     .139     .087   -.067 -.317

-.020 -.082    41  79 950.0712    96.3    .294     .105     .094   -.029 -.166

-.010 -.041    33  66 950.0776    96.3    .284     .094     .096   -.015 -.090

-.001 -.004    38  74 950.0846    96.3    .275     .082     .100   -.002 -.010

 .001  .004    33            65 950.0865    96.4    .273     .081     .100    .002  .010

 .010  .041    38  72 950.0952    96.5    .268     .066     .104    .015  .110

 .020  .082    80 140 950.0604    96.3    .327     .156     .084   -.086 -.379

 .050  .204   109 181 950.0604    96.3    .330     .158     .083   -.088 -.385

 .100  .408    57 120 950.6663   105.0    .176     .071     .120    .111  .998

 .150  .612   104 177 950.0604    96.3    .328     .157     .083   -.086 -.380

 .200  .816    16 101 955.4507   176.4    .400     .150     .100    .200  .816

 .240  .980    96 156 950.0618    96.4    .328     .142     .089   -.076 -.352
____________________________________________________________________________________________________________

1Convergence criterion: variance (-2Λ) < 1.e-9.
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TABLE 2.  Rounds of iteration and log likelihood evaluations required and parameter estimates

by Powell's method at initial convergence1 using different prior values  for s
am

____________________________________________________________________________________________________________

    Prior                                                                      Estimates                     

          ram        Rounds     Likelihoods        -27                                                  r̂am
s

am
σ̂

2

p ŝ
a

ŝ
m

ŝ
am

ŝ
c

____________________________________________________________________________________________________________ 

                                                                                            

-.240   -.980           7           202         950.0604    96.3    .329     .157    -.087    .084 -.382 

-.200 -.816    10 120 950.0604    96.3    .329     .157    -.087    .083 -.382

-.150 -.612     8 107 950.0604    96.4    .329     .157    -.087     .084 -.382

-.100 -.408     9  94 950.0604    96.3    .329     .157    -.087    .083 -.382

-.050   -.204     6 109 950.0604    96.3    .329     .157    -.087    .083 -.382

-.020 -.082     7 145 950.0604    96.3    .329     .157    -.087    .083 -.382

-.010 -.041     8 170 950.0604    96.4    .329     .157    -.087    .084 -.382

-.001 -.004     8 183 950.0604    96.4    .329     .157    -.087    .084  -.382

 .001  .004     8           186 950.0604    96.4    .329     .157    -.087    .084 -.382

 .010  .041     8 198 950.0604    96.3    .329     .157    -.087    .084 -.382

 .020  .082     8 207 950.0604    96.4    .329     .157    -.087    .084 -.383

 .050  .204     8 285 950.0604    96.3    .329     .157    -.087    .084 -.382

 .100  .408     9 363 950.0604    96.3    .329     .157    -.087    .084 -.381

 .150  .612     8 269 950.0604    96.3    .329     .157    -.087    .084 -.382

 .200  .816     4 220 950.0629    96.2    .311     .131    -.059    .089 -.292

 .240  .980     8 331 950.0604    96.3    .329     .157    -.087    .083 -.382
____________________________________________________________________________________________________________

1Convergence criterion:  fractional change in all 1 < 1.e-3.
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TABLE 3.  Rounds of iteration and log likelihood evaluations required and parameter estimates by the

Simplex and Powell's method after restarting using priors obtained at initial convergence1

____________________________________________________________________________________________________________

          Initial prior                                                        Estimates                     

Method             ram     Rounds
2  Likelihoods2    -2Λ                                                 r̂

am
s

am
σ̂

2

p ŝ
a

ŝ
m

ŝ
am

ŝ
c

____________________________________________________________________________________________________________

Simplex   -.050  -.204     41 (77)    77 (150)   950.0604   96.3    .329     .157     -.087    .084    -.383

Simplex   -.020  -.082     57 (98)   110 (189)   950.0604   96.4    .328     .156   -.085   .084    -.378

Simplex   -.010  -.041     43 (76)    83 (149)   950.0605   96.3    .328     .155   -.085   .084    -.378

Simplex   -.001  -.004     63 (101)  109 (183)   950.0605   96.3   .329   .156   -.087   .084    -.384

Simplex    .001   .004     95 (128)  176 (241)   950.0605   96.4   .329   .159   -.088   .082    -.384

Simplex    .010   .041     66 (104)  111 (183)   950.0605   96.3   .328   .154   -.084   .084    -.374

Simplex    .100   .408     67 (124)   86 (206)   950.3779  100.5   .201   .062    .112   .075    1.000

Simplex    .240   .980     34 (130)   66 (222)   950.0605   96.3   .327   .156   -.085   .084    -.376

Powell's   .200   .816      7 (11)    78 (298)   950.0604   96.4   .329   .157   -.087   .084    -.382
____________________________________________________________________________________________________________

1Convergence criterion:  Simplex variance (-2Λ) < 1.e-9; Powell's fractional change in all Θ < 1.e-3.
2Total for initial plus restart run in parentheses.
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Powell's Method

In all but one of the analyses of the simulated data utilizing PM, parameter estimates

obtained at convergence (Table 2) were invariant to the starting value selected for Θam and were

identical to the estimates at the global minimum obtained with SM (Table 2).  The Θam prior of .20

(which resulted in false convergence with SM) resulted in convergence to a local minimum, most

likely as the result of premature termination of the method as indicated by the number of rounds

of iteration.  A linear direct search method which adds a conjugate search direction in each round

will minimize a quadratic function of n independent variables in a minimum of n+1 rounds. 

Because PM does not always add a conjugate search direction in each round and Λ is not a

quadratic function, more than n+1=5 rounds should be required for the example data.  As

expected, the number of rounds required to reach convergence ranged from six to ten for all Θam

priors except for .20 which required only four (Table 2).  Therefore, even though PM was not

robust for all Θam priors, the failure to locate the minimum would be suspected from the number

of rounds of iteration required.  In this situation the analysis should be rerun with a different prior

vector.  If more than n+1 rounds are required then the estimates would be accepted as the those

corresponding to the global minimum.  Restarting the procedure with the initial estimates required

seven rounds of iteration and 78 likelihood evaluations and resulted in convergence to the global

minimum (last line of Table 3).

The different estimates obtained via SM and PM are probably due to the different

convergence criteria used.  Convergence for SM is based on differences in values of Λ while PM

convergence is based on the fractional change of the parameter vector.  Thus the first criterion is

susceptible to premature termination at a plateau of Λ while the latter criterion can terminate

prematurely on a very steep slope.  As indicated by the small variation in -2Λ for the wide range

of parameter estimates (Table 1), the surface of Λ for simulated data is relatively flat so SM stops

at a local minimum rather than the global minimum, but PM is more robust.  The degree of

flatness of the log-likelihood surface is determined in part by the amount of information available

which is dependent on the amount and structure of the data.  In a model with correlated direct and

maternal genetic effects, if few dams have records, the covariance component is estimated

indirectly through the relationship matrix and the likelihood surface tends to be flat (Karin Meyer,

personal communication, 1990).  In the two generations of simulated data used for these analyses

the flat likelihood surface is partly due to the fact that only 18 of 36 dams had records. 

Convergence to different estimates has been noted, however, in an analysis of data from a seven

generation swine selection experiment in which all dams (643) except those in the base generation
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had records (Luis Gama, personal communication, 1990).  Limited investigation of analysis of the

data for a model without a correlated maternal effect indicated that both SM and PM were robust

for different Θa and Θc priors.  The probability of false convergence is probably not as great for

models in which Λ is maximized with respect to few parameters.

Efficiency

If alternative direct search procedures are robust then a second characteristic to consider is

their efficiency. The computer time required to define a new vertex for a Simplex in SM or a new

direction vector in PM is insignificant in comparison to the time required to calculate Λ via

SPARSPAK. Therefore, the appropriate criterion is the number of likelihood evaluations required.

Simplex Method

For fixed reflection, expansion, and contraction coefficients the number of function

evaluations required with SM is determined in part by the orientation and size of the original

Simplex, i.e., the n coordinates of the starting point and the step size used to generate the initial

Simplex.  O'Neill (1971) stated that SM will work successfully for all step sizes and priors but

those far from the optimum will require more iterations to reach convergence.  Because the

optimum step size and priors depend on the location of the function minimum, however, they are

never known.  As expected, when the prior for Θam was moved from -.10, a value close to the

convergence point of -.09, to -.24, a point far away, the number of likelihood evaluations

increased (Table 1).  This trend was also evident for some of the positive priors which initially

converged to the global minimum, e.g., .02 and .05, but a prior of .15 required fewer likelihood

evaluations, 177, than the prior .05, which required 181.  Meyer (1989) used a step size of .20 in

her DFREML program to ensure convergence even for poor starting values but suggested that a

smaller value might be more efficient for good starting values.  Results from the analyses indicate

that a smaller step size might be appropriate for restarts because for most priors which converged

to the global minimum after a restart, the second run required more likelihood evaluations than

the first and, as pointed out by Meyer (1989), a large step size may result in excessive likelihood

evaluations.

Powell's Method

Similar to SM, PM should require fewer function evaluations for priors close to the

converged estimate.  This trend was observed over the entire range of Θam priors except for .20

which did not converge to the global minimum, and .05 and .10 which required more iterations

than .15 (Table 2).

Modifications of PM to speed convergence could be directed at either the method in which
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search directions are generated or at the linear search technique.  The large variation in number of

likelihoods and small variation in number of rounds of iteration (sets of direction vectors)

suggests that the linear search using a quadratic approximation was the limiting component.  In

Powell's linear search step, the extrapolated step length, λ', to the predicted minimum may be too

long, i.e., far from the true minimum, resulting in unstable convergence.  Therefore, Powell set the

step length to a specified maximum permissible value when the predicted step is too long.  For

these analyses, this precautionary step resulted in very slow convergence of the linear search. 

Because the maximum step length is proportional to the accuracy criterion, one possible solution

is to run the analysis twice, first with a relatively large accuracy criterion and then with a smaller

value (Karin Meyer, personal communication, 1990).  With this method, a large step size is used

in the first run and a smaller value is used for more precise location of the minimum.  For the

example data, this two-stage method with an initial accuracy of 1.0 followed by 0.1 decreased the

number of likelihood evaluations required for most priors, with a reduction of 50% or more

observed for priors far from the converged estimates.  An alternative approach suggested by

Coggins as described by Box et al. (1969) is to double the step length until the minimum is

bracketed in the first linear interpolation in each direction and then to use repeated quadratic

interpolation.  Jacoby et al. (1972) reported that this method is more efficient than Powell's linear

search especially when the initial guess of the location of the minimum is poor.

Over the range of priors tested which converged to the global minimum initially or after a

restart, neither SM nor PM was consistently more efficient.  For priors far from the converged

value (<-.15 and >.001) SM required fewer Λ evaluations than PM probably due to the slow

convergence of Powell's linear search.  For most intermediate priors, initial runs of SM were more

efficient than PM, but evaluations required for restarts (Table 3) of the former resulted in a small

advantage for PM.

Conclusions

Direct search strategies to locate the minimum of a function are an alternative to gradient-

based methods and may be preferred for problems in which differentiation is difficult, e.g., REML

estimation in AM.  While both SM and PM are based on simple comparisons of function values,

they use different strategies to generate a sequence of improved approximations to the solution.  In

contrast to PM which is based on conjugate directions, SM, having no mathematical basis, is more

heuristic in nature so the former may be preferable on a theoretical basis.

Parameter estimates for the example data obtained at initial convergence with PM and
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especially with SM were not independent of the prior used for Θam.  Restarting the methods with

the initial estimates resulted in the same final estimates in all PM and most SM analyses. 

Fortunately, evaluation of -Λ in the vicinity of the estimates obtained with SM was able to

differentiate between local solutions and global minima.  In addition, if the progression of the

methods is closely monitored then occurrences of false convergence will often be recognized. 

This emphasizes the importance of a basic understanding of the particular direct search method

used rather than simply employing it as a 'black box'.

For the small data set and priors used, both methods were similar in terms of efficiency but

many likelihood evaluations were often required to obtain final estimates.  Parkinson and

Hutchinson (1972) reported that SM is highly competitive with alternative direct search

procedures especially for complex functions of low dimensionality, and therefore, the model used

in these analyses should be well suited to SM.  However, SM may become relatively less

competitive as the number of dimensions are increased (Box, 1966).  On the basis of limited

work, Meyer (1990) suggested that PM may be more efficient than SM for REML in multivariate

models especially for those with more than one random effect.  In addition, like SM, PM can

efficiently accommodate constraints on the parameter space which is important especially as the

number of parameters increases.

In terms of reliability PM may be superior to SM for maximization of Λ with respect to

variance components in animal models with correlated direct and maternal effects.  If a linear

quadratic approximation method is used in models with a single parameter (Graser, et al., 1987),

then use of PM, which consists of a sequence of linear searches together with a method to

generate search directions, would

provide a unified approach to the maximization of Λ in DFREML.
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