
The use of a water budget model and yield maps to
characterize water availability in a landscape

Dennis Timlina,*, Yakov Pachepskyb, Charles Walthalla, Sara Loechelc

aUSDA-ARS Remote Sensing and Modeling Laboratory, Bldg 007, Rm 116, 10300 Baltimore Ave, Beltsville, MD 20705, USA
bUSDA-ARS Hydrology Laboratory, Bldg 007, Rm 104, 10300 Baltimore Ave, Beltsville, MD 20705, USA

cUniversity of Maryland, College Park, MD 20742, USA

Abstract

Crop yield maps may contain substantial corollary information regarding the distribution of yield related soil properties

across a landscape. One of these properties is water holding capacity (WHC). Since WHC is an important parameter for crop

models and is also critical for crop yield, our objective was to determine if WHC could be estimated by matching simulated

yield with yield map data. We collected soil cores for water retention measurements and recorded plant phenological stages

from 60 plots on four transects over two growing seasons (1997 and 1998). Soil cores were also sampled on 40 other locations

set out on a grid pattern. We utilized a simple water budget model that uses the relative transpiration ratio to calculate relative

yield from available water in the soil pro®le. Rainfall, potential evapotranspiration and soil water holding capacity are input.

An optimization program varies the WHC to produce a grain yield similar to the one from the yield map at a particular

location. This analysis was carried out over several scales by averaging yields over 55 m� 71 m, 27 m� 35 m, and

11 m� 14 m areas. Yield data from 2 years were used. Yields from the transects in both years were signi®cantly related to

measured WHC in the surface 0±10 cm of soil. The calculated stress indices from the water budget model and estimated

available WHC calculated for the 1997 data were similar to those calculated for the 1998 data where data were aggregated in

27 by 35 m or larger blocks. The contour map of estimated WHC was similar to the map of measured WHC for some features

though there were also some differences. Use of multiple years of yield data are required to give stable results for estimated

water holding capacities.. This information could be used in a farm management plan by allowing a producer to classify a ®eld

into areas that are buffered against drought and areas more susceptible to drought. Published by Elsevier Science B.V.
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1. Introduction

Spatial information on soil properties and their

relationships in a landscape are needed by producers

to take advantage of site speci®c management. Avail-

able soil maps, while a source of helpful data, may not

have information useful for precision agriculture at

scales necessary to successfully implement that tech-

nology (Sadler et al., 1998). Crop yield maps, how-

ever, may contain a wealth of corollary information

about the spatial variability of soil properties that

affect yield. Yield maps are also collected at small

scales (�6 m2) making them an attractive addition to

soil maps.

Techniques are needed to interpret yield maps in

terms of soil variability and to develop site-speci®c

management practices based on that variability

(Mulla, 1991). A typical precision agriculture goal
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is to use a yield map to divide a ®eld into spatially

homogenous sections that can be managed uniformly.

This goal may be dif®cult to realize because there

often appears to be a lack of consistency in the patterns

of yield variability from year to year (Colvin et al.,

1997). To ®nd some basis of consistency, Stafford et al.

(1998) applied a fuzzy clustering pattern recognition

technique to help classify spatial variability patterns in

crop yields. They hypothesized that sub-regions could

correspond to areas where yield limiting factors also

existed. Further sampling and other tools would be

needed to identify and quantify the speci®c relation-

ships at each location. Overall, there are not a wide

variety of tools available.

Among the soil properties that affect crop yields,

available water is the most important in rain-fed

agriculture. Mean water holding capacity by land-

scape position has been shown to be a good predictor

of corn silage yield (Wright et al., 1990). A large

component of variation in yield maps may therefore be

due to variation in soil properties that affect water

availability. It is often dif®cult to account for water

availability from year to year, however, using statis-

tical approaches. This is because of the temporal stress

effects due to limiting soil water and interactions

among growth, development and yield. As a method

to quantify such effects, Paz et al. (1998) used a crop

model to account for seasonal weather effects on

soybean (Glycine max (L.) Merr.) yields. We hypothe-

size that information on soil water availability can

be extracted from a yield map by using a simple

water budget-yield model that can integrate the sea-

sonal effects of weather and available soil water on

yield.

The overall goal was to map a surrogate indicator of

water availability using detailed crop yields recorded

by a yield monitor. Our speci®c objective was to

investigate the use of a simple water budget-yield

model to back-calculate soil water holding capacity

by matching simulated and measured grain yields

within a 4 ha ®eld.

2. Materials and methods

This research is part of an ongoing Precision

Agriculture project called OPE3 (Optimizing Pro-

duction inputs for Economic and Environmental

Enhancement) being carried out at the USDA/ARS

Beltsville Agricultural Research Center in Beltsville,

MD.

2.1. Field

Prior to this study, the ®eld had been in alfalfa

(Medico sativa L.) for 8 years (1989±1997). In the

spring of 1997 the ®eld was sprayed with herbicide to

kill the alfalfa, and corn (Zea Mays L.) was planted

into the residue using a six-row no-till planter. The row

spacing was 76.2 cm and plant population about

50,000 plants haÿ1. Nitrogen was applied (30 days)

after planting at the rate of 100 kg haÿ1. No irrigation

water was applied.

The soil cover of the site is de®ned as the Cedar-

town±Galestown±Matawan soil association (NRCS,

1995). Cedartown and Galestown are sandy, siliceous,

mesic Psammentic Hapludults, whereas Matawan is

®ne loamy, semiactive, mesic Aquic Hapludult. The

slopes range from 0 to 5%, and the topsoil texture is

loamy sand. Table 1 presents some characteristics of

soils.

Table 1

Selected properties of soils in the Cedartown±Galestown±Matawan

soil association (NRCS, 1995)a

Soil attributes Cedartown Galestown Matawan

Drainage SED SED MWD

Slope (%) 0±5 0±5 0±5

Corn yield (kg haÿ1) 430 370 740

Thickness of horizons (cm)

A 3±8 3±5 3±8

E 8±20 5±20 8±18

Thickness of layers (cm)

0±30 0±28 0±50

Clay (%) 2±7 4±10 2±10

Percent passing sieve number

4 95±100 95±100 100±100

10 85±100 75±100 100±100

40 40±90 45±70 50±75

200 5±25 4±20 15±30

Organic matter (kg kgÿ1) 0.5±2 0.5±2 0.5±2

pH 3.6±5.5 3.6±5.5 3.6±5.5

Available water capacity (%) 5±10 6±8 6±9

a SED is somewhat excessively drained, MWD is moderately

well drained.
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An elevation map of the ®eld was obtained by

analysis of geo-referenced stereo-pair aerial photo-

graphs. Four areas in the landscape where differences

in available water could be expected were selected.

One transect of 15 plots was laid out in each of the

locations. The plot size corresponded to a yield moni-

tor cell �2 m� 6 rows�. An 8� 8 grid having an

18 m� 31 m spacing was also laid out for soil sample

sites. A surface map of elevations with the locations of

the transects and grid sample locations is shown in

Fig. 1.

Crop development (height and vegetative stage)

was measured at weekly intervals in the transect plots.

Following the 1997 and 1998 growing seasons plot

yields were measured manually in all the transect

plots. Before the growing season in 1997, duplicate

soil cores were collected in each transect plot from 3 to

9 cm in depth. Cores were also taken in every other

transect plot (seven per transect) from 24 to 30 cm in

depth. Thirty-four duplicate cores (68 total) were

collected from 3 to 9 cm depth in the grid. The cores

were 6.1 cm high and 5.43 cm in diameter. Moisture

retention was measured using a pressure plate appa-

ratus (Klute, 1986) and soil texture measured using the

hydrometer method (Gee and Bauder, 1986). The

entire ®eld was harvested at the ends of the two

growing seasons with a commercial combine

equipped with a yield monitor.

2.2. Modeling

A water budget model was used to quantify moist-

ure stress for each yield monitor site. The purpose of

the water budget model was to estimate the available

soil water content that would give a yield similar to the

measured yield if water availability was the only

source of yield variability. An optimization program

was used to compute the water budget and vary

available water content for each measured yield site

until the sum of the mean squared differences between

predicted and measured yields were minimized.

A simple water budget described by Timlin et al.

(1986) was used to calculate a moisture stress index

based on available soil water. Corn grain yield pre-

dictions are based on the relationship between relative

yields and relative transpiration rates (Hanks, 1974):

Actual Yield �Ya�
Potential Yield �Yp� �

Actual Transpiration �Ta�
Potential Transpiration �Tp�

Here Ya is the actual yield that results from moisture

stress and Yp is the potential yield where water is not

limiting. The water budget calculates values of actual

and potential transpiration and weights them for

growth stage. The water budget requires weather, soil,

and crop data as input. Weather data include daily

evapotranspiration, and rainfall. Soil data include

available water holding capacity to the bottom of

Fig. 1. Elevation map of study site showing locations of transects, grid sampling locations, and ®eld boundary.
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the root zone and the air-dry water content. Crop data

include the number of days after planting that the crop

reaches speci®c growth stages (i.e., vegetative, late

vegetative, silking, blister kernel, and maturity) and

crop cover coef®cients.

The ratio of actual to potential transpiration (tran-

spiration ratio, Ta/Tp) is estimated as a function of the

relative available water in the rooting zone (Fig. 2).

Relative available water varies between 0 and 1 and is

de®ned as �wÿ wp�=�fc ÿ wp�, where wp is the water

content at ÿ1.5 MPa matric potential and fc is the

upper limit of available water (usually ÿ33 or

ÿ10 kPa water content depending on soil texture).

Available water is a function of climate and the soil

properties that determine water storage capacity. A

value of 0.5 for the relative available water content is

used as the cutoff point where the relative transpiration

ratio becomes <1. As available water content

decreases beyond 0.5, the relative transpiration line-

arly decreases with available water (Fig. 2).

The water budget calculates the current amount of

available water in the pro®le for each day. Water is

added to the soil as precipitation and removed as

evaporation. The roots grow in the soil pro®le as a

function of time and water uptake from a layer is a

function of root density in that layer. Further details

can be found in Timlin et al. (1986).

Moisture stress is related to yield through a seasonal

moisture stress index (Ss) adapted from Hiler and

Clark (1971) and is de®ned as

Ss �
Xn

i�1

�SDi��Wi�

where n is the number of days from planting to

harvest, and Wi is a weighting factor that accounts

for the sensitivity of grain yield to moisture stress on

that day. SDi is the daily stress index for day i as

calculated from

SDi � 1ÿ Ta

Tp

(1)

and Ta/Tp is the relative transpiration ratio.

Hiler and Clark (1971) and Shaw (1974) have

used this stress index to calculate corn grain yield

using

Yield � Yp ÿ �A��Ss� (2)

where Yp is the potential yield when moisture is not

limiting and A is the change in corn grain yields in

g mÿ2 per unit of seasonal stress (Ss from Eq. (1)). In

order to be able to represent results from different sites

on a more general basis we will rede®ne Eq. (2) as a

relative yield equation by dividing Eq. (2) by potential

yield (Yp). The result is

Yr � 1ÿ �Ar��Ss� (3)

where Yr � Y=Yp, and Ar � A=Yp is the relative stress

index coef®cient.

In order to represent the measured yields as relative

yields, a value of potential yield is needed. Potential

yield, Yp for each season was estimated by running the

water budget using measured soil data from the trans-

ect plots with the highest yields (transect A in Fig. 1).

The relative yield obtained from the water budget was

used with the measured yields to obtain potential yield

using the relationships given with Eq. (3). The relative

yields for the ®eld data were then obtained by taking

the yields measured by the grain yield monitor and

dividing by the potential yield. The optimization

program minimized:Xn

i�1

�Yr ÿ Ŷ r�2

where Yr is the measured relative yield and Ŷ r is the

estimated relative yield.

Fig. 2. Schematic of the relationship between the relative

transpiration ratio (Ta/Tp) and relative water content. The upper

and lower bounds for water content are 10 kPa and 1.5 MPa water

contents, respectively.

222 D. Timlin et al. / Soil & Tillage Research 58 (2001) 219±231



2.3. Spatial

The ®eld was divided into sections in order to

aggregate data for the optimization method. Three

levels of aggregation were used. These three levels

were obtained by overlaying grids on a map of the

®eld. The grid spacings used were 55 m (Easting) �
71 m (Northing) (coarse resolution), 27 m� 35 m Ð

(medium resolution), and 11 m� 14 m (®ne resolu-

tion). Fig. 3 shows a 27 m� 35 m, medium resolution

grid overlying the ®eld along with yield monitor

locations. All the yields inside a grid cell were aver-

aged and passed to the optimization routine. If there

were <5 yield values in a cell the data for that cell were

not used in the optimization.

2.4. Optimization method

The optimization program runs the water budget/

yield model and varies the WHC of the layers to

minimize the differences between simulated and mea-

sured yields. The water budget and corn yield simula-

tion model produces a value of relative grain yield

for a particular WHC and weather data (precipitation

and evapotranspiration). The WHC was varied by

changing the amount of water held within the rooting

depth. The soil rooting depth was ®xed at 90 cm for all

locations and was divided into three layers with ®xed

lower depths (10, 30 and 90 cm) to minimize the

number of variables to be ®t. Water holding capa-

cities were constrained so that: WHC�0ÿ10� >
WHC�10ÿ30� > WHC�30ÿ90�.

The optimization program we chose for this pur-

pose utilizes a genetic algorithm (GA). Genetic algo-

rithms emulate evolution, and are commonly used as

optimization tools in engineering problems. Advan-

tages of GAs include: (1) initial estimates are not

important (2) several optimum parameter sets can be

found if they exist, and (3) the number of parameters

to optimize can be very large (up to hundreds). Genetic

algorithms use similar terminology as biological

genetics, i.e., chromosomes, genes, alleles, indivi-

duals, organisms, and offspring for example. This

does not mean to imply any type of physical breeding

process or genetic manipulation. Genetic algorithms

are only very approximate analogs of biology.

The parameters to be optimized are numbers and

can be represented by binary strings, i.e., 0011010.

Each binary string representation of a set of para-

meters to obtain a value of WHC for a grid cell is

known as a chromosome. Both ¯oating point and

integer numbers can be represented. For example,

the water holding capacities of the 0±10, 10±30 and

30±90 cm layers would be considered parameters for

the model to calculate a value of relative yield. The

binary coding of these three parameters would be

available as a string of 0's and 1's in a single chromo-

some. To calculate a map of WHC for the ®eld we

would need a value of WHC for each grid cell in the

map. The genetic algorithm would use one chromo-

some of 0's and 1's to code for a single grid cell.

Multiple chromosomes would be used to code for the

WHC for the ®eld. These multiple chromosomes

would be grouped in an individual or in biological

terms, an organism.

Each individual can be assigned a ®tness value

depending on how well the simulated relative yields

agree with the measured relative yields for all the grid

cells in the ®eld. To calculate a ®tness value, the

chromosome is decoded back into ¯oating point num-

bers that represent the WHCs of the three layers.

These WHCs are used in the water budget/yield model

to calculate a value of relative yield. This process is

iterated over all the grid cells in the ®eld. If theFig. 3. Yield monitor locations and layout of 27 m� 35 m grid.
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simulated relative yields for all the grid cells were

relatively close to the measured ones, the ®tness

criterion of the individual would be considered to

be high. In practice, a WHC for an aggregated grid

cell (i.e., 55 m� 71 m) is chosen. The water budget

calculates a relative yield for the cell. This process

continues for all the grid cells in the ®eld. The ®tness

value isXn

i�1

��Yr ÿ Ŷ r�2�ÿ1

where Yr is the measured mean relative yield for the

grid cell, Ŷ r the estimated relative yield and n is the

number of grid cells for the ®eld. The genetic algo-

rithm may have over 100 individuals, each coded to

provide a complete set of WHCs for all the grid cells.

Genetic algorithms employ methods for moving

from one population of chromosomes (e.g., strings

of 1s and 0s, or bits) to a new population by using a

kind of `̀ natural selection'' together with genetics'

inspired operators of crossover and mutation. Each

chromosome consists of `̀ genes'' (e.g., bits). Optimi-

zation criterion becomes a ®tness measure of the

chromosomes. The selection operator chooses those

chromosomes that will be allowed to reproduce, and

on average the ®tter chromosomes produce more

offspring than the less ®t ones. Crossover exchanges

sub-parts of two chromosomes, roughly mimicking

biological recombination between two single-

chromosome organisms. Mutation changes the values

(0s and 1s) in some genes. Each iteration of selection,

crossover, and mutation is called a generation.

Usually, hundreds of generations are needed to

produce a chromosome with a good ®tness. More

information on genetic algorithms can be found in

Goldberg (1989).

We used a FORTRAN version of a genetic algo-

rithm called GAFORTRAN.1 This implementation

uses tournament selection, in which all chromosomes

have equal chances to compete for becoming a parent,

but the ®tter of any two has a larger probability to

become a parent. Elitism is allowed which means that

the algorithm is forced to allow to the best individuals

to become parents in each generation. The crossover is

uniform and the allele exchange occurs in each bit

position. To preserve the diversity in the population,

the individuals that are similar to many other indivi-

duals are punished, and individuals that are different

are rewarded. The following parameters were used for

this implementation of the genetic algorithm: a popu-

lation size of 10,300 generations, 0.1 probability of

mutation, uniform crossover, two offspring per cross-

over, and 0.5 probability of a crossover.

3. Results and discussion

Fig. 4 shows cumulative rainfall and evapotran-

spiration for the 2 years of data. Weather conditions

were drier than normal for Beltsville, MD. There was

more early season rainfall in 1998 and the drought

began later in the season in 1998 so yields were higher

in 1998 than in 1997. Earlier planting in 1998 than in

1997 also helped avoid the worst effects of the drought

in 1998. Seed emergence was good in both years and

the plant populations measured at harvest in the four

1 David L. Carroll, University of Illinois.

Fig. 4. Cumulative evapotranspiration and cumulative rainfall for

the Beltsville site in 1997 and 1998.
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transects in 1998 varied from 46,000 to

53,000 plants haÿ1. Transect D had the lowest plant

population and the only plant population that was

signi®cantly less than 50,000 plants haÿ1 ��p � 0:05�.
Fig. 5 shows the relationship between available

water holding capacity (de®ned as the difference

between 10 and 1500 kPa water contents) in the sur-

face 10 cm and crop yield from the transects for the

1997 and 1998 growing seasons. Crop yields are

signi®cantly related to available water capacity for

both years but the relationship varies by transect

location. Generally, the yields in the upper part of

the ®eld (transects B and D in Fig. 1) have lower yields

while locations in the lower part of the ®eld (transects

A and C) have higher yields. The soils in transects A

and C have higher proportions of silt and clay in the

upper 10 cm than the soils in plots of transects B and D

and hence higher water holding capacities (Table 2).

Runoff of rainwater due to soil surface crusting is

expected to be minimal in this ®eld due to the large

amount of surface residue in the no-till conditions.

Polynomial second order regression equations were

®t to the data in Fig. 5a and b. The equations and lines

are given in the ®gures. Only the 1998 data show a

strong plateau effect where increasing available water

(>0.11 cm3 cmÿ3) within the upper 10 cm of soil does

not contribute to yield increases. The declining yield

at high available water in Fig. 5b is not realistic and

results from use of a quadratic equation. The quadratic

term was not signi®cant in 1997 �p � 0:24� so the

plateau effect cannot be considered signi®cant. The

quadratic term was highly signi®cant in 1998, how-

ever ���p � 0:0031�. The linear contribution of avail-

able water capacity to yield in 1998 was almost twice

that of the linear contribution in 1997 (Fig. 5a and b).

The relationship between available water in the

upper 10 cm and yield shown in Fig. 5 is different

for the 2 years. This demonstrates how variations in

seasonal weather can impact relationships between

soil hydraulic properties and crop yield. Crop simula-

tion models that take into account weather variability

can help make sense of such data. The relationships

also appear to segregate into groups for the various

landscape positions. This suggests that relationships

among factors with a cause and effect relationship

should be studied with techniques that can identify and

characterize local components of the variability. Auto-

regressive and state-space methods offer this possibi-

lity (Long, 1998; Nielsen et al., 1998; Wendroth et al.,

1992). This is opposed to methods that characterize

global variability such as semivariograms. The rela-

tionships in Fig. 5 also show a plateau effect (espe-

cially for 1998) that indicates a diminishing return due

to increases in available water. This type plateau

relationship is seen in irrigation experiments (Pang

et al., 1997). The available water content where the

relationship begins to plateau would be expected to

Fig. 5. Relationship between manually harvested transect yield and

available water in the upper 10 cm for 1997 (a) and 1998 (b). Open

symbols represent transects in the upper (north) part of the ®eld,

closed symbols represent plots in the lower (south) part of the ®eld.

Table 2

Measured soil texture components for the soil in the transects

(Fig. 1 shows the locations of the transects)

Transect Sand (kg kgÿ1) Silt (kg kgÿ1) Clay (kg kgÿ1)

A 0.74 0.19 0.07

B 0.85 0.10 0.05

C 0.84 0.11 0.05

D 0.90 0.07 0.03
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vary depending on the amount of rainfall and eva-

porative demand.

The relationships between calculated stress indices

for 1997 and 1998 for the three levels of aggregation

are shown in Fig. 6. The r2 and regression equations

for the regression of the 1998 stress indices on the

1997 stress indices are given in the ®gures. The ®gures

suggest that the stress indices are similar across loca-

tions, i.e., areas with high stress indices in 1997 also

have high indices in 1998. The association between

the stress indices for the 2 years increases as more

points are added to the aggregation (larger grid cell

sizes). Previous research has shown that as the size of

the support increases the variability decreases (Zhang

et al., 1992). Long (1998) reported that the correla-

tions of wheat yield with normalized re¯ectance

increased as averaging was carried out over larger

blocks.

While the stress indices are correlated, the relation-

ship is not 1:1. The stress index at any one location

given in Fig. 6 is generally higher for 1997 than for

1998. The ®eld was planted later in 1997 than in 1998.

By the time the crop reached the reproductive stages

there had been higher PET and less rainfall in 1997

than in 1998 (Fig. 4). The daily precipitation and

potential evapotranspiration from planting of the crop

to maturity, and soil water holding capacity determine

the magnitude of the stress indices. These results

suggest that crop yield from a particular area in a

®eld can be related from year to year by using a

method that takes the effect of weather variability

on yield into account (see also Paz et al., 1998).

The relationships between optimized water holding

capacities for 1997 and 1998 for the three levels of

aggregation are shown in Fig. 7. As in Fig. 6, the

association improves as more data are aggregated (cell

size becomes larger). The associations for the low

�55 m� 71 m� and medium �27 m� 35 m� levels of

aggregation are strongest. The regression line for the

low �55 m� 71 m� level of aggregation has a slope

and intercept that are not signi®cantly different from 1

�p > 0:57� and 0, respectively �p > 0:27�. The slope

and intercept are also not signi®cantly different from 1

�p > 0:09� and 0 �p > 0:06�, respectively, for the

Fig. 6. Relationships between stress indices calculated using 1997 and 1998 yield data for three levels of aggregation (a) 55 m� 71 m, (b)

27 m� 35 m, and (c) 11 m� 14 m.
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27 m� 35 m level of aggregation. The slope and

intercept for the 11 m� 14 m level of aggregation

were signi®cantly different from 1 and 0, respectively.

The regression and 1:1 lines suggest that the relation-

ships do tend to cluster along a 1:1 line though there is

considerable scatter. The correlation between the esti-

mated water holding capacities for the 2 years suggest

that a reasonably consistent index of water availability

can be obtained by using a simple water budget to

quantify the effects of soil water availability on crop

yield.

The relationships tend to strongly degrade at lower

levels of aggregation (smaller cells and larger numbers

of cells). The data here show that when the cell size is

larger than 27 m� 35 m the correlations using mean

data are stronger than they are for the 11 m� 14 m

level of aggregation. Based on autocorrelations for the

yield data (data not shown) the correlation scale is

about 35±40 m. This suggests that the spatial varia-

bility might swamp the relationships between the

estimated values of available water for the 2 years

at the 11 m� 14 m level of aggregation.

Fig. 8 shows contour maps of measured and esti-

mated WHC. Fig. 8a shows a contour map of the

measured water holding capacities for the surface

10 cm. Fig. 8b and c shows contour maps for estimated

available water from the 1997 and 1998 yield data

using the 27 m� 35 m level of aggregation. The esti-

mated water holding capacity is the average value for

the 90 cm depth used in the estimation procedure.

Fig. 8d shows the mean of the 1997 and 1998 data. The

maps are drawn to cover the area of the measured data

and so only cover part of the ®eld (see Fig. 1). The

patterns for estimated available water for the 1997 and

1998 data are reasonably similar for the 2 years.

Regions of high water availability in the lower left

hand corner and low water availability in the upper

right hand corner are evident. The measured data show

similar patterns in the upper right and lower left hand

corners of the ®eld. These patterns are related to the

soil textures in the surface soil (Table 1). There is more

silt in the lower left corner of the ®eld that results in

higher available water. The spatial variability of soil

water content has been shown to be related to the

Fig. 7. Relationships between estimated available water using 1997 and 1998 yield data for three levels of aggregation (a) 55 m� 71 m, (b)

27 m� 35 m, and (c) 11 m� 14 m.
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spatial variability of soil texture (Vauchard et al.,

1985).

There is not a strong visual similarity between

Fig. 8a (measured) and 8d (mean of estimated values).

Patterns, however, are similar. Both maps show that

the contours change from southwest to northeast and

radiate from the lower left hand corner. There are

differences, the map of the mean estimated values

shows a region of relatively lower water availability in

the middle of the ®eld where the measured data show a

region of relatively higher available water. This is the

major difference between the measured and estimated

maps. We expected some association between mea-

sured and estimated WHC since there were signi®cant

relationships between WHC in the surface soil and

grain yield for the data from the transects.

The measured data are from 0 to 10 cm layer but the

estimates are for a simulated 0±90 cm layer. It could

be argued that these two may not be directly compar-

able. Many soil properties at different depths are often

correlated with each other (Zhang et al., 1992), how-

ever. Surface soil water contents have also been shown

to be related to crop yields (Wright et al., 1990; Diaz

Zorita et al., 1999). This is due to the higher levels of

soil organic matter in the surface soil. Surface soil

content is also much easier to measure and hence

allows for a larger number of samples to characterize

spatial variability. Nielsen et al. (1996) discuss the

importance of measuring surface soil water regimes

with respect to understanding the spatial and temporal

variability of soils.

There are still a number of sources of variability in

this method. The available water measurements from

the soil cores do not account for soil depth nor for

water movement from groundwater. Variations due to

soil depth or groundwater would be expected to be

localized. The map for the measured data was also

interpolated using results from 40 soil cores. Since

there were 100 estimated values, the maps may differ

because of the different number of samples and the

Fig. 8. Contour maps of (a) measured available water holding capacity, (b) estimated available water capacity from 1997 yield data, (c)

estimated available water holding capacity from 1998 yield data, and (d) mean estimated available water holding capacity from 1997 and 1998

data. The estimated data are from the 27 m� 35 m level of aggregation.
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different support size for the yield and soil core

measurements.

The effect of diminishing returns will also limit the

sensitivity of the optimization method when water

availability is above a threshold value. From Fig. 4a

and b we could choose a threshold value WHC

between 0.10 and 0.12 cm3 cmÿ3 of water. The opti-

mization method would be sensitive to values of WHC

below this value but arbitrarily assign a value of WHC

above this point. Furthermore, water availability is

unlikely to account for 100% of the variability in

yields. Paz et al. (1998) reported that a crop model

could explain 69% of the spatial and temporal varia-

bility in soybean yields in Iowa.

The ranges of estimated and measured available

water content shown in Fig. 8 overlap, although the

estimated values are smaller than measured. The

estimated available water holding capacity is no larger

than about 0.10 cm3 cmÿ3 and the range is less than in

the measured data. This discrepancy most likely

because the map shows a mean WHC for 90 cm.

The measured values are for the 0±10 cm layer, where

WHC are higher than in the sub-surface layers. Mean

pro®le values of WHC would be expected to be lower

than values for the surface. This may also be partially

attributed to the plateau effect mentioned above. The

optimization method is unlikely to choose a value of

available water holding capacity greater than this

value because the yields are not sensitive to water

availability above this level. Another reason for the

differences may be partially related to the uncertainty

in the de®nition of available water from the data on

soil water retention. The convention is to use capillary

pressure of 10 kPa for sandy soils and 33 kPa for all

others. A broad generalization has been made when

these limits were established. Much smaller values of

the `̀ measured'' available water content would be

obtained if 33 kPa were used as to ®nd the upper limit

of the available water.

The area in the right side of the ®eld where esti-

mated WHC is high but the measured value low may

represent an area where there is a contribution of water

from groundwater. A nearby ®eld has been mapped

with ground penetrating radar that has been used to

identify the depth distribution of an underlying clay

layer. The data suggest that there is lateral movement

of groundwater that may be channeled to the surface in

some areas of the ®eld (Tim Gish, unpublished data).

These kind of hydrologic areas may not be easily

identi®ed using moisture retention measurements on

soil core samples but still may have a signi®cant

impact on yield that may be identi®ed using yield

map data.

The level of aggregation impacted the results. As

more detail was incorporated into the estimation

method, errors had larger effect. Furthermore, when

the optimization was carried out the spacial correla-

tions were not taken into account. Doing so would help

smooth the relationships. There are a number of

methods to do this, though little work has been done

on methods that use results from a simulation model.

The spatial structure of the water holding capacity is

not as easy to obtain as the spatial structure of the crop

yields. The spatial variance structure of the crop yields

may be used as a surrogate for that of the water holding

capacity. Also, the use of elevation information can be

used to account for landscape features such as curva-

ture that can affect crop yield (Timlin et al., 1998).

Such information could potentially improve this

method.

4. Conclusions

The observed scale effect on the correlation

between the AWC and stress index in two consecutive

years shows two interesting topics to explore. First,

point-to-point correlation seems not to be suf®cient to

express existing dependencies at ®ne resolutions (e.g.,

25� 25 scale), statistics taking into account the spa-

tial positions of points should be used. Groovaerts

(1999) gives an example of using co-kriging to char-

acterize a spatially variable relationship between rain-

fall and elevation. Second, the noise manifesting itself

at ®ne scales may preclude using these resolutions in

mapping soil properties and delineating management

zones. An increase in support mitigates noise and

diminishes the overall variability, so that more stable

relationships can be established.

The estimated available water holding capacities,

however, should still have value despite these issues.

This method could provide a good indicator of avail-

able water because factors such as sub-surface hydro-

logic conditions may be accounted for by using several

years of yield maps. The estimation method assumes

there is no runoff. If runoff does occur its effect will be
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seen in the optimized water availability since the run-

on location may have higher yields than might be

possible with no additional water. These optimized

available water capacities also provide information on

the stability of yield given different yearly weather

patterns. While relationships between available water

capacity and crop yield can and have been character-

ized with greater precision on a smaller scale, it is

dif®cult to extrapolate the results to larger scales such

as ®eld. The use of crop yield maps in conjunction

with a crop simulation model can help identify loca-

tions in the landscape where other sources of varia-

bility (such as curvature or groundwater) may be

important. This will help extrapolate to larger scales.

Also, leaf area index from remotely sensed data can be

used to better `®x' crop cover as a function of position

and water stress. This kind of information will be

included in future research.

Soil map data do contain useful information on

water availability but are often not available at resolu-

tions small enough to explain ®ne-scale variations in

yields. Sadler et al. (1998) noted that 1:1200 soil map

scales were too weak to be useful for delineating

management zones. County soil map scales are

1:20,000. The Beltsville Agricultural Research Center

soil map (NRCS, 1995) shows the entire ®eld to be one

soil association (Cedartown±Galestown±Matawan).

This information cannot be used to explain the yield

map variations except at a very gross scale.

In practice, this method would be used with more

than 2 years of yield data. The water holding capacity

maps would be averaged over a number of years to

produce a more stable representation of water avail-

ability. Spatial patterns of soil water content have been

shown to be temporally persistent (Rolston et al.,

1991). It follows that crop yields which depend on

stored soil water should show a similar persistence in

time. Our work here has shown that a crop simulation

model can be used to quantify the effects of soil water

on yield and elucidate the temporal persistence of crop

yields as they depend on soil water. This information

could be used in a farm management plan by allowing

a producer to classify a ®eld into areas that are

buffered against drought and areas more susceptible

to drought. A producer could then target higher levels

of inputs to the areas that are more drought resistant

and reduce inputs to areas where drought stress is

likely. Since the nutrients will be placed where uptake

is more likely, the probability of leaching to ground-

water can be reduced.
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