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Abstract

A computer program was developed to study multiple crop production and
control in controlled environment plant production systems. The program simulates
crop growth and development under nominal and off-nominal environments. Time-
series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white
potato (Solanum tuberosum) are integrated with a model-based predictive controller.
The controller evaluates and compensates for effects of environmental disturbances on
crop production scheduling. The crop models consist of a set of nonlinear polynomial
equations, six for each crop, developed using multivariate polynomial regression
(MPR). Simulated data from DSSAT crop models, previously modified for crop
production in controlled environments with hydroponics under elevated atmospheric
carbon dioxide concentration, were used for the MPR fitting. The model-based
predictive controller adjusts light intensity, air temperature, and carbon dioxide
concentration set points in response to environmental perturbations. Control signals
are determined from minimization of a cost function, which is based on the weighted
control effort and squared-error between the system response and desired reference
signal.

1. INTRODUCTION

Methodologies for utilizing information from plant growdnd development studies
within controlled environments for decision support purposesh as planning, design,
assemblage, and operation, would be useful for cdedr@nvironment plant production
systems. The ideal situation would be the constructicen computer platform to represent
all mathematical, logical, and heuristic represematiof related plant growth and
development information (Fleishet al, 2000a). Although such a device is not currently
available, it is possible to draw useful conclusions feammpler computational tools.

For example, many modern greenhouse control approachesyemathematical models
of the greenhouse environment and the crops to prescrilyeed@ironmental set points for
the greenhouse. These strategies produce greenhouse martageiend control systems
that dynamically determine optimal setpoints based onesobjective function (see, for
example Aaslyngt al, 1999; Klaringet al, 1999; Segineet al.,1999). There has also been
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interest in incorporating feedback measurements on catiginto the controller design to
adjust environmental setpoints on a real-time basis. example, Churet al. (1996)
developed a dynamic controller using light intensityctmtrol lettuce net photosynthesis
based on real-time measurements of canopy gas exch&igsheret al. (2001) explored
the potential use of a pointwise-optimal controlleragjust daily light intensity levels to
control wheat growth rate provided with feedback omtplgrowth at the previous time
increment.

This project evaluates the use of non-linear plant dromibdels to simulate plant
response (daily growth and development) to daily envirormhemputs. A computerized
decision support tool was developed to provide user accéises® models. The tool allows
study of different multiple crop production scenarios amh estimate the effects of
uncontrolled environmental disturbances on crop productioedsding. A prototype model-
based predictive controller (MBPC) algorithm was devedojpe process control of total and
yield dry biomass. The MBPC uses the non-linear crop madelstermine optimum daily
environmental set points (photosynthetic photon fluxRPRverage daily air temperature
(T), and atmospheric carbon dioxide concentration jiCfor a biomass production facility
(e.g. growth chamber) based on plant growth model forcast

2. MATERIALSAND METHODS
21 Crop Models

Detailed, explanatory crop models for controlled envirortm@ant production were
reduced into a mathematical form more tractable fotrobapplication and system studies.
Three DSSAT crop field models (Tsugit al, 1994) had been previously modified to
simulate growth and development within controlled enviramsiewith hydroponics
production systems. The wheat model, based on the fa&RES, was initially modified
by Tubiello (1995) and further modified by Cavazzoni (unpublishéid)e soybean model,
based on the model CROPGRO, was modified by Cavazzoni (199§ white potato
model, SUBSTOR, was subsequently modified by Fleishat (2000b).

Over forty-five simulations were conducted with each ified model to generate output
data for daily total plant dry mass and yield dry mass gahge a function of different
combinations of environmental inputs (PPF, T C&eld constant throughout the production
cycle. All other inputs were assumed to be at theminal values. Multivariate polynomial
regression (MPR) (Vaccart al.,, 1999) was used to develop a set of six non-linear
regression equations using this data for each crop (FigurBBR is similar to multilinear
regression in that a single dependent variable is matreaiatexpressed as a function of
several independent variables. However, MPR caniatdode non-linear and interactive
combinations of the independent variables in the mattesthaxpression.

The dependent variables for three of the six MPR equatientha relative growth rates
of (a) total dry mass prior to formation of yield begriorgans, (b) total dry mass after the
formation of yield bearing organs, and (c) yield dry sad%e independent variables used in
each equation include the average PPF, T, andv@l0es (averaged from planting date up to
the current time incremen}, and the total or yield dry masstat. The general expression
for these three equations is:
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dv(t) _ (v(t)-Vv(t-at)

= f(vit-1),PPF,T,CO
" VO V(-1 ) (1)

1
R“(t)_v(t)

where:

R(t) — relative growth rate of at timet discretized using a forward-difference
approximation

V(t) - total biomass or yield dry mass at time

At —time incremen{= 1 day)

Two additional MPR equations estimate importantettgymental dates: (a) date of
observable yield biomass formationlY and (b) maturity dateT(M). The sixth and final
MPR equation estimates the yield massTht The net result is a set of six non-linear
eqguations that can be used to predict the dailwtiroate of vegetative and yield organs and
important developmental stages for each crop. @fetions can be used to predict daily
plant responses to changes in environmental condiuring the growth cycle.

2.2 Mode-Basad Predictive Control

In model-based predictive control (MBPC) (Figure an observer, or mathematical
model, uses the control inpuis and measurements of the systerto obtain an estimate of
the system stat&. The optimizer is a routine that attempts to cot®mew control inputs
that minimize differences between desired referesigeals and the state estimates. In this
application, the processes to be controlled areyigdd and total biomass growth rate of the
crop; thusx(t) represents the yield and total biomass dry matseagiven time incremert
Theu(t) are the values for PPF, T, and £pecified at timé. MPR crop models are used to
derive X (t) from values fory(t-1), u(t-1), and x(t-1). For purposes of testing the MBPC
algorithm through simulation, it was assumed tk#t) was identical tax(t) and thus, the
values predicted by the MPR crop models were assumebe perfectly correlated with
actual plant growth.

At the beginning of each time increment, the MPRlete are also used in the optimizer
routine to predict plant behavior from tinteo the maturity dateTM in response to the
control input values. These values are held conhdta each day beyontd1 during this
process. That is to say thaft+1)...u(TM) = u(t) within the optimizer routine. The
optimizer attempts to compute a optimum set of remvnental inputsii(t), to be applied for
the current day that forces the plant growth téofela reference production schedule. This
is accomplished through minimization of the coshchion J(e,u) in equation 2. The
optimizer uses the Nelder-Mead method (Petsal., 1988) to minimizel(e,u) with respect
to u(t).

In equation 2, reference signa(stj) are determined by the MPR time-series predictions
of the crop assuming that the nominal environmecwalditions throughout the production
cycle were achieved each day(eu) is thus composed of the squared-error between the
desired growth rate and the model-predicted onegusie observed environmental inputs,
plus a weight on the amount of control effort regdito minimize this difference. This
control weightA, was determined via trial and error for each efttiree control inputs.
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™

sfeu)= 31+ 1)-yle+ 1)) + 5 duty 2

=1

where:
r(t+)) — desired dry mass at time step |
y(t+)) — model predicted dry mass at time |
Au(t) — change in control inputs from timel tot
™ — crop maturity date
y) — control weighting constant

2.3 Software Platform
Microsoft’'s Visual Basic™ v6.0 programming language was utllite construct a
decision support system with user access to crop modelshanblBPC algorithm. The
program provides the user with the ability to conduct satmris with:
(1) Multiple crop scenarias The user can select from one to three crops to be
included in the simulated production scheme. Environmentalsnjout
PPF, T, and C¢& can be manually input for study or the program can be
instructed to automatically search for input values thdit potentially
optimize yield or total biomass for all crops in theeme.

(2) Sensitivity analysis The user can evaluate effects of manipulating
environmental inputs during the production cycle on plant sdimgdu
3) Model-based predictive controlEnvironmental inputs can be input into

the software program each day. The MBPC algorithm cdadtie
following steps:

i. Predicts the growth rates and resulting plant dry wisidgh(t))
using the appropriate MPR crop models based on the
environmental inputs,

ii. Comparesx (t) with the desired dry weight valueg),

iii. Computes and minimizeKe,u) with respect tai(t) assuming that
future values for environmental inputs will be at the dedesel if
there is a significant difference in step ii.

iv. Replace old set of inputs with next).

3. RESULTS

Simulations with the software program were conductecVatuation purposes. Table 1
shows the environmental conditions that the progranmdoas optimal for achieving
maximum Yyield for different crop mixes and demonstrates if1) in the previous section.
Although only the final yield at maturity is provided in tiadle, the program tabulates yield
and vegetative mass for each day over the growth ¢yoteshown).

The MBPC algorithm was evaluated, through model simulatidms the ability to
compensate for a hypothetical 20 day —30% reduction in PPFawittite potato production
scenario (Figure 3). In other words, the PPF leveldsaed from the nominal value of 800
umol m? s to 560 for twenty days, after which it is restored to 8Bant growth is shown
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as a time-history plot of yield mass (¢F)rfor three simulated cases: nominal growth (where
PPF is held at 800 throughout the growth cycle), actual thr¢where PPF is reduced by
20% for the 20 day period and then returned to the nongmal after the disturbance), and
control growth (where the MBPC algorithm is applied)At maturity date (day 137), the
actual case shows a —11% decrease in yield dry mass. Thenssult when no control is
applied. At maturity date with the control case, ¢hisra +1% deviation from the reference
nominal yield mass. The graphs on the right of the figin@w the time-history of the
control inputs for PPF, CQand T for the control growth case.

4. DISCUSSION

The values in Table 1 for PPF and £ie at the highest levels permitted by the program.
Temperature varies depending on selected crop mix (Tabl€Hi3 result is not surprising as
increases in light energy and ambient carbon dioxideemtration will have the most direct
affect on promoting growth rate. Increases in temperauilt generally promote yield for
soybean and reduce it for potato and wheat. Thus, tempeistmost critical for permitting
scheduling of multiple crops under shared environmental zonéfowever, in general,
reducing temperature tends to increase the length of tdegiion cycle (data not shown) so
a compromise needs to be worked out between maximizing gied the time between
planting and harvesting.

In Figure 2, the curve for actual growth shows the siredl®&PF disturbance created a
significant deviation from the desired, nominal growth curv&he MBPC algorithm
performed well in compensating for the disturbance as stmywthe control growth curve.
The control inputs specified by the algorithm are showsusetime on the right hand side of
the figure. A similar ability to compensate for disturlEsa PPF, T, and GQnot shown)
was obtained with other perturbation simulations wifth of the three crops. In all cases,
using the control action was better than not compensatindpdodisturbance. However, in
each case, some undesirable oscillations appear indhd TQ inputs. The results suggest
that with further refinement the software program an@8P@ algorithm could be a viable
method for providing real-time decision support for contebinvironment plant production
operations.

While the MPR equations do not offer a mechanistic basispfedicting the plant
responses to environmental changes or for estimating tlsofdgical effects on the plants,
the correlations between growth rate and environmental iwauables are statistically
significant (f greater than 0.85 in all equations). The non-linear ss@gne equations should
be accurate within the range of environmental inputs for lwhieey were originally
developed. However, the equations were developed fromwdased dataset. Future work
includes validation and improvement of the MPR models baseattual experimental data.
The models are also restricted in terms of other imitgre variables such as humidity and
photoperiod. These factors will be important to includéhe models.

While the model-based predictive controller providesaeable results as simulated, it
should be validated in a real-world setting. Insteadsorig the MPR models to predict the
state of the crop, a significant research step wiltdbestimate the state based on real-time
measurements of crop growth. Such measurements wolighrdee controller at each time
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step by providing feedback of the crop. Additional tuning efdbst functiod(e,u), such as
adjustments to the control weight valwas help optimize the control response.
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Table 1. Simulated optimal environment inputs to maximizelsoed yield for given crop
mix.

crop mix PPE T CO,’  Yield Harvest Index
[umol m*s*] [°C]  [ppm] (g m?)

wheat 1700 14 1600 2783 0.40

soybean 1200 30 1600 779 0.58

white potato 1200 14 1600 3716 0.68

wheat [/ 1200 26 1600 1085 /722 0.34 / 0.55

soybean

wheat / potato 1200 14 1600 2273 /3716 0.40 / 0.68

soybean / 1200 24.5 1600 700 /3716 0.53 / 0.74

potato

all three crops 1200 20 1600 1669 /626 / 3249 0.37 / 0.38 / 0.63

'PPF range was restricted to 1700 for wheat models, and 120gbeasoand white potato
’Maximum CQ concentration was restricted at 1600 ppm

*Harvest index computed as yield / total biomass wherehimtalass includes leaves, stems,
roots, yield organs and senesced leaves
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Figure 1: lllustration of MPR model application. ThiMER equations are used to predict
relative growth rate of yield and total dry mas$.(i) predicts vegetative growth of the plant
prior to formation of yield organsR(i) predicts yield growth rate after the appearance of
yield organs. Ry (i) is used to predict total biomass following the yield organation.
Another three MPR equations are used to predict importarlapenental dates. These
include TI, which predicts the date at which yield organ initiatisrobserved,Y(TI), the
initial dry mass of the yield organs, ant¥l, the date at which maturity is simulated.
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Figure 2: Model-based predictive control loop.
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Figure 3. Model-based controller simulation. Simulatecdrimbtion for a —30% PPF
disturbance with white potato starting at day 15 for 20 d&jsckwise starting at top left:
Scheduling analysis information, where columnl is tbminal case with no disturbance,
column 2 is the case with disturbance and no contrdlcafumn 3 is with control; Control
input time history plots for C T, and PPF, where the straight line represents theniad
setpoint; System response (yield dry mass) for the ttases.
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