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Use of Brooks-Corey Parameters to Improve Estimates of Saturated Conductivity
from Effective Porosity

D. J. Timlin,* L. R. Ahuja, Ya. Pachepsky, R. D. Williams, D. Gimenez, and W. Rawls

ABSTRACT tating a large number of samples. For this reason indirect
methods have held promise as an alternative to makingEffective porosity, defined here as the difference between satiated
direct measurements. A further advantage of indirecttotal porosity and water-filled porosity at a matric potential of 33

kPa, has been shown to be a good predictor for saturated hydraulic methods is that they allow researchers to obtain an
conductivity (Ks) using a modified Kozeny-Carman equation. This estimate of the variability of saturated conductivities
equation is of the form of a coefficient (B ) multiplied by effective based on the variability of an easily measured predictor
porosity raised to a power (n ). The purpose of this study was to variable (Ahuja et al., 1989).
improve the predictive capability of the modified Kozeny-Carman A number of relationships have been developed that
equation by including information from moisture release curves (soil can be used to calculate Ks with easily measured soil
water content vs. matric potential relation). We fitted the Brooks-

properties. Some are purely empirical and are oftenCorey (B-C) equation parameters (pore size distribution index and
related to soil texture (Rawls et al., 1992; Puckett et al.,air entry potential) to moisture release data from a large database
1985). Other relationships use physically based equa-(.500 samples). Values of Ks were also available from the same
tions. Ahuja et al. (1984, 1989) showed that a modifiedsource. Inclusion of the pore size distribution index into the Kozeny-

Carman equation improved the Ks estimation over using only effective Kozeny-Carman equation
porosity, but only slightly. The improvement came through a better

Ks 5 B1f
n
e [1]estimation of large values of Ks. We also fit a relationship for the

coefficient (B) of the Kozeny-Carman equation as a function of the was applicable to a wide range of soils from the Southern
two B-C parameters with a constant value of n 5 2.5 for the exponent. Region of the USA, Hawaii, and Arizona. Here fe is
Overall the use of Brooks-Corey parameters from moisture retention the effective porosity calculated as saturated water con-
data improved estimates of Ks over using effective porosity (fe) alone. tent (us) minus the water content at 33 kPa matric poten-
There is still considerable error in predicting individual Ks values,

tial, and B1 and n are coefficients.however. The best forms of the equation was when l was included in
Even though the coefficients of Eq. [1] fitted to thethe term for the coefficient for the modified Kozeny-Carman equation.

data varied with soil type within a certain range, Eq.The next best form was when l was included in the exponent for fe

[1] fitted to Ks data for all nine different soils had anThe two best models appeared to better preserve the mean, standard
deviation and range of the original data. r 2 as good as for individual soils (Ahuja et al., 1989).

In other words, Eq. [1] exhibited a degree of universal-
ity. In fact, the coefficients, B1 and n obtained from the
above fit of Eq. [1] to data for nine soils estimated KsSaturated soil hydraulic conductivity (Ks) is an
for several soils from Korea (Ahuja et al., 1989) and aimportant soil parameter in models that simulate
variety of soils from Indiana (Franzmeier, 1991) withinfiltration and runoff processes. This soil parameter is
acceptable accuracy. Messing (1989) presented data fordifficult to measure and can be highly variable, necessi-
some Norwegian soils where Eq. [1] fitted the data for
individual soils well, but the coefficients varied with soil
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Table 1. Taxonomic classifications for soils from the Southernuse of the fractal dimension as an exponent (n) in an
Region (SR) database.equation of the form:

Soil name Taxonomic group
Ks 5 B2f

32l
e [2]

Bethany Fine mixed, thermic Pachic Argiustall
Captina Fine-silty, siliceous, mesic Typic FragiudultsHere fe is effective porosity and l is the pore-size distri-
Cecil Clayey kaolinitic, thermic Typic Hapludultsbution index from the Brooks-Corey equation. Rawls
Dothan Fine-loamy, kaolinitic, thermic Plinthic Kandiudults

et al. (1998) showed that the exponent (3 2 l) can be Goldsboro Fine-loamy, siliceous, semiactive, thermic Aquic Paleudults
Grenada Fine-silty, mixed, thermic Glossic Fragiudalfsconsidered to be a measure of the pore fractal dimen-
Kirkland Fine, mixed, thermic Udertic Paleustollssion. When fit to mean values of fe and l from soil Konowa Fine loamy mixed, thermic Ultic Haplustalfs

textural classes, this equation was shown to give a good Lahaina Clayey, kaolinitic, isohyperthermic Tropeptic Haplustox
Lakeland Sandy, thermic, coated Typic Quartzipsammentsestimate of Ks with an r 2 of 0.92 and the intercept B2
Molokai Clayey, kaolinitic, isohyperthermic Typic Torroxequal to 0.00053 m s21 (190 cm h21). Norfolk Fine-loamy, siliceous thermic Typic Paleudults
Pima Fine-silty, mixed (calcareous), thermic Typic TorrifulventsEarlier, Rawls et al. (1993) modified the Marshall
Renfrow Fine, mixed, thermic Udertic Paleustollsequation to obtain an equation for matrix saturated
Tipton Fine-loamy, mixed, thermic Pachic Argiustolls

hydraulic conductivity. These workers used a Sierpinski Teller Fine-loamy, mixed, thermic Udic Argiustolls
Troup Loamy, kaolinitic, thermic Grossarenic Kandiudultscarpet generator to represent a two-dimensional soil
Wagram Loamy, siliceous, thermic Arenic Paleudultsmatrix porosity and used water retention parameters Wahaiwa Clayey, kaolinitic, isohyperthermic Tropeptic Eutrustox

from the Brooks-Corey equation. The modified Mar-
shall’s equation used by Rawls et al. (1993) is of the

1983; Green et al., 1982.). For all Ks data used in the presentform:
study, the soil cores were 60 to 85 mm in diameter and 60 to
75 mm in length. Constant-head methods were used to mea-Ks 5 4.41 3 107 1f

x

l 2 2 R2 [3]
sure Ks and hanging water column and pressure plate proce-
dures to measure water retention curves. The differences in

Here l is a parameter related to the fractal dimension, water retention at saturation and at 233 kPa matric potential
f is total porosity, x is an exponent, and R (cm) is the were used to obtain the effective porosity, fe. For some soils,
largest continuous pore radius for the Seirpinsky carpet. where water retention at saturation was not initially measured,
R is calculated from the capillary rise equation us was calculated using measured soil bulk density and particle

density data. The value of us was calculated as 0.90 times total
porosity. There were 571 sets of moisture retention data withR 5

0.148
hb

[4]
associated values of Ks. The pressures for the moisture release
curves ranged from 0.2 to 1500 kPa. Only curves with at leastIn this equation hb is the absolute value of the air-entry five retention values were used. The data set was also averaged

potential (cm). The value l is estimated from the fractal by texture class as was the data of Rawls et al. (1993). The
dimension D texture classes and the number of samples in each class are

given in Table 2.l 5 1.86D5.34 [5]
The second data set is fully described in Rawls et al. (1982)

Here D is the fractal dimension of soil porosity and is and is denoted for convenience as the Rawls data (RA). These
data came from 1323 soils with about 5350 horizons and wereestimated as D 5 2 2 l, and l is the Brooks-Corey
compiled from data of nearly 400 soil scientists. We believepore-size distribution index. Rawls et al. (1993) used a
that the RA data set is independent of the SR data set, al-value of 4/3 for the exponent, x.
though there may be a small amount of overlap. These dataThe modified Kozeny-Carman equation (Ahuja et al.,
are reported as textural class means in Rawls et al. (1982) and1984; Rawls et al., 1998) and the modified Marshall Rawls et al. (1993).

equation (Rawls et al., 1993) represent related ap-
proaches to indirect calculation of Ks. There is still a

Moisture Release Curve Parameterspotential to improve the universality of the K 2 fe
Parameters for the Brooks-Corey equation were used torelationship. The objective of our study was to develop

define the pore-size distribution index (l) and the air entrya combined method that uses information from the
potential (hb). These parameters were empirically derivedmoisture release curve to improve Ahuja’s modified
from moisture release data. The Brooks-Corey equation isKozeny-Carman equation (Eq. [1]).

Table 2. Soil textural classes in the Southern Region (SR) dataMATERIALS AND METHODS base.
The data set used by Ahuja et al. (1984, 1989) is denoted Texture n

here for convenience as the Southern Region (SR) data. These
Sand 111data were fully described in Ahuja et al. (1989). The names
Loamy sand 42

and taxonomic classifications of these soils are given in Table Sandy loam 96
1. The data consist of moisture retention values (water content, Loam 64

Silt loam 12u, and pressure head, h), bulk density, soil texture, and satu-
Sandy clay loam 60rated hydraulic conductivity measured on replicated (4–10), Clay loam 75

undisturbed soil cores taken from different soil horizons at Silty clay loam 22
several sites for each soil. These data are published in Southern Sandy clay 8

Silty clay 8Cooperative Series Bulletins or elsewhere (Bruce et al., 1983;
Clay 73Dane et al., 1983; Quisenberry et al., 1987; Nofziger et al.,
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THEORY
An examination of Eq. [1], [2], and [3] show that they all

have the form of a coefficient (or coefficients), which we will
refer to as “B”, multiplied by a measure of porosity (fe or f)
that is raised to a power (n, 3 2 l, or x ). The Kozeny-
Carman equation (Eq. [1]) can be parameterized by fitting
the coefficient, B, and the exponent, n to measured Ks 2
fe data. Equations [2] and [3] are more complex since the
coefficient and exponent are expressed as functions of addi-
tional variables, namely hb and l. The terms for hb and l
in Eq. [3], when taken together, can be considered to be a
coefficient, “B”. We can consider Eq. [1] in the form

Ks 5 B3(l, hb) fn
e [8]

In this study, we consider two approaches to determining B(l,
Fig. 1. Pore-size distribution index vs. Ks for the Southern Region hb). If we consider B as a function of l only, a possible candi-(SR) and Rawls (RA) data sets. Values are means for textural

date function for Ks isclasses.

Ks 5 A f (l) fn
e [9]

Here A is an empirical coefficient and f(l) is a function to be
u 2 ur

us 2 ur

5 1hb

h 2
l

[6]
derived later. Another possible candidate function for Ks

where B 5 B(l, hb) can be obtained by inspection of thewhere l is pore-size distribution index, hb is air entry potential
modified Marshall equation (Eq. [3]):(kPa), ur (cm3 cm23) is residual water content, and us is satu-

rated water content. l, ur, and hb were estimated using a combi-
nation of linear regression and a nonlinear optimization B(l, hb) 5 A1Rl 2

m

[10]
method (van Genuchten et al., 1981). A linearized form was
obtained by taking a logarithmic transform of both sides of

Here R and l are defined as in Eq. [4] and [5] and A and mEq. [6]:
are empirical coefficients.

In order to investigate relationships among l, hb, and B,
log1u 2 ur

us 2 ur
2 5 llog(hb) 2 llog(h) [7] the coefficient, B can be expressed as

and using the left-hand side of Eq. [7] as the dependent vari- B 5
Ks

fn
e

[11]able. A robust median fit linear regression algorithm (Press
et al., 1986) was used to obtain values of l and hb, given an

By expressing B in this manner we can investigate the possibleinitial estimate of ur. A median fit regression method was used
functional relationships among l, hb, and B for constant n.because the model is linear when ur is known. The nonlinear

optimization program then iterated across a range of values
of ur. New values of l and hb were fit for each new value of Statistical Calculations
ur. This process continued until the value of ur that gave the

Regressions were carried out using SAS software (SASsmallest sum of squared differences (measured 2 observed)
Institute, 1995). Except where noted and for model compari-with corresponding values of l and hb was found. Only h-u
sons, regressions were carried out on log (base 10)–trans-pairs where the absolute value of h was greater than 0.02 kPa
formed input data. Comparisons of the models were ac-were used. The root mean square error (RMSE) from the
complished by comparing residuals from a regression of thenonlinear optimization was ,0.005 cm3 cm23 for 90% of the

samples. predicted Ks on measured Ks values from the SA data set.

Fig. 2. Predicted and measured Ks for the Southern Region data set determined using (a) effective porosity (fe) only as a predictor and (b)
effective porosity (fe) and the pore size distribution index (l).
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Table 3. Root mean square error (RMSE) as a function of soil
texture for the four Ks models using the Southern Region
(SR) data.

Calculated Rawls et al.,
K(fe) K(fei, l) ‘B’ (1998)

Texture Eq [1] Eq. [13] Eq. [15] Eq. [2]

log (m s21)
Sand 0.43 0.29 0.34 0.34
Loamy sand 0.44 0.42 0.37 0.51
Sandy loam 0.55 0.58 0.54 0.63
Loam 0.52 0.49 0.48 0.59
Silt loam 0.54 0.48 0.27 0.68
Sandy clay loam 0.72 0.68 0.79 0.70
Clay loam 0.65 0.63 0.67 0.65
Silty clay loam 0.45 0.43 0.56 0.49
Sandy clay 0.74 0.70 0.81 0.75
Silty clay 0.53 0.46 0.56 0.55
Clay 0.66 0.85 0.84 0.86

Transformed and untransformed values of Ks were used in
these regressions. Comparisons of regression slopes were car-
ried out by using a method given by Snedecor and Cochran
(1980, p. 387).

RESULTS AND DISCUSSION
The Coefficient B as a Function of l Alone

Figure 1 shows mean Ks as a function of l for the
RA and SR mean texture class data, where Ks is shown
in logarithmic (base 10) scale. The relationships are
similar for the two data sets except for small values of Fig. 3. The intercept of the Kozeny-Carman equation (B ) as a func-
Ks and l. Using all the data in the SR data set we fitted tion of (a) l, and (b) hb. The value of B is calculated as Ks (fe

2.5).
The data are means for textural classes.the function

Ks 5 C1 10C2l [12]
B (Eq. [11]) on l and hb is shown in Fig. 3a and 3b for

Here C1 5 6.94 3 1027 m s21, C2 5 1.89, and the r 2 5 0.47. the RA and the SR data sets. We chose a value of 2.5
Equation [12] suggests that the form of f(l) given in for the exponent n of fe on the basis of previous work

Eq. [9] is f(l)510C2l. Using all the data in the SR data by Ahuja et al. (1989). The exact value for an exponent
is not critical, we only need a reasonable, fixed value.set we fitted the following expression using regression
The relationships for B vs. l and B vs. hb are similaron log-transformed values of fe and Ks

for both data sets, although there is more scatter in theKs 5 C3 10C4l fn
e [13] SR data. In both cases, the relationship is approximately

linear for l and highly nonlinear for hb.Here C3 5 2.59 3 1024 m s21, C4 5 0.60, and n 5 2.54,
Figures 3a and 3b suggest that the air entry potentialRMSE of the log(Ks) 5 0.57, and r 2 5 0.73. All the

coefficients were significant (P , 0.001). Figure 2 shows
the predicted and measured values for the original and
modified relationships. Eq. [13] is similar to Eq. [1]
where the coefficient B in Eq. [1] is replaced by
C310C4l. The RMSEs are given in Table 3 as a function
of textural class. The largest change in RMSE is in the
sand texture class, where the RMSE for estimates by
the new Eq. [13] are less than the RMSEs for estimates
by the original Eq. [1]. An inspection of the predicted
and measured values in Fig. 2 shows that the predicted
Ks values are closer to the 1:1 line for Eq. [13] (with l)
for the largest values of Ks.

The Coefficient B as a Function of l and hb

Earlier work (Ahuja et al., 1984, 1989) established
that the slope n in Eq. [1] could be assigned a constant
value for different soils but suggested that the intercept, Fig. 4. Relationship between the intercept B and R/l for Southern
B, could vary. We have proposed functional dependen- Region (SR) and Rawls (RA) data sets. The value of B is calculated

as Ks (f2.5
e ). The data are means for textural classes.cies for B on l and hb in Eq. [10]. The dependency of
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Fig. 5. Calculated and measured values of Ks, where the intercept
(B ) for Eq. [1] has been calculated using values of l and hb, and
the relationship between B and R/l for the Rawls data set given
in Fig. 4.

Fig. 6. Relationship between measured Ks and values predicted using
is a better predictor of low values of B (Eq. [11]) and Eq. [2] when fit to the Southern Region (SR) data set.
l is a better predictor of high values. This is consistent
with the results shown in the previous section of this Corey parameters and fe values from the SR data set
paper. The air entry potential provides a measure of are plotted against measured Ks values in Fig. 5. The
the largest continuous pore that becomes increasingly relationship fits the data well with an r 2 5 0.75 for the
important as texture becomes less coarse. The pore size log-transformed data that is similar to the r 2 for the
distribution index (l) is a measure of the slope of the original and modified Ahuja’s relationships (Tables 3
moisture release curve and as such is an indirect measure and 4), although the RMSE is slightly higher than for
of the tortuosity of soil. Larger values of l are associated the original method. The parameters for this relation-
with coarse-textured soils that have lower tortuosity and ship were fit from the RA data and are completely
higher permeability and drainability. independent of the SR data. The results could be im-

With reference to the Rawls et al. (1993) modified proved using parameters fit to the SR data set. However,
Marshall equation (Eq. [3]) we used a combination of the differences will not be large since the slopes of the
l and hb as predictors for B in the form of f(R/l) (Eq. relationships for the two data sets shown in Fig. 4 are
[10]) where R and l are given by Eq. [4] and [5] respec- similar. The applicability of Eq. [15] to the SR data set
tively. We found that (R/l)0.5 gave the best results with where the coefficients were derived from the RA data
textural class mean data. Figure 4 shows the relationship set does demonstrate the generality of this relationship.
between (R/l)0.5 and the coefficient B from Eq. [11] for It is also encouraging to note that the error is not that
the RA and mean SR data sets. We fit a linear function much larger than the error in estimates from the other
for B(hb,l) that had an intercept of zero (Fig. 4). The models fit to the SR data set.
slopes for the two relationships were not significantly Rawls et al. (1998) have developed another form of
different (F 5 0.34). The relationship for the RA data the modified Kozeny-Carman equation that uses a func-
set is: tion of the pore-size distribution index for the exponent,

n (Eq. [2]). This equation fitted the SR data well an r 2

B(hb,l) 5 0.01311Rl 2
0.5

[14] of 0.73 and an RMSE of 3.40 3 1025 m s21 for the
untransformed values (Table 4, Fig. 6). Only the inter-

Substituting Eq. [14] into Eq. [1] and using n 5 2.5 we cept in Eq. [2] has been fit to the SR data.
have: Tables 3 and 4 show statistics for a comparison of the

four models. The four models were fit with different
Ks 5 0.01311Rl 2

0.5

f2.5
e [15] methods (regression with log-transformed values, re-

gression with untransformed values, and directly calcu-
lated,). Therefore, we show statistics of regression ofPredicted Ks (m s21) values from Eq. [15] using Brooks-

Table 4. Comparison of measured Ks vs. values predicted by the four models for the Southern Region (SR) data.

No transform Log transform

Model Eq. RMSE r 2 Intercept‡ Slope RMSE† r 2 Intercept§ Slope

105 m s21 105 m s21 Log (m s21) Log (m s21)
K(fe) 1 5.34 0.66 6.80 0.25 0.60 0.70 21.62 0.70
K(fei l) 13 3.61 0.77 4.26 0.56 0.57 0.73 21.48 0.73
Calculated ‘B’ 15 8.75 0.72 29.05 1.74 0.59 0.75 20.83 0.87
Rawls et al. (1998) 2 3.40 0.73 9.84 0.72 0.61 0.72 21.05 0.77

† In log 10-transformed units.
‡ Intercept and slope for Ks (predicted) 5 a 1 b Ks (measured).
§ Intercept and slope for log Ks (predicted) 5 a 1 b log Ks (measured).
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In spite of these improvements, there is still consider-
able prediction error in Ks. Soil retention data do not
contain enough information on the continuity of pores
and soil structure, two important determinants of satu-
rated conductivity. Further research into the use of
methods that can characterize these factors may im-
prove our predictive capabilities.

There is also the question of the use of these methods
to estimate saturated conductivities for use at the field
scale. Ahuja et al. (1993) have shown that a harmonic
mean Ks of layered soil can be estimated from a 2-d
drainage of surface soil. This may extend the usefulness
of the methods developed in our study. Ahuja has ob-
served (Ahuja, 1993, unpublished data) that final infil-
tration rates taken in 25-cm-diameter infiltration rings
are related to average effective porosity, fe, of theFig. 7. Probability plot of measured Ks and values estimated by the

four models. Ks values are from the full Southern Region (SR) 1-m profile, as well as soil water content of the profile
data set. measured 2 to 3 d after the soil was fully wetted. These

relationships are similar to Ahuja et al.’s (1989) Ks(fe)log(10)-measured vs. log(10)-predicted values as well as
relationships. Soil water content measured 2 to 3 d aftera similar regression for untransformed values in Table 4.
rainfall is probably a better estimator of drainable po-Looking at the comparisons with untransformed values,
rosity than 33 kPa water content. It is likely that thisthe two models that give the lowest error and highest
property can be easily scaled up to larger areas. Re-r 2 are Eq. [13] and [2], the two that use l as well as fe
search into this area would be a promising extension toas predictors. The slope of the measured vs. predicted
this work.is closest to one for Ks values calculated from Eq. [2].

Where log (base 10)–transformed Ks values were used,
Eq. [13] and [15] gave the lowest RMSE. The intercepts SUMMARY AND CONCLUSIONS
and slopes for the measured vs. predicted regressions

The modified Kozeny-Carman equation was used toare also given in Table 4. The closer the intercept is to
calculate saturated conductivity (Ks) from effective po-zero, the less bias there is, and the closer the slope is
rosity (fe). We were able to obtain better predictionsto one, the better the predictions throughout the range
of Ks when the pore size distribution index (l) from theof data. In untransformed units, Eq. [2] gave the lowest
Brooks-Corey equation was used along with fe. Thebias and the best correspondence between measured
coefficient of determination (r 2) for log(Ks) increasedand predicted values, Eq. [13] and [15] gave similar
from 0.70 to 0.73 and the RMSE of log(Ks) decreasedresults.
from 0.60 to 0.57. The use of l improved the fit forThe results given in Tables 3 and 4 suggest that a
larger values of Ks (.2.5 3 1025 m s21).particular equation may be more applicable to a specific

We determined a functional relationship for the inter-range of data. Regression with log-transformed vari-
cept B (Ksf22.5) in the modified Kozeny-Carman equa-ables acts like a weighted regression, where small values
tion (with an exponent of 2.5) as a function of hb andof Ks are given higher weights than would be given if the
l from the Brooks-Corey equation. The equation for Bfitting method evaluated deviations of untransformed
vs. f(l, hb) was linear with an intercept of 0 when fit tovalues. As a result, Eq. [1] and [13] may be more appro-
a data set of textural mean values that was availablepriate for estimating small values of Ks in finer-textured
in the literature. Independent predictions of Ks usingsoils for example, and Eq. [2] for larger values of Ks in
parameters from a data set different from the one forcoarser-textured soils.
which the B vs. f(l, hb) relationship was fit had an r 2 ofThe probability plots in Fig. 7 indicate how well each
0.75 and RMSE 5 0.59 for log(Ks).model describes the original distribution of data. The

Overall, the use of Brooks-Corey parameters fromdistribution of the predicted values of the four models
moisture retention data improved estimates of Ks, com-are not greatly different in the mid ranges of the data.
pared with using effective porosity (fe) alone. However,Equations [2] and [13] both come closest to the distribu-
in spite of the improvement, there is still substantialtion at high values of Ks. The distribution of Ks predicted
prediction error. There was not a large difference inusing a calculated value of B (Eq. [15]) is quite close
prediction error among the four models. The best formto the SR data distribution for lower values of Ks. This
of the equation was when the Brooks-Corey pore-distri-is encouraging considering this equation was parameter-
bution factor, l, was included in the term for the coeffi-ized with an independent data set. Of the four models,
cient of the modified Kozeny-Carman equation. Thethe distribution of Ks predicted by Eq. [13] appears
next best form was when l was included in the exponentclosest to the distribution of measured Ks values. How-
for fe. The use of the air entry potential (hb) did notever, these differences are not large but are important
measurably improve the estimates of Ks. The RMSEsto consider when an estimation is used to generate a
for the two best models were not greatly different. Thedistribution of Ks values across a field as a function of

spatial variability. two best models appeared to retain the distribution of
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