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Abstract Crop responses to management practices and the environment, as quantified by

leaf area index (LAI), provide decision-making criteria for the delineation of crop man-

agement zones. The objective of this work was to investigate whether spatial correlations

inferred from remotely sensed imagery can be used to interpolate and map LAI using a

relatively small number of ground-based LAI measurements. Airborne imagery was

recorded with the Airborne Imaging Spectrometer for Applications (AISA) radiometer

over a 3.2 ha corn field. Spectral vegetation indexes (SVI) were derived from the image

and aggregated to cells of 2 9 2 m2, 4 9 4 m2, and 8 9 8 m2 resolution. The residual

maximum likelihood method was used to estimate the LAI variogram parameters.

A generalized least squares regression was used to relate ground truth LAI data and

collocated image pixels. This regression result was then used to convert variograms from

the imagery to LAI units as well as to interpolate and map LAI. The decrease in resolution

by merging pixels led to an increase in the value of the r2 and to a decrease in root mean-

squared error (RMSE) values. The accuracy of kriged estimates from the variogram of the

measured LAI and that from the image derived variograms was estimated by cross-vali-

dation. There was no difference in the accuracy of the estimates using either variograms

from measured LAI values or from those of converted SVIs. Maps of LAI from ground-

based measurements made by kriging the data with image-derived variogram parameters

were similar to those obtained by with kriging with the variogram of measured LAI.

Similar coarse spatial trends of high, medium and low LAI were evident for both maps.
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Variogram parameters from ground-based measurements of LAI compared favorably with

those derived from remotely sensed imagery and could be used to provide reasonable

results for the interpolation of LAI measurements.

Keywords Leaf area index � Spectral vegetation index � Variogram �
Mapping � Cross-validation � Residual maximum likelihood method (REML)

Introduction

Maps that describe accurately the spatial distribution of important agronomic properties are

essential for a wide variety of applications, such as the delineation of management zones

for precision farming. Foliage density, expressed as leaf area index (LAI), is a useful

property for quantifying the spatial variation of factors that affect crop productivity. As a

standardized biophysical quantity, LAI can be compared from one location to another, and

within and between growing seasons.

The number of ground measurements required to map LAI accurately by traditional

ground-based sampling approaches can be prohibitively expensive. Kerry and Oliver

(2003) discussed a similar situation with respect to soil mapping for precision agriculture

and noted that the precision agriculture literature has long suggested using ancillary

information that is more intensive and cheaper to obtain (Blackmer et al. 1995; Mulla

1997; Leon et al. 2003).

High spatial resolution digital imagery capable of recording within-field agronomic

variation is becoming more available commercially, and is thus becoming an attractive

alternative for mapping LAI. Techniques for mapping LAI from remotely sensed data

include: (1) calibration of imagery with field measurements, (2) radiative transfer model

inversion and (3) hybrid methods that combine radiative transfer modeling with limited

calibrated field measurements (Walthall et al. 2004b; Fang et al. 2003).

The most common approach to mapping LAI uses an ordinary least squares (OLS)

regression equation between ground-based destructive or non-destructive LAI calibration

measurements and a remotely sensed spectral vegetation index (SVI), such as the Nor-

malized Difference Vegetation Index (NDVI). These data are used to transform an SVI

image into a quantified LAI image map (e.g., Johnson et al. 2001). The OLS ‘SVI vs. LAI’

regression is essentially a point-based relationship and applying it to each image pixel does

not ensure that an accurate map of LAI distribution will result. To overcome this limita-

tion, ancillary data and spatial data of interest should be spatially correlated if the former is

to be used to improve the resulting map of the latter. Similar problems have been reported

previously in the agronomic literature. For example, OLS regression showed that soil

hydraulic properties were reasonably well related to common soil properties, yet the spatial

structures of estimated and measured hydraulic parameters appeared to be quite different

(Sinowski et al. 1997; Romano 2004).

Kerry and Oliver (2003) have shown that variograms of ancillary data can be used to aid

sampling for soil surveys when the ranges of spatial dependence of both soil properties and

remote sensing data are of similar orders of magnitude and when maps show similar

patterns of spatial variation in the ancillary and soil data. The objective of this study was to

investigate whether spatial correlations inferred from remotely sensed imagery can be used

with a relatively small number of ground-based LAI samples to produce reasonably

accurate maps of LAI.
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Materials and methods

The study site is a 22 ha corn field at the USDA, Beltsville Agricultural Research Center in

Beltsville, Maryland (39� 010 0000 N, 76� 520 0000 W; Fig. 1). A digital elevation map

(DEM) developed using kinematic global positioning system (GPS) data acquired on a 5-m

grid showed that 74% of the site has a slope\2% and only 2% of the site has a slope[3%.

The soil has a sandy texture with buried clay lenses. The representative soil taxonomy is

the coarse-loamy, siliceous, mesic, Typic (or Aquic) Hapludult.

Corn (Zea mays L. ‘Pioneer 33Y18’) was planted on May 29, 1999 using the best

management practices for rain-fed corn in Maryland which included 30 kg N ha-1 applied

at planting and 130 kg N ha-1 applied as a side dressing on July 1st. The spacing of the

rows was 0.76 m. Weeds were controlled with pre-emergence herbicides. The ground-

based LAI measurements were acquired within 48 hours of the airborne data collection

using non-destructive optical methods with an LAI-2000 Plant Canopy Analyzer (PCA;

Licor, Inc., Lincoln, NE). The sample sites were selected randomly from a reference grid

established using differential GPS (DGPS) and marked with annotated flags after planting.

At each site, two series of ‘one above canopy’ and ‘four below canopy’ readings were

acquired at evenly spaced intervals along diagonal transects between adjacent rows either

early in the morning or late afternoon when the sun was near the horizon or obscured by

clouds. Heights of five plants were measured on 21 July 1999 near each flag, Mean plant

height ranged from 1.6 to 2.4 m. The sample area radius of the PCA is reported to be about

three times the height of the canopy (LiCor 1992), therefore, the sample support was about

6 m for the data used here. The LAI data were checked manually for outliers and their

values were consistent with those in corresponding locations measured in previous years.

The ground-based LAI data were kriged by ordinary kriging to the same resolution as the

image data to enable comparison with the image-derived LAI results. The variogram

model parameters of LAI were used with the data to obtain the weights that are an essential

component of the optimal estimation procedure.

Fig. 1 False color image of the study site at the Beltsville Agricultural Research Center, Beltsville, MD
taken with the AISA airborne scanner. The field is sub-watershed B of the Optimizing Production inputs for
Economic and Environmental Enhancement (OPE3) study site and covers approximately 3.4 ha. The white
dots denote locations of the ground-based non-destructive LAI measurements. The effects of soil
compaction on crop production from an abandoned road that ran N–S through the site are visible as the
lighter-toned vertical feature just to the left of image center
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Non-destructive, optically-based LAI procedures use relationships between foliage

density and canopy light transmittance and do not differentiate between brown and green

LAI, or between leaves and non-leaf canopy constituents such as petioles and stems

(Welles and Norman 1991). The algorithms used in the above procedures also assume

azimuthally randomly oriented foliage that are free from clumping effects which have been

shown to contribute potentially significant error terms (Lacaze et al. 2002; Lacaze and

Roujean 2001). Canopy reflectance pixels contain a mix of reflectance contributions from

canopy and non-canopy elements including underlying soil and crop residue materials

(Norman et al. 1985). Thus, both types of data contain errors that might limit the corre-

lation of any SVI derived from canopy reflectance with foliage density derived from

canopy transmittance data.

Airborne imagery was recorded with the Airborne Imaging Spectrometer for Applica-

tions (AISA) on July 16th, 1999 (Braam et al. 1993) from approximately 330 m above

ground level (AGL) under clear skies. This provided a ground instantaneous field of view

(IFOV) of 1 m. Raw pixel values for the 10 nm wide spectral bands centered at 672 and

808 nm were calibrated to absolute at-sensor radiance using coefficients derived from

laboratory based measurements. Upward-looking sensor values were taken simultaneously

with downward-looking measurements via a diffuser attached to a fiber optics cable

mounted through the top of the aircraft cabin. Apparent reflectance factors were calculated

by dividing the downward-looking pixel values by the upward-looking sensor readings.

Apparent reflectance was used to calculate NDVI for each pixel

NDVI = [(NIR� Red)/(NIR + Red)]:

where NIR is near infrared.

First-order geometric corrections based on GPS and inertial navigation unit data were

done on the imagery after its acquisition. Minor georegistration errors were corrected by

‘rubbersheeting’ of the imagery to very accurate ground control points. The remotely

sensed data were aggregated from the original 1 9 1 m2 pixels to 2 9 2 m2, 4 9 4 m2 and

8 9 8 m2 pixels by averaging.

The LAI maps for 2, 4 and 8-m pixel sizes produced by linear regression of the SVI

values on the collocated ground-based LAI data were examined to determine whether OLS

or Generalized Least Squares (GLS) ‘SVI versus LAI’ regression was the more appro-

priate. The OLS regression assumes that the errors are random and independent and it does

not take account of spatially correlated regression errors even though they are likely when

biophysical parameters are sampled at close distances. Spatially correlated regression

errors are known to result in biased regression coefficients and predictions (Pinheiro and

Bates 2000). The use of GLS offers an attractive alternative to OLS because it accounts for

spatially correlated regression errors. (Spatially correlated errors were present in a

1 9 1 m2 pixel data set used by Walthall et al. (2001)). The SPLUS software package

(Mathsoft 1999) was used to compute the GLS regressions. The GLS regression equations

were then used to convert the SVI values to LAI values.

All geostatistical computations were done using the package geoR in the R software

system (Ribeira and Diggle 2001). We used the residual maximum likelihood method

(REML) as coded in the geoR subroutine ‘likfit’ to estimate the variogram and model

parameters from the original and converted SVI data of LAI. There are few ground LAI

data compared with the SVI data and Kerry and Oliver (2005) showed that estimation of

the variogram by REML is efficient for relatively small sets of data. This method also

provides unbiased estimates of variances and covariances because it uses the error
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contrasts which are free from any fixed effects in the model. The variogram parameters of

the converted SVI data were used to interpolate the ground truth data by kriging. The

accuracy of such estimates was evaluated by cross-validation and compared with the

accuracy of those based on the variogram of the ground LAI data.

Results

Figure 2a shows the variogram estimated by REML. An exponential function satisfied the

criterion of minimizing the negative log-likelihood function. The nugget value approached

zero in all 10 of the implementations of the program with different initial nugget, sill and

range estimates. The best model based on the above criterion had the distance parameter of

17.47 m (an approximate range of 52.4 m) and a sill of 0.235 (Table 1).
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Fig. 2 Leaf area index (LAI) from the ground measurements: (a) variogram of LAI estimated by REML
and fitted by an exponential function, and (b) map of LAI produced by ordinary kriging of the ground
measurements with the REML variogram
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Figure 2b shows the map of ordinary kriged estimates of LAI made from the ground

measurements and the variogram parameters given in Table 1. The range of LAI values is

from 1.2 to 2.6 with isolated areas of small and large values. The largest LAI values occur

in the eastern part of the field and small and moderate values dominate the western part. A

trough of mid-range LAI values extends from W to E through the middle of the larger LAI

values.

Figure 3 shows the REML variograms of SVI computed from the image data for the

range of pixel sizes (2, 4 and 8-m). As above the exponential function provided the best fit

with zero nugget variance. The sill variances decrease as the pixel sizes increase as one

would expect as an increase in the sample support generally reduces the variance. A

doubling of the pixel size resulted in a decrease of about 7% of the sill value of the 1-m

pixel data (Table 1). The model parameters are given in Table 1. The distance parameters

of the models for all pixel sizes are about 17.0 m and close to that of the ground LAI

variogram.

Table 1 Parameters of the exponential variogramsa and the root-mean-squared error (RMSE) of the
interpolation of LAI by kriging

Data Distance parameter (approximate variogram rangec), m Sill variance RMSEb

Measured LAI 17.5 (52.5) 0.254 0.430

SVI, 2 9 2 m2 16.9 (50.7) 0.00462 0.430

SVI, 4 9 4 m2 17.0 (51.0) 0.00432 0.430

SVI, 8 9 8 m2 17.0 (51.0) 0.00401 0.427

a Nugget variance is zero for all variograms
b From cross-validation
c The approximate variogram range (in parentheses) is equal to three times the distance parameter for the
exponential variogram
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Fig. 3 Variograms of the SVI imagery estimated by REML for pixel sizes of 2-m (______), 4-m (…….),
and 8-m (_ _ _ _)
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Figure 4 shows the relationships between collocated LAI and SVI values. The linear

regression equations were:

LAI = 4.751� SVI� 1.323; r2 = 0.495; RMSE = 0.340 ð1Þ

for the 2-m pixel size,

LAI = 5.536� SVI� 1.911; r2 = 0.557; RMSE = 0.322 ð2Þ

for the 4-m pixel size and

LAI = 6.688� SVI� 2.766; r2 = 0.657; RMSE = 0.286 ð3Þ

for the 8-m pixel size. Here r2 is the coefficient of determination of the regression and

RMSE is the root mean-squared error. One datum was removed from the 2-m data because

it was judged to be an outlier. (The value of r2 was 0.331 before this outlier was removed).

The increase in the pixel size led to an increase in the r2 values and to a moderate decrease

in RMSE values. The accuracy of the SVI vs. LAI regression increased slightly as the pixel

size increased (Fig. 4).

The accuracy of kriged estimates for the ground-based LAI was assessed by cross-

validation using the REML variogram of those data (Fig. 2a, Table 1). The mean error was

–0.006 and the mean RMSE was 0.430. Cross-validation was also used to evaluate the

accuracy of using the image-derived variograms for spatial interpolation of important crop

parameters, in this case LAI. The SVI values were converted to the LAI values by

regression Eqs. 1–3 at all the measurement sites. Variograms of LAI derived from SVI

were estimated by REML and are shown in Fig. 5. The sills of these variograms appear to

depend on the pixel size, but they increase as the pixel size increases: 0.105 (2-m pixel),

0.134 (4-m pixel) and 0.181 (8-m pixel) (Fig. 5). This happens because of the substantial

increase in the slopes of regressions (1)-(3) with the increase in pixel size. Sill values of the

derived LAI variograms are less than that of the ground-measured LAI values (Table 1).

Distance parameters of the derived LAI variograms are similar for the range of pixel sizes

(Table 1).

Fig. 4 Relationships between SVI estimated for different pixel sizes and measured LAI; �, 5, and h for
pixel sizes of 2, 4, and 8-m, respectively
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Differences in the sill values of derived LAI variograms for different pixel sizes when

used to estimate LAI by kriging at each measurement point appear to have had little or no

effect on the accuracy of the estimates. Table 1 gives the RMSEs for these variograms and

data. Probability distributions of LAI estimation errors obtained by cross-validation are

similar for all variograms, i.e. the variogram of LAI and variograms obtained by converting

SVI to LAI for all pixel sizes (Fig. 6).

Discussion

Although the number of collocated values between the SVI pixels and ground-based LAIs

was small, the SVI variograms could be used to estimate LAI. Kerry and Oliver (2003)

Fig. 5 Variograms of LAI derived from SVI estimated by REML for pixel sizes as listed in the legend and
fitted by exponential functions

Fig. 6 Probability distributions of LAI interpolation errors obtained from cross-validation with different
variograms. Sources of data for the variograms are shown in the legend
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observed a similar effect when they used dense soil ECa data and aerial photograph

information as ancillary data to design an effective soil sampling scheme using geosta-

tistics. It is possible that some aspects of the variation of both SVI and LAI have a similar

spatial structure which results in their variograms being similar. Kerry and Oliver (2003)

suggest that if densely-measured ancillary variables are available, it is sometimes possible

to improve the accuracy of geostatistical estimation.

The RMSEs of regressing SVI versus LAI showed an increase in accuracy as the pixel

size increased. The effect of pixel size on the strength of the relation between measured

vegetation properties and remotely sensed imagery was also observed for grasslands by He

et al. (2006). On the other hand, Colombo et al. (2003) found no change in accuracy for

pixel resolutions of 12, 24 and 36 m. The spatial resolution of the image is expected to

have an impact on the quality of the biophysical properties retrieved from remotely sensed

imagery (Walthall et al. 2001; Hu and Islam 1997). A basic assumption of radiative

transfer theory that underpins the retrieval of properties from most remote sensing pro-

cedures is that individual canopy and background elements that comprise a pixel are

infinitely small compared to the dimension of the pixel itself (Walthall et al. 2004a; Goel

1988). One can usually assume that a crop image pixel comprises sunlit and shaded foliage

as well as sunlit and shaded soil or plant residue. Therefore, it is possible that very high

spatial resolution pixels are more likely to violate this basic assumption. Pixel values that

are primarily related to the soil component will add significant bias and noise to the desired

vegetation signal.

The pixel size did not affect the distance parameter (and the approximate range) of the

image variograms in this study (Table 1). Although an increase in the variogram range

with increasing pixel size or sample support is expected (Dungan 2001), relatively small

changes in the support did not increase the range in other geostatistical studies (Dungan

2001; Fassnacht and Deems 2005; Skoien and Blöschl 2006).

The SVI image data did not capture all of the spatial variation in the factors affecting

LAI in the field in this study, because the ground measured LAI had a larger variogram sill

compared with the sills of derived LAI variograms. Moreover, a smoothing effect can be

expected if the derived variograms are used to interpolate LAI from the ‘ground truth’ data.

Based on these observations, a correction of the sill values from the imagery based on the

variance of the LAI values across the field might be of value.

The use of image-derived variograms to krige ground-based measurements provided

RMSEs that were commensurate with the kriged ‘ground truth’ LAI estimates. The sig-

nificance of the LAI estimation errors of about 0.4 for LAI values ranging from 0 to 3

depends on the specific application. This degree of error might be acceptable if the goal is

to delineate within-field areas with a consistent response to soil or other environmental

factors. For applications, such as the input of LAI values to models to calculate the energy

balance components or crop yield, etc., this level of error might not be tolerable.

Given the continuous spatial cover in remotely sensed imagery, it is possible that the

image-derived spatial patterns might be more representative of the variation in LAI than

the measured values. This raises the recurring question of how many ground samples are

needed to provide an adequate representation of the spatial variation in LAI, to calibrate it,

and to provide robust validation of alternative methods for mapping LAI. Progress in this

area hinges on developing metrics for the quantitative comparison of spatial patterns. Such

developments would be welcomed given precision farming’s reliance at present on man-

agement strategies that use zones within fields for the analysis of soil and crop variability

as well as the guidance of agricultural machinery for variable-rate applications.
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Conclusion

The use of variograms derived from remotely sensed imagery to represent LAI provided

reasonable results when used to interpolate measured LAI values in this study. Kriged

maps of ground-based LAI measurements made using model parameters of image derived

variograms were comparable to those obtained by kriging with variograms computed from

the measured LAI values. Similar spatial patterns of high, medium and low LAI for both

sets of maps were evident. The capability of image-derived variograms to approximate that

based on measured LAI is limited by the strength of the correlation between LAI and SVI.

An examination of the point accuracy of LAI maps as measured by the RMSE from cross-

validation confirmed that the results improved with decreasing spatial resolution for pixel

dimensions up to 8 m by 8 m in this study. The results described in this paper, albeit

limited to the single site and the single ancillary variable, show that the use of remotely

sensed imagery to estimate spatial patterns of plant leaf area index is a promising avenue

for further research.
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