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A feedback control method for regulating crop growth in advanced life support systems is presented. Two models for 
crop growth are considered, one developed by the agricultural industry and used by the Ames Research Center, and a 
mechanistic model, termed the Energy Cascade model. Proportional and pointwise-optimal control laws are applied to 
both models using wheat as the crop and light intensity as the control input. The control is particularly sensitive to 
errors in measurement of crop dry mass. However, it is shown that the proposed approach is a potentially viable way of 
controlling crop growth as it compensates for model errors and problems associated with applying the desired control 
input due to environmental disturbances. 
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INTRODUCTION 

Future manned space exploration will require life sup-
port systems that are independent of the Earth for resup-
ply of food and resources. Integrated physical, chemical, 
and biological systems may provide mass closure for 
life support through recycling and recovery of system 
resources via waste processing, atmospheric purification, 
and food production for crew members from plant biomass 
production chambers. NASA (National Aeronautics and 
Space Administration) researchers are developing 
aspects of this system through the ALSS (Advanced Life 
Support Systems) project (13,16,18,22). 

Plant growth is expected to play an important role in 
ALSS. Growth of higher plants provides crew mem- 

bers with food, potable water via transpiration, atmo-
spheric gas exchange through photosynthesis, and a 
contribution to waste processing/resource recycling 
through hydroponic nutrient uptake. A mix of 8 to 14 
crops is required to satisfy crew nutrition demands (17). 
Crops in an ALSS environment will most likely be 
hydroponically growth in individualized growth cham-
bers with control over irradiance (photosynthetic photon 
flux or PPF), photoperiod, air temperature, relative 
humidity, atmospheric carbon dioxide and oxygen con-
centrations, and nutrient delivery system quality (3). 
The environmental setpoints for each of these inputs 
should be selected to produce the desired levels of plant 
growth that satisfy ALSS crop production scheduling 
(i.e., timing and yield of each crop). Production sched- 
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ules would initially be derived from crew nutrition de-
mands. Disturbances and system failures can influence 
plant production in a closed environment. These include 
poor crop seed germination, spread of plant pathogens 
and/or disease, and perturbations in environmental con-
ditions in the growth chamber (12). Environmental per-
turbations can be of either short (less than 1 day) or 
long-term duration, and may ensue from deliberate ac-
tions (to modify plant transpiration or photosynthetic 
rates to offset activities in other ALSS compartments, 
for example) or system failures (such as fluctuations in 
power availability or mechanical problems). In either 
case, crop growth, and hence production scheduling, 
may be adversely affected by environmental perturba-
tions. For example, a long-term reduction in the light 
intensity or atmospheric carbon dioxide concentration 
can lower photosynthetic rates and potentially decrease 
crop growth rates. Air temperature perturbations can 
affect growth and carbohydrate partitioning, and may 
delay or increase plant developmental rates depending 
on the duration, magnitude, and time during the crop 
life cycle at which the disturbance occurs (15,26). En-
vironmental disturbances can negatively affect reliability 
and persistence issues for an ALSS system (14). 

Control strategies able to compensate for the effects of 
environmental perturbations on plant growth would be 
useful for ALS. However, most growth chamber controllers 
work to maintain static setpoints. These setpoint values 
are typically derived from heuristic knowledge and 
empirical studies for each particular crop [for example, 
see (6,7,19)]. As a result, environmental control of 
growth chambers tends to concentrate on maintaining 
current setpoints at their predetermined levels; thus, en-
vironmental disturbances and their effects on the plant 
are not incorporated into the control. 

Optimization techniques have also been used to identify 
appropriate setpoint values. Modern greenhouse 
control integrates mathematical models of the green-
house environment with simple plant growth models to 
prescribe daily environmental conditions. The results are 
management tools and control systems that dynamically 
determine optimal setpoints to increase crop yield, 
quality, or decrease energy consumption [e.g., 
(1,2,8,9,23,24)]. Chun and Mitchell (10) developed a 
dynamic controller that varied PPF to control lettuce 
canopy net photosynthesis in a growth chamber based 
on real-time measurements of canopy gas exchange. In 
this case, the environmental input was dynamically varied 
so that the desired plant growth rate could be ob- 

tained. Such systems could be adapted for ALS use, 
where controllers could maintain both setpoints and adjust 
them when necessary based on measured or predicted 
properties of the crop. Measurement errors and 
uncertainties in the mathematical models would need to 
be considered in developing this control. 

In this article, we propose to use feedback control to 
compensate for the effects of environmental disturbances 
in crop growth chambers by adjusting PPF to maintain 
desired crop growth rates. We consider two generic crop 
growth models and we develop two model-based feed-
back controllers, using wheat as the crop. Small-order 
mathematical errors are considered. The controllers are 
evaluated with several scenarios simulating short-term 
environment perturbations and control system errors. 

CROP GROWTH MODELS 

In order to apply model-based control laws, we need 
to make use of crop growth models. In this article, we 
consider two such models. The first is a growth and 
assimilation model, developed by the agricultural in-
dustry and used by the NASA Ames Research Center 
for previous ALS studies (4). The second model is called 
the Energy Cascade model (27), which takes a more 
mechanistic approach to predicting crop growth and 
overcomes some of the shortcomings of the Ames 
model. Both models assume a linear relationship be-
tween light intensity and crop growth rate. 

Ames Model 

Originally developed by three agricultural companies 
(General Mills Inc., PhytoFarms of America, and CEA 
Technologies International, Inc.), this model has been 
utilized to study production systems for several crops 
including lettuce, spinach, wheat, and tomato. 
NASA's Ames Research Center has also applied the 
model towards design of environmental bioregenerative 
life support systems (4). 

Relative growth rate (time rate of change of plant dry 
mass per unit of current dry mass) is predicted as a function 
of photosynthetic photon flux (PPF), carbon dioxide 
concentration (CO,), air temperature (7), plant pro-
duction area, plant parameters (quantum use efficiency, 
canopy architecture), and initial plant dry mass as: 

a, - 1 - e 
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where 
G.:    relative growth rate (g g~' • time*1 • nr2) 
C:     canopy quantum use efficiency (g biomass mol"1 

intercepted photons) 
E:      nondimensional environmental response surface 

(for CO2 and T), between 0 and 1 
P:.     integrated incident PPF over simulation time in-

crement i (umol rrr2 • time"1) 
W.:    crop dry mass (g) 
a:     fraction of P. intercepted by plant canopy (be-

tween 0 and 1) plant spacing (m2) 
crop canopy constant (area of ground covered by 
plant canopy per plant dry mass, m2 g"') 
simulation time increment (day) 

The plant dry mass is determined as: 

To compute the daily crop growth rate, nighttime 
respiration needs to be taken into account. Thus, CGR 
is equal to the daily net photosynthetic rate (HPm), 
where H. is the photoperiod, minus plant respiration 
occurring during the dark [(24 - //.)/?.] as: 

p(ff,.Pw.- (24 -#,>,.) 

Dry mass is then calculated as: 

(5) 

with variables and units defined in Table 1. 
Unlike the Ames model, the energy cascade model 

also simulates the effect of senescence by incorporating 
time dependence with the value for quantum use 
efficiency as: 

  

The model can be iterated on daily or smaller time 
increments. Control of crop growth can be achieved 
via manipulation of photoperiod and light intensity, 
which contribute to the light integral for the given time 
step. The model is terminated at a user-specified plant 
maturity date. 

Energy Cascade Model 

The energy cascade model (27) predicts crop produc-
tivity during plant growth and development based on a 
three-step analysis involving: 1) light absorption L, where a 
fraction of photosynthetically active radiation available 
to the crop is absorbed by the canopy; 2) canopy 
quantum yield Q (mol carbon mol~' PPF), the conversion 
of absorbed light energy into carbon via photosynthesis; 
3) carbon use efficiency U (mol C mol"1 C), the fraction 
of the quantum yield that is incorporated into plant 
biomass. 

The model combines the above energy cascade pro-
cess to predict gross and net photosynthesis (P and 
Pn), daytime respiration (R), and crop growth rate 
(CGR) as follows: 

(3) 

  

f o r i > i q  

fori<ia 
Qi=Qa 

where 2max and <2min are th£ maximum and minimum 
quantum yield values for particular experiment (in mol 
carbon mol"1 PPF), im is the time to crop maturity (days), i 
is the time at which quantum yield begins to decline 
(days), and i is the simulation time increment (day). 

Canopy growth and development are indirectly simu-
lated with a linear increase in light absorption L until a 
constant maximum value of light absorption (LmK) is 
achieved according to 

for i< it fori>i, 
L, = L, 

where L^ is the maximum fraction of light absorbed 
at canopy closure (between 0 and 1) and i( is the time at 
which canopy is completely closed (in days). 

Model applications are restricted to the environmental 
ranges, plant cultivars, and planting densities from the 
data sets from which it was developed. Constant values 
are entered in the model for L , Q , Q . , U, i,, i, 

max'   ^max'  ^mm'       '    /'    9' 
and im. The model accepts light intensity as an input. 
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Description 
plant dry mass (g) 

canopy quantum use efficiency (g mol"1 intercepted 
photons) 
E nondimensional environmental response surface 

5,                      plant spacing (m2) 
G!                     relative growth rate (g g"1 • time"' • m"2) 
P.                     integrated PPF (umol m"2 • time"1) 
a:                     fraction of P. intercepted by plant canopy (0 to 1) 
k                      crop canopy constant (m2 ground g"' plant) 
Energy Cascade Model terms 
P gross photosynthesis (umol CO, nr2 • s"1) 
P net photosynthesis (umol CO, m"2 • s"') 
R daytime respiration (umol CO2 m"2 • S"1) 
CGR crop growth rate (g m~2-d"') 
Wi plant dry mass (g nr2) 
i time of maturity (days) 
i time of onset of senescence (days) 
3 conversion factor* 
H photoperiod (h) 
Z, fraction of light absorbed (0 to 1) 
U carbon use efficiency (mol C mol"1 C) 
Q maximum quantum yield (mol C mol PPF"') 
Q^ minumum quantum yield (mol C mol PPF"') 
i( time of canopy closure (days) 
Control terms 
x state (system) vector (=W.) 
xf desired values for state vector (=Wj,) 
u, control vector (=/",) 
y( output vector (=W.) 
y .̂ desired values for output vector (=Wd) 
JM performance index 
[A(] state matrix 
[BJ input matrix 
[C,] output matrix 
[K.] control gain matrix 
[HJ,[/y         error and control weighting matrices 
eM error vector 

*3 = 0.098 obtained by multiplying 10-6 mol CO2 umol"' C0:, 12 g C 
mol-' CO2, 2.27 g biomass g"1 C, and 3600 s h"' as in Volk et al. (27). 

CONTROLLER DEVELOPMENT 

In this section, we construct a model-based crop 
growth controller. The input to the controller is taken as 
the PPF and the output is plant dry mass. Consider a 
system described by the discrete time equations 

(8) 

the control vector of order m, corresponding to m control 
inputs, and y. is the output vector, denoting the 
measured states. The matrices..[A], [S.], and [C] de-
scribe the properties of the state, the relation of the con-
trols to the state, and the relation between measured 
values and the state variables, respectively (Table 1). 

The equations above can represent a discrete system 
or they can be descriptive of a discretized model. In the 
latter case, the time increment should be selected such 
that the accuracy of the actual model is not compro-
mised. 

Denoting the desired values of the output variables 
as yd. (i = 1, 2, . . .), we first consider proportional control. 
Here, one designs the control input as 

(9) 

where [K] is the control gain matrix and z.= [B]~l(x    - 
i ^                                                t        *•     tj     ^   tZH-i 

[A.];̂ .). The gain matrix is selected such that the closed 
loop system matrix ([A.] - [5.][£.][C.], i = 1, 2,. ..) 
describes a stable system; that is, its eigenvalues lie 
within the unit circle. The procedures we use to select 
the control gains will be described later. 

Another control approach is based on pointwise-
optimal control (25). The objective of pointwise-op-
timal control is to drive the system to a desired set of 
values and to do this by minimizing the difference 
between the measured variables and their desired 
quantities at each time step. Unlike conventional op-
timal control, which minimizes the difference between a 
desired state and an initial state over a period of 
time, pointwise-optimal control does this at each time 
step. The result is a simpler, but a less sophisticated, 
control law. 

We wish to minimize the difference between ydi and 
>•. at each time increment. To this end, given the mea-
surements at time step i, we predict the state at the next 
time increment ( i+ 1) using eq. (8) and we define a 
performance index as 

JM - CM [HU+I k+i + Mf [^21 K W) 

where eM is the error vector between the desired and 
actual values of the output, 

in which i denotes the time step, x. is the system vector 
of order n, describing the n states of the system, u. is 
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with [Hj] and [H2] as weighting matrices. The perfor-
mance index is a measure that weighs the error versus 
the control effort. Setting [//J to zero implies that one 
can use as much control effort as needed, without re-
gard to the amount used. To minimize the performance 
index, we take the derivative of JM with respect to u. 

dJM 
dU: 

where   ,     = -[C.+1][fi.]. Setting eq. (12) equal to zero 

and solving for u., we obtain 

are designing a feedback controller and the dry mass 
W. is measured at every time increment (1 day), each 
approximation is carried out for 1 day only. That is, 
the control is to be applied at the end of each day of 
simulation, not at the 1/5 day time increment. Hence, 
errors associated with this approximation do not in-
crease with time. 

In eq. (1), exponential of the plant dry mass divided 
by the plant spacing is computed to determine the frac-
tion of light intercepted by the plant canopy, a.. In this 
case, the linearization expansion cannot be performed 
accurately because the dry mass continually increases 
throughout the simulation. This turns out to not be a 
drawback when designing the control law. 

Combining eqs. (1), (2), and (14) gives the following 
expression for crop dry mass: 

  

in which [/y = [/g + [5,HC Jr[#li+1][Cw][B.]. Equa-tion 
(13) has x in it, which implies that if [C.+1] is not a square 
matrix (not as many measurements as there are states) 
an observer needs to be designed to estimate x. from y.. 
The same situation exists when proportional control is 
used. 

Both control laws can be applied to the two crop 
models. Both mathematical models are of order n = 1 
and there is one controller, m = 1 . For now, we assume 
that the state variable W, the dry mass, can be directly 
measured so that [C] is a scalar and it is equal to 1. To 
obtain [A.] and [£.], which are also scalars, we recog-
nize that both models must be in the state space form 
given by eq. (8). (Note that the notation [-] will now be 
dropped because the matrices are scalars for this appli-
cation.) 

Consider the Ames model [eq. (2)], where dry mass is 
an exponential function of relative growth rate, G.. 
The first-order Taylor series expansion of ec< is 

(14) 

which is an accurate approximation when G. is kept 
sufficiently small. This can be accomplished by re-
ducing the model's time step to a 0.2-day period. Values 
for G. simulated in the model do not exceed 0.7 per 
day. By utilizing a 0.2-day time period, the maximum 
simulated value is reduced to 0.14 and the resulting 
error due to linearization is 0.9%. Because we 

which now is in desired form, with x. = W., A.= 1, 
B. = CEa., C.= 1, and «. = />.. 

i It                                II 

CONTROLLER IMPLEMENTATION 

In this section, we implement two control laws de-
scribed above for the Ames and Energy Cascade models. 
We consider the following issues: a) The type of control law 
(proportional or pointwise-optimal); b) the crop model on 
which the control design is based; c) the crop model that 
is used to simulate crop dry mass; d) presence of 
measurement as well as control input errors. 

For example, one procedure is to simulate the plant 
state via the Energy Cascade model, while designing 
the control law based on the Ames model. The reasoning 
behind this approach is to see if a controller based on 
one model can effectively control a different model. As 
the models of crop growth considered here are sim-
plifications of complex phenomena, one needs to design 
a controller that has certain robustness features and one 
that will work with different models describing the same 
phenomena. Using more than one model to describe the 
same system is a common procedure for control system 
development (5) and is frequently done in the life 
sciences. 

Applied Control Law Expressions 

The weighting matrices in the pointwise-optimal control 
law become scalars Hlj+1 and Hy when applied to the 
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crop models considered here. Introducing all the coeffi-
cient terms used to derive the previous equation into eq. 
(15), the control input for the Ames model becomes 

= p. =• 

In general, the values for HIM and //,. are 
selected by trial and error. Appropriate values for these 
matrices are discussed later on in this section. For the 
special case of no restrictions on the control effort, we 
can set H2i to zero and selecting HIM = 1/CEA., we obtain 

W    —W 

V

Y

 

y

v 
(17) 

Note that the above equation can also be derived di-
rectly from eq. (11), by prescribing that the difference 
between WdM - WM be zero. 

Basing the control design on the Energy Cascade 
model, and without putting a restriction on the control 
effort in the control design, we obtain a pointwise-op-
timal control law in the form 

'     BQiLi(H:+24(U-24)) 

Finally, the proportional 
control law [eq. (9)] as applied to the Ames model is 

umol nr2 • s"1, a 296°K constant day/night temperature, 
photoperiod of 20 h, and a production area of 700 
plants nr2. These parameters were taken from Volk et al. 
(27) for the Energy Cascade and then fit to the Ames 
model (Table 2). Model simulations of wheat growth 
were similar until day 33, when productivity declined 
in the Energy Cascade model due to senescence (Fig. 
1). This result has important consequences when 
determining which model to use for simulation and for 
the control law. 

Four separate simulations were performed to deter-
mine which model to use for control and for simula-
tion. The simulations were 1) Ames-based controller 
with Energy Cascade model for dry mass prediction, 2) 
Ames-based controller with Ames model for dry mass 
prediction, 3) Energy Cascade based controller with 
Energy Cascade model, and 4) Energy Cascade based 
controller with Ames model. Each simulation used the 
same set of desired dry mass values, WdM (i - 1,2,..., 
66). Desired values were generated from a simulation 
with the Energy Cascade model under the baseline con-
ditions discussed above with a setpoint PPF of 1400 
umol nr2 • s~'. The controller's response was restricted to 
a PPF range between 50 and 2000 umol nr2 • s"1 PPF, 
where wheat response to changes in light intensity was 
assumed linear (21). Simulation results were judged on 
the controller's ability to achieve the desired plant mass 
values and feasibility of output PPF level; effects of 
environmental perturbations were not evaluated at this 
stage. 

All four combinations were able to maintain the de-
sired plant dry masses throughout the simulation. How-
ever, when the Ames model was used for simulation of 
crop growth, input PPF values were well below the 

CEa, 

A similar expression can be derived for the 
Energy Cascade model. 

Identification of Control and Simulation Model 

Simulations with the Energy Cascade and partially 
linearized Ames models were conducted prior to 
implementing feedback control. Baseline environmental 
conditions for simulation were set at a carbon dioxide 
concentration of 1200 ppm, a PPF level of 1400 

Table 2. Values for Energy Cascade and Ames Models 
Energy Cascade Model  
L^ (unitless) 0.93
Q^ (mol C mol PPF'1) 0.0625
Q™ (mol C mol PPF-1) 0.0125
U (mol C mol C'1) 0.68
i, (days) 12
', (days) 33
ia (days) 62
Ames Model
C (g mol photon"1) 1.12
k (m2 ground g-') 100
E (unitless) 0.85
W (g) 0.001
S, (m2) 14.3
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allocated to other components of the ALSS. These con-
siderations suggest that values for the control gain 
needed to be determined. 

Simulations were conducted to determine parameters 
for proportional control, K., and weighing terms H , Ev 
for pointwise-optimal control. The results were evaluated 
in terms of system response and required control effort. 
A normalized least squares criterion was introduced to 
quantify control effort and the cumulative deviation from 
desired set points over the entire simulation. The 
criterion evaluates the deviation in dry mass W as well as 
the control input PPF, and it has the form 

Figure 1. Comparison of Energy Cascade (EC) model versus par-
tially linearized Ames model (A-lin) for wheat dry mass over time. 

expected value of 1400, particularly at the start of se-
nescence. For example, when the control law applied to 
the Energy Cascade model was used [eq. (18)], PPF 
values following DAP 33 averaged 847 umol m"2 • s"1. 
This occurred because the Ames model does not simulate 
the decline in plant productivity following the onset of 
senescence. The Ames model overpredicted plant dry 
mass, and the controller supplied lower PPF values to 
compensate. 

Using either the Energy Cascade or Ames models 
for the control and the Energy Cascade model for the 
simulation produced similar results. For brevity, our 
subsequent analysis is based on using the Ames-based 
control law [eq. (17) or eq. (19)] with the Energy Cas-
cade model for simulations. 

Control Implementation 

Simulations using the Ames-based pointwise-optimal 
control law [eq. (17)] showed that the PPF oscillated 
wildly during different days of the simulation. This was 
because our control design did not weight the control 
effort (i.e., H2. was assigned a value of 0). This is 
undesirable for two reasons. First, the control action is 
not smooth, which usually leads to high sensitivity to 
changes in parameters and instabilities in the control 
action. Second, such a control action will put large fluc-
tuating demands on the power supply in the ALSS en-
vironment, which may result in a reduction in power 

represents either dry mass WOT light intensity 
PPF 
nominal setpoint at time increment i (e.g., 1400 
when Z = P. or Wd. when Z - W.) 
number of days in simulation (equals crop 
maturity date) 
maximum least squares value observed from 
all simulations 
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20 30                 40                 50 
days attar planting (20)LS=±±

LS7, 

where 
Z: 

Zs.: 62:

Zmax'

Smaller LSZ values imply less deviation from nominal 
or desired values. 

For proportional control, the control gain K. was se-
lected so that the eigenvalue of the closed loop system 
lay within the unit circle. This requires that values for 
K. be negative. For pointwise-optimal control, HtM was 
kept equal to \ICEa. as in eq. (17), but H2. was set as a 
percentage of Hli+l- Separate simulations were run with 
proportional and pointwise-optimal control laws to de-
termine appropriate constants for these parameters. 

For both proportional and pointwise-optimal control 
simulations, least square values for system response 
were similar regardless of trial values selected. How-
ever, the amount of control effort varied greatly depending 
on the control gain selected. Figure 2 shows LSZ results 
for PPF (LS?pf) for different proportional control gain 
values. It can be seen that a value of-0.6 (held constant 
throughout the simulation) minimized PPF 
fluctuations. For pointwise-optimal, H2. set to 350% of H 
minimized L S .



  

 

Figure 2. Effect of gain value for Ames-based 
proportional controller on control effort. 

Using the best values of the control gain parameters, the 
predicted plant growth and input PPF for pointwise-optimal 
control and proportional control were compared. Table 3 
summarizes the results for the normalized least square values 
in plant growth and PPF for a variety of disturbances and for 
the two control laws considered. Disturbances consisted of 
±40%, 20%, or 10% short-term changes to the input PPF. 
Short-term 

disturbances were implemented from days 11 to 20 for single 
disturbances and from days 11 to 15 and 31 to 35 for double 
disturbances. Figure 3a and b compares control input over 
time between the two controllers for single and double 
disturbances. 

Using only the pointwise-optimal controller, four 
additional simulations were performed where ±40% and 20% 
perturbations were maintained throughout the simulation. 
These simulations were conducted to determine the ability of 
the controller to respond to long-term disturbances. Long-
term measurement errors (±20% of W.) were also input to the 
controller in separate simulations. Results are also summarized 
in Table 3. Figure 4a and b shows results from long-term -
40% and short-term -40% perturbations, respectively. 

DISCUSSION 

The results in Table 3 indicate that the proportional and 
pointwise-optimal controller performances are comparable 
in terms of maintaining desired plant dry masses. However, 
proportional control shows slightly more sensitivity to input 
disturbances, as can be seen in Figure 3 and the larger LSppf 
values in Table 3. This higher sensitivity is a disadvantage. 
Large fluctuations in input PPF may lead to a reduction in the 
energy supplied to other components of the ALSS system and 
decrease longevity of the growth chamber lighting sys- 

Table 3. Normalized (0 to 1) Least Square for Plant Growth W. 
and PPF for Different Scenarios and Percent Final Deviation 
From Desired Plant Mass at Maturity Date (Reported for 
Pointwise Control Only) 

Proportional Pointwise 

Scenario W PPF. W. PPF. % 
D i ti+40% PPF, 10 

d
0.140 0.732 0.173 0.723 2 (8.6) 

-40% PPF, 10 0.273 0.671 0.289 0.570 2 (9.2)
+20% PPF, 10 0.0749 0.463 0.128 0.473 2(4.1)
-20% PPF, 10 0.156 0.512 0.188 0.345 2 (4.8)
+10% PPF, 10 0.0683 0.356 0.126 0.325 2(2)
-10% PPF, 10 0.111 0.403 0.153 0.227 2 (2.6)
+20%, -10%, 5 0.0665 0.365 0.139 0.376 2
-20%, +10%, 5 0.098 0.653 0.152 0.341 2
+40% PPF, long — — 0.129 0.701 1.4
-40% PPF, long — — 1.0 0.825 19
+20% PPF, long — — 0.147 0.73 1.6
-20% PPF, long — — 0.229 0.742 2.5
+20% IV, long — — 0.85 0.829 18
-20% W., long — — 0.954 0.972 22 

The values in parentheses are percent deviation from desired at 
maturity when no control action is applied. 
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Figure 3. Control effort comparisons between 
proportional (P) and pointwise-optimal (PW) controllers. 
Examples shown are for-20%, +10% (a) and -10% short-
term perturbations (b). 

terns. The even distribution of energy and avoidance of 
excess variations in power demands will be an important 
concern as ALSS subsystems are integrated (11). For this 
reason, the pointwise-optimal controller was shown to be 
a better controller choice for this application. 

The short-term disturbances introduced to the 
pointwise-optimal controller represent a range of some 
possible external perturbations to light intensity. The 
controller was able to compensate for all short-term 
disturbances in PPF (Fig. 4b), as well as small (20%) long-
term disturbances (Table 3). However, for a long-term 
perturbation of -40% PPF, predicted final dry mass 
ended 19% below its desired value. This occurred because 
PPF output was restricted due to the constraints set on 
the control law. Thus, the crop could not be restored to 
the original production schedule when a -40% 
disturbance was applied during the entire simulation (Fig. 
4a). This implies that the simula- 

days after planting 

Figure 4. System response (W) from pointwise-optimal 
controller for -40% long-term perturbation (a) and -40% 
short-term perturbation (b). Simulated control values 
(PW) are compared with desired dry masses (DES) and 
results in which no control is applied (NC) to adjust for the 
perturbation. 

tion results are dependent on both the PPF setpoint and 
the PPF range constraints placed on controller 
response. 

Table 3 also shows the resulting final dry mass errors 
for each short-term scenario when no controller action 
was applied (last column, in parentheses). That is, 
following the perturbation, PPF was set back to the 
nominal value of 1400 fimol nr2 • s~'. Errors ranged from 
about 10% to 2%. These deviations were reduced to less 
than 2% with the controller (Fig. 4b shows the short-term 
-40% result). It is worth noting that as the duration of 
perturbation increases, the deviations will increase. Thus, 
for short-term and certain long-term perturbations, 
utilization of a controller to restore crops back to their 
original production schedule is a viable and necessary 
approach. 
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Useful real-time, nondestructive measurements of 
crop dry masses are not currently achievable. Hence, 

needs to be developed to estimate the crop dry mass in a 
nondestructive way. 

In a real-time application, crew members would input 
environmental perturbations to an observer to estimate 
the current dry weight W.. This estimated dry mass would 
then be used as the input to the controller. To investigate 
the sensitivity of the control action to incorrect measure-
ments of the dry mass, the controller was evaluated for 
when values for dry mass W. in eq. (17) were perturbed 
by ±20%. As listed in Table 3, controller response is ad-
versely affected by errors in the estimated dry mass. We 
conclude that an accurate estimation of W. is critical to 
the controller's ability to compensate for environmental 
perturbations and is an important topic for research. 

Ultimately, the development of dynamic controllers, 
such as the one presented here, for individual ALS pro-
cesses will need to be considered as subsystems are linked 
together. The simple method presented here is intended to 
outline one viable approach of developing such control for 
biomass production. There are several areas where the 
control design requires improvement. The controller is 
based on a single input, single output model. More 
realistic controllers will have to handle multiple inputs, 
include carbon dioxide concentration, temperature, pho-• 
toperiod, and microgravity. An improved model should 
also account for the nonlinear relationship between light 
intensity and growth rate. For example, constants that 
are fixed in the Energy Cascade model are actually dy-
namic functions of the environment. Values for <2raax and U 
depend on the current temperature, light intensity, and CO 
concentration, while photoperiod affects developmental 
parameters such as maturity and canopy closure dates. 
Jones and Cavazzoni (20) have recently demonstrated that 
such affects may be incorporated in simple crop models 
by parameterizing certain variables in the Energy Cascade 
model. Incorporating these relationships into the control 
algorithm will be important. An accurate observation 
scheme for estimating values of the crop dry mass 
nondestructively will need to be developed for true 
feedback control. Growth chamber experiments would 
then be implemented to validate the results predicted by 
the controller. 

CONCLUSIONS 
A model-based feedback controller is developed to 

maintain crop production schedules in advanced life 

support systems, where perturbations in light intensity 
and measurement of crop growth rates may be of control 
laws are developed. The control laws are applied to two 
plant growth models and wheat is used as the crop. The 
response is evaluated with several "what-if' scenarios 
including simulated short- and long-term errors in the 
input for light intensity. The control was shown to be 
particularly sensitive to errors in measurement of plant 
dry mass. However, the controller satisfactorily 
responds to small perturbations in light intensity, making 
feedback control a viable option to regulate crop 
growth systems in space missions. 
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