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Abstract 

A computer program was developed to study multiple crop production and 
control in controlled environment plant production systems.  The program simulates 
crop growth and development under nominal and off-nominal environments.  Time-
series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white 
potato (Solanum tuberosum) are integrated with a model-based predictive controller.  
The controller evaluates and compensates for effects of environmental disturbances on 
crop production scheduling.  The crop models consist of a set of nonlinear polynomial 
equations, six for each crop, developed using multivariate polynomial regression 
(MPR).  Simulated data from DSSAT crop models, previously modified for crop 
production in controlled environments with hydroponics under elevated atmospheric 
carbon dioxide concentration, were used for the MPR fitting.  The model-based 
predictive controller adjusts light intensity, air temperature, and carbon dioxide 
concentration set points in response to environmental perturbations.  Control signals 
are determined from minimization of a cost function, which is based on the weighted 
control effort and squared-error between the system response and desired reference 
signal.   
 
1. INTRODUCTION 

Methodologies for utilizing information from plant growth and development studies 
within controlled environments for decision support purposes, such as planning, design, 
assemblage, and operation, would be useful for controlled environment plant production 
systems.  The ideal situation would be the construction of a computer platform to represent 
all mathematical, logical, and heuristic representations of related plant growth and 
development information (Fleisher et al., 2000a).  Although such a device is not currently 
available, it is possible to draw useful conclusions from simpler computational tools.    

For example, many modern greenhouse control approaches employ mathematical models 
of the greenhouse environment and the crops to prescribe daily environmental set points for 
the greenhouse.  These strategies produce greenhouse management tools and control systems 
that dynamically determine optimal setpoints based on some objective function (see, for 
example Aaslyng et al., 1999; Klaring et al., 1999; Seginer et al., 1999).  There has also been 
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interest in incorporating feedback measurements on crop growth into the controller design to 
adjust environmental setpoints on a real-time basis.  For example, Chun et al. (1996) 
developed a dynamic controller using light intensity to control lettuce net photosynthesis 
based on real-time measurements of canopy gas exchange.  Fleisher et al. (2001) explored 
the potential use of a pointwise-optimal controller to adjust daily light intensity levels to 
control wheat growth rate provided with feedback on plant growth at the previous time 
increment.   

This project evaluates the use of non-linear plant growth models to simulate plant 
response (daily growth and development) to daily environmental inputs.   A computerized 
decision support tool was developed to provide user access to these models.  The tool allows 
study of different multiple crop production scenarios and can estimate the effects of 
uncontrolled environmental disturbances on crop production scheduling.  A prototype model-
based predictive controller (MBPC) algorithm was developed for process control of total and 
yield dry biomass.  The MBPC uses the non-linear crop models to determine optimum daily 
environmental set points (photosynthetic photon flux (PPF), average daily air temperature 
(T), and atmospheric carbon dioxide concentration (CO2)) for a biomass production facility 
(e.g. growth chamber) based on plant growth model forecasts.    

 
2. MATERIALS AND METHODS 
2.1 Crop Models 

Detailed, explanatory crop models for controlled environment plant production were 
reduced into a mathematical form more tractable for control application and system studies.  
Three DSSAT crop field models (Tsuji et al., 1994) had been previously modified to 
simulate growth and development within controlled environments with hydroponics 
production systems.  The wheat model, based on the model CERES, was initially modified 
by Tubiello (1995) and further modified by Cavazzoni (unpublished).  The soybean model, 
based on the model CROPGRO, was modified by Cavazzoni (1997).  The white potato 
model, SUBSTOR, was subsequently modified by Fleisher et al. (2000b).    

Over forty-five simulations were conducted with each modified model to generate output 
data for daily total plant dry mass and yield dry mass values as a function of different 
combinations of environmental inputs (PPF, T, CO2) held constant throughout the production 
cycle.  All other inputs were assumed to be at their nominal values.  Multivariate polynomial 
regression (MPR) (Vaccari et al., 1999) was used to develop a set of six non-linear 
regression equations using this data for each crop (Figure 1).  MPR is similar to multilinear 
regression in that a single dependent variable is mathematically expressed as a function of 
several independent variables.  However, MPR can also include non-linear and interactive 
combinations of the independent variables in the mathematical expression. 

The dependent variables for three of the six MPR equations are the relative growth rates 
of (a) total dry mass prior to formation of yield bearing organs, (b) total dry mass after the 
formation of yield bearing organs, and (c) yield dry mass. The independent variables used in 
each equation include the average PPF, T, and CO2 values (averaged from planting date up to 
the current time increment t), and the total or yield dry mass at t-1.  The general expression 
for these three equations is: 
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where: 
Rv(t)  – relative growth rate of V at time t discretized using a forward-difference     

approximation 
V(t)   – total biomass or yield dry mass at time t 
∆t      – time increment (= 1 day) 

 
Two additional MPR equations estimate important developmental dates: (a) date of 

observable yield biomass formation (TI) and (b) maturity date (TM).  The sixth and final 
MPR equation estimates the yield mass at TI.   The net result is a set of six non-linear 
equations that can be used to predict the daily growth rate of vegetative and yield organs and 
important developmental stages for each crop.  The equations can be used to predict daily 
plant responses to changes in environmental conditions during the growth cycle.   
 
2.2 Model-Based Predictive Control 

In model-based predictive control (MBPC) (Figure 2), an observer, or mathematical 
model, uses the control inputs u, and measurements of the system y, to obtain an estimate of 
the system state x̂ .  The optimizer is a routine that attempts to compute new control inputs 
that minimize differences between desired reference signals and the state estimates.  In this 
application, the processes to be controlled are the yield and total biomass growth rate of the 
crop; thus, x(t) represents the yield and total biomass dry mass at the given time increment t.  
The u(t) are the values for PPF, T, and CO2 specified at time t.  MPR crop models are used to 
derive x̂ (t) from values for y(t-1), u(t-1), and x(t-1).  For purposes of testing the MBPC 
algorithm through simulation, it was assumed that x̂ (t) was identical to x(t) and thus, the 
values predicted by the MPR crop models were assumed to be perfectly correlated with 
actual plant growth.  

At the beginning of each time increment, the MPR models are also used in the optimizer 
routine to predict plant behavior from time t to the maturity date, TM in response to the 
control input values.  These values are held constant for each day beyond t+1 during this 
process.  That is to say that u(t+1)…u(TM) = u(t) within the optimizer routine.  The 
optimizer attempts to compute a optimum set of environmental inputs, u(t), to be applied for 
the current day that forces the plant growth to follow a reference production schedule.  This 
is accomplished through minimization of the cost function J(e,u) in equation 2.  The 
optimizer uses the Nelder-Mead method (Press et al., 1988) to minimize J(e,u) with respect 
to u(t).   

In equation 2, reference signals r(t+j)  are determined by the MPR time-series predictions 
of the crop assuming that the nominal environmental conditions throughout the production 
cycle were achieved each day.  J(e,u) is thus composed of the squared-error between the 
desired growth rate and the model-predicted one using the observed environmental inputs, 
plus a weight on the amount of control effort required to minimize this difference.  This 
control weight, 

�
, was determined via trial and error for each of the three control inputs.   
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where: 
r(t+j)   
y(t+j)   	

u(t)  
TM 

         

 
– desired dry mass at time step t + j 
– model predicted dry mass at time t + j 
– change in control inputs from time t+1 to t 
– crop maturity date 
– control weighting constant 

 
 

2.3 Software Platform 
Microsoft’s Visual Basic™ v6.0 programming language was utilized to construct a 

decision support system with user access to crop models and the MBPC algorithm.  The 
program provides the user with the ability to conduct simulations with:  

(1) Multiple crop scenarios.  The user can select from one to three crops to be 
included in the simulated production scheme.  Environmental inputs for 
PPF, T, and CO2, can be manually input for study or the program can be 
instructed to automatically search for input values that will potentially 
optimize yield or total biomass for all crops in the scheme. 

(2) Sensitivity analysis. The user can evaluate effects of manipulating 
environmental inputs during the production cycle on plant scheduling.  

(3) Model-based predictive control.  Environmental inputs can be input into 
the software program each day.  The MBPC algorithm conducts the 
following steps: 

i. Predicts the growth rates and resulting plant dry weights (x̂ (t)) 
using the appropriate MPR crop models based on the 
environmental inputs, 

ii.  Compares x̂ (t) with the desired dry weight values r(t), 
iii.  Computes and minimizes J(e,u) with respect to u(t) assuming that 

future values for environmental inputs will be at the desired level if 
there is a significant difference in step ii. 

iv. Replace old set of inputs with new u(t). 
  

3. RESULTS 
Simulations with the software program were conducted for evaluation purposes. Table 1 

shows the environmental conditions that the program found as optimal for achieving 
maximum yield for different crop mixes and demonstrates item (1) in the previous section.  
Although only the final yield at maturity is provided in the table, the program tabulates yield 
and vegetative mass for each day over the growth cycle (not shown).   

The MBPC algorithm was evaluated, through model simulations, for the ability to 
compensate for a hypothetical 20 day –30% reduction in PPF with a white potato production 
scenario (Figure 3).  In other words, the PPF level is reduced from the nominal value of 800 � mol m-2 s-1 to 560 for twenty days, after which it is restored to 800.  Plant growth is shown 
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as a time-history plot of yield mass (g m-2) for three simulated cases: nominal growth (where 
PPF is held at 800 throughout the growth cycle), actual growth (where PPF is reduced by 
20% for the 20 day period and then returned to the nominal level after the disturbance), and 
control growth (where the MBPC algorithm is applied).   At maturity date (day 137), the 
actual case shows a –11% decrease in yield dry mass.  This is the result when no control is 
applied.  At maturity date with the control case, there is a +1% deviation from the reference 
nominal yield mass.  The graphs on the right of the figure show the time-history of the 
control inputs for PPF, CO2, and T for the control growth case. 
 
4. DISCUSSION 

The values in Table 1 for PPF and CO2 are at the highest levels permitted by the program. 
Temperature varies depending on selected crop mix (Table 1).  This result is not surprising as 
increases in light energy and ambient carbon dioxide concentration will have the most direct 
affect on promoting growth rate.  Increases in temperature will generally promote yield for 
soybean and reduce it for potato and wheat.  Thus, temperature is most critical for permitting 
scheduling of multiple crops under shared environmental zones.   However, in general, 
reducing temperature tends to increase the length of the production cycle (data not shown) so 
a compromise needs to be worked out between maximizing yield and the time between 
planting and harvesting. 

In Figure 2, the curve for actual growth shows the simulated PPF disturbance created a 
significant deviation from the desired, nominal growth curve.  The MBPC algorithm 
performed well in compensating for the disturbance as shown by the control growth curve.  
The control inputs specified by the algorithm are shown versus time on the right hand side of 
the figure.  A similar ability to compensate for disturbances in PPF, T, and CO2 (not shown) 
was obtained with other perturbation simulations with each of the three crops.  In all cases, 
using the control action was better than not compensating for the disturbance.  However, in 
each case, some undesirable oscillations appear in the T and CO2 inputs.  The results suggest 
that with further refinement the software program and MBPC algorithm could be a viable 
method for providing real-time decision support for controlled environment plant production 
operations.  

While the MPR equations do not offer a mechanistic basis for predicting the plant 
responses to environmental changes or for estimating the physiological effects on the plants, 
the correlations between growth rate and environmental input variables are statistically 
significant (r2 greater than 0.85 in all equations).  The non-linear regression equations should 
be accurate within the range of environmental inputs for which they were originally 
developed.  However, the equations were developed from a simulated dataset.  Future work 
includes validation and improvement of the MPR models based on actual experimental data.  
The models are also restricted in terms of other independent variables such as humidity and 
photoperiod.  These factors will be important to include in the models. 

While the model-based predictive controller provides reasonable results as simulated, it 
should be validated in a real-world setting.  Instead of using the MPR models to predict the 
state of the crop, a significant research step will be to estimate the state based on real-time 
measurements of crop growth.  Such measurements would realign the controller at each time 
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step by providing feedback of the crop.  Additional tuning of the cost function J(e,u), such as 
adjustments to the control weight values can help optimize the control response. 
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Table 1. Simulated optimal environment inputs to maximize combined yield for given crop 
mix. 
crop mix PPF1 

[ � mol m-2 s-1] 
T 
[°C] 

CO2
2 

[ppm] 
Yield 
(g m-2) 

Harvest Index3 

wheat 1700 14 1600 2783  0.40 
soybean 1200 30 1600 779    0.58 
white potato 1200 14 1600 3716  0.68 
wheat / 
soybean 

1200 26 1600 1085  / 722  0.34  /  0.55 

wheat / potato 1200 14 1600 2273  / 3716  0.40  /  0.68 
soybean / 
potato 

1200 24.5 1600 700    / 3716  0.53  /  0.74 

all three crops 1200 20 1600 1669 / 626 /  3249  0.37  /  0.38  /  0.63 
1PPF range was restricted to 1700 for wheat models, and 1200 to soybean and white potato 
2Maximum CO2 concentration was restricted at 1600 ppm 
3Harvest index computed as yield / total biomass where total biomass includes leaves, stems, 
roots, yield organs and senesced leaves 
   
 

 
Figure 1:  Illustration of MPR model application.  Three MPR equations are used to predict 
relative growth rate of yield and total dry mass.  Rwv(i) predicts vegetative growth of the plant 
prior to formation of yield organs.  Ry(i) predicts yield growth rate after the appearance of 
yield organs.  Rwr(i) is used to predict total biomass following the yield organ initiation.  
Another three MPR equations are used to predict important developmental dates.  These 
include TI, which predicts the date at which yield organ initiation is observed, Y(TI), the 
initial dry mass of the yield organs, and TM, the date at which maturity is simulated.   
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Figure 2: Model-based predictive control loop.   
 
 

 
Figure 3: Model-based controller simulation.  Simulated information for a –30% PPF 
disturbance with white potato starting at day 15 for 20 days.  Clockwise starting at top left: 
Scheduling analysis information, where column1 is the nominal case with no disturbance, 
column 2 is the case with disturbance and no control, and column 3 is with control; Control 
input time history plots for CO2, T, and PPF, where the straight line represents the nominal 
setpoint; System response (yield dry mass) for the three cases. 
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