BIBLIOGRAPHY OF PUBLICATIONS OF 137CESIUM STUDIES RELATED TO EROSION AND SEDIMENT DEPOSITION

Jerry C. Ritchie
Unites States Department of Agriculture
Agriculture Research Service
Hydrology and Remote Sensing Laboratory
BARC-West, Bldg. 007
Beltsville, MD 20705 USA

Carole A. Ritchie
Botanical Consultant
12224 Shadetree Lane
Laurel, MD 20708 USA

USDA-ARS
Hydrology and Remote Sensing Laboratory
Occasional Paper HRSL-2008-01
April 1, 2008
INTRODUCTION

Soil erosion and its subsequent redeposition across the landscape is a major concern around the world. A quarter century of research has shown that measurements of the spatial patterns of radioactive fallout 137Cesium can be used to measure soil erosion and sediment deposition on the landscape. The 137Cs technique is the only technique that can be used to make actual measurements of soil loss and redeposition quickly and efficiently. By understanding the background for using the 137Cs technique to study erosion and sediment deposition on the landscape, scientists can obtain unique information about the landscape that can help them plan techniques to conserve the quality of the landscape. Research should continue on the development of the technique so that it can be used more extensively to understand the changing landscape.

On 16 July 1945 at 1230 Greenwich Civil Time, nuclear weapon tests were begun that have released 137Cs and other radioactive nuclides into the environment. Over the 50+ years since this first test, much research...
has been done to understand the movement and fate of 137Cs in the environment. Many of these studies are critical for understanding the application of 137Cs to the study of soil erosion and the subsequent redeposition of the eroded particles on the landscape. This bibliography presents significant background publications that are useful to studies of erosion and sediment deposition using 137Cs. The bibliography also includes citations of reported studies of the use of 137Cs to measure either erosion or sediment deposition. While the bibliography is extensive, there are certainly publications that we have missed. There has been a rapid increase in publication related to the use of 137Cs related to the erosion and sedimentation (Fig. 1). However, we feel that this bibliography does demonstrate the widespread use and acceptance of 137Cs for measuring erosion and sediment deposition. We hope it will also be useful to those using or preparing to use 137Cs and will help promote the use of 137Cs in erosion and sediment deposition research and measurements.

2. BIBLIOGRAPHY (click on a letter to jump to the corresponding alphabetic grouping)

A

Ageets, V.Yu. 1996. Accumulation of the radionuclides caesium-137 and strontium-90 in farm crops depending on soil properties. Pochvovedenie I agrokhimiya 29:249-257 (Russian)

B (click [here](#) to return to index)

Bachhuber, H., K. Bunzl, and W. Schimmack. 1986. Spatial variability of distribution coefficients of 137Cs, 65Zn, 85Sr, 57Co, 109Cd, 141Ce, 103Ru, 95mTc, and 131I in cultivated soil. *Nuclear Technology* 72:359-371.

Quality and Sustainable Land Management Conference, Landcare Research, Palmerston North, NZ.

Beasley, T.M., and C.D. Jennings. 1984. Inventories of 239,240Pu, 241Am, 137Cs, and 60Co in Columbia River sediments from Hanford to the Columbia River Estuary. *Environmental Science and Technology* 18:207-212.

Review of Geophysics and Space Physics 17:824-839.

Journal of Central European Agriculture 5(2):81-84.

Binford, M.W. and M. Brenner. 1986. Dilution of 210Pb by organic sedimentation in lakes of different trophic states, and applications to study of sediment-water interactions.
Limnology and Oceanography 31:584-595.

Collins (eds.). *Soil Erosion and Sediment Redistribution in River Catchments*, CABI Publishers, Oxfordshire, UK.

Borsilov, V.A., A.V. Konoplev, and A.A. Bulgakov. 1993. Application of the Chernobyl experience in developing methodology for assessing and predicting the consequences of

Brunskill, G.J., D. Povoledo, B.W. Graham, and M.P. Stainton. 1971. Annual supply of 238U, 234U, 230Th, 226Ra, 210Pb, 210Po and 232Th to lake 239 (Experimental Lakes Area, northwestern Ontario) from terrestrial and atmospheric sources. Canadian Journal of Fisheries and Aquatic Science 44:215-230.

Campbell, B.L. 1982. *Application of environmental caesium-137 for the determination of sedimentation rates in reservoirs and lakes and related catchment studies in developing countries*. AAEC Research Establishment, Lucas Heights Research Lab., PMB Sutherland 3322, N.S.W., Australia.

Charmasson, S., P. Bouisset, O. Radekovitch, A. Pruchon, and M. Arnaud. 1998. Long-core profiles of 137Cs, 134Cs, 60Co and 210Pb in sediment near the Rhone river (Northwestern Mediterranean Sea). *Estuaries* 21(3):367-378.

Chebotina, M.Y., and V.F. Bochenin. 1981. 90Sr and 137Cs in bottom sediments of a fresh water lake. *Gidrobiology ZH* 17:82-82. (Russian)

Corcoran, M.K. 2007. Geomorphic identification and verification of recent sedimentation patterns in the Woonasquatucket River, North Providence, Rhode Island. ERDC/GSL-TR-07-2, 138pp. Army Engineer Waterways Experiment Station, Engineer Research and Development Center, Vicksburg, MS.

E (click here to return to index)

Effler, S.W., C.M. Matthews (Brooks), and D.A. Matthews. 2001. Patterns of gross deposition in reservoirs enriched in inorganic tripton. *Canadian Journal of Fisheries and Aquatic Science* 58:2177-2188.

Evans, M.S. 1996. Depositional history of sediment in Great Slave Lake: Spatial and temporal patterns in geochronology, bulk parameters, PAHs and chlorinated contaminants.

Froehlich, W., and D. Walling. 1999. The role of unmetalled roads as a sediment source in the fluvial systems of the Polish Flysch Carpathians. International Association of Hydrological Sciences Publication No. 245:159-168.

G (click [here](#) to return to index)

Gasco, C., M. Antón, M. Pozuelo, L. Clemente, A. Rodriguez, C. Yanez, A. Gonzalez, and J. Meral. 2006. Distribution and inventories of fallout radionuclides ($^{239+240}$Pu, 137Cs) and 210Pb to study the filling velocity of salt marshes in Donana National Park (Spain). *Journal of Environmental Radioactivity* 89(2):159-171.

spherules, 137Cs-137, and 210Pb in soils as applied for the estimation of soil erosion.

Pochvovedenie 10:1218-1234.

Eurasian Soil Science 38(9):954-965.

Pochvovedenie 10:1218-1234.

Quantification of soil erosion rates within the Indian mounds area in Illinois.

Eurasian Soil Science 35:8-17.

Eurasian Soil Science 35:17-29.

Atmosphere and Environment 37:1745-1756.

Water Air Soil Pollution 75:93-106.

Oceanologica Acta 17:547-554.

Golovatyj, S.E., and S.M. Rydaya. 2002. Forms of radionuclides 90Sr, 137Cs and physicochemical properties of the soils at the 30 km restricted zone around Chernobyl NPP. Pochvovedenie i Agrokhimiya 32:228-238, 316, 326. (In Russian).

International Seminar of the International Association for Landscape Ecology, Munster, Germany.

H (click [here](#) to return to index)

Centre For Agrarian Sciences Institute For Land Reclamation And Agricultural Mechanization, Sofia, Bulgaria

Håkanson, L. 2005. A new general mechanistic river model for radionuclides from single pulse fallouts which can be run by readily accessible driving variables. *Journal of Environmental Radioactivity* 80(3):357-382.

Håkanson, L., T.G. Sazykina, and I.I. Kryshev. 2002. A general approach to transform a lake model for one radionuclide (radiocesium) to another (radiostrontium) and critical model tests using data for four Ural lakes contaminated by the fallout from the Kyshtym accident in 1957. *Journal of Environmental Radioactivity* 60(3):319-350.

Hancock, G.J. and J.R. Hunter. 1999. Use of excess 210Pb and 228Th to estimate rates of sediment accumulation and bioturbation in Port-Phillip-Bay, Australia. *Marine and Freshwater Research* 50:533-545.

climate-change impacts on salt marshes of Jamaica Bay, New York City. **Wetlands**
22(1):71-89.

Harvey, M.M., J.D. Hansom, and A.B. Mackenzie. 2007. Constraints on the use of anthropogenic
radionuclide-derived chronologies for saltmarsh sediments. **Journal of Environmental
Radioactivity** 95(2-3):126-148.

Haselwandter, V.K. 1978. Accumulation of radioactive nuclide 137Cs in fruit bodies of
Basidiomycetes. **Health Physics** 34:713-715.

Haselwandter, V.K. 1977. Radioaktives Cäsium (Cs 137) in fruchtkörpern verschiedener
Basidiomycetes. **Zeitschr. F. Pilzkunde** 43:323-326. (German)

Glacier catchment, Ammassalik Island, southeast Greenland, 2005. **IAHS Publication**
306:45-55.

Hasholt, B., and D.E. Walling. 1992. Use of caesium-137 to investigate sediment sources and
sediment delivery in a small glacierized mountain drainage basin in Eastern Greenland.
International Association of Hydrological Sciences Publication No. 209:87-100.

Hasholt, B., D.E. Walling, and P.N. Owens. 2000. Sedimentation in Arctic proglacial lakes:

Haslett, S.K., A.B. Cundy, C.F.C. Davies, E.S. Powell, and I.W. Croudace. 2003. Salt marsh,
sedimentation over the past 120 years along the West Cotentin Coast of Normandy
(France): Relationship to sea-level rise and sediment supply. **Journal of Coastal

measurements and calibration models: A case study from Nakhla watershed, Morocco.
Canadian Journal of Soil Science 86(1):77-87.

Hatton, R.S., R.D. DeLaune, and W.H. Patrick Jr. 1983. Sedimentation, accretion, and
subsidence in marshes of Barataria Basin, Louisiana. **Limnology and Oceanography**

Haugen, L.E. 1992. Small-scale variation in deposition of radiocaesium from the Chernobyl

Strum. 2002. Interactions of climate and land use documented in the varved sediments of

chronology and polycyclic aromatic hydrocarbon concentrations and fluxes in Cayuga

Heldal, H.E., P. Varskog, and L. Foyn. 2002. Distribution of selected anthropogenic
radionuclides (Cs-137, Pu-238, Pu-239,Pu-240 and Am-241) in marine sediments with
emphasis on the Spitsbergen-Bear Island area. Science of the Total Environment
293(1-3):233-245.

Helmer, R.G., R.J. Gehrke, and M.V. Carpenter. 1999. Three types of photon detectors for in situ

Helton, J.C., A.B. Muller, and A. Bayer. 1985. Contamination of surface-water bodies after
reactor accidents by the erosion of atmospherically deposited radionuclides. Health

Nuclear Europe 7:22-25.

and carbon cycling in Lake Alexandrina, South Australia: C : N, delta N-15 and delta
C-13 in sediments. Applied Geochemistry 16(1):73-84.

Hermanson, M.H. 1993. Historical accumulation of atmospherically derived pollutant trace
metals in the Arctic as measured in dated sediment cores. Water Science Technology
28:33-41.

cores from small shallow Arctic lakes. Environmental Science and Technology
25:2059-2064.

Hermanson, M.H. 1990. 210Pb and 137Cs chronology of sediments from small, shallow Arctic

in dated sediments cores from Green Bay and Lake Michigan. Journal of Great Lakes
Research 17:94-108.
Hernández, F., L. Karlsson, and J. Hernández-Armas. 2007. Impact of the tropical storm Delta on the gross alpha, gross beta, 90Sr, 210Pb, 7Be, 40K and 137Cs activities measured in atmospheric aerosol and water samples collected in Tenerife (Canary Islands). *Atmospheric Environment* 41(23):4940-4948.

I (click [here](#) to return to index)

of 137Cs and 90Sr from Chernobyl fallout in Ukrainian, Belarussian and Russian soils.

J (click here to return to index)

Hydrobiologia 103:15-19.

Soil Science 99:345-353.

1998. Levels of cesium, mercury and lead in fish, and cesium in pond sediments in an inhabited region of the Ukraine near Chernobyl.
Environmental Pollution 98(2):223-232.

Ecotoxicology 7(4):201-209.

EOS Transactions 69:1119.

Nature 212:886-889.

Marine Pollution Bulletin 4:118-122.

K (click here to return to index)

geochronologies in marine and lake sediments. *Geochimica et Cosmochimica Acta*
37:1171-1187.

Characterization of pre- and post-moratorium tests to polar ice caps. *Nature* 296:544-
547.

Long-term monitoring and analysis of SUP 90 Sr and SUP 137 Cs concentrations in rice,
wheat and soils in Japan from 1959 to 2000. *Bulletin of the National Institute of

Komosa, A. 2002. Study on geochemical association of plutonium in soil using sequential
extraction procedure. *Journal of Radioanalytical and Nuclear Chemistry*
252(1):121-128.

Komosa, A. 1999. Migration of plutonium isotopes in forest soil profiles in Lublin region

Kongchum, M., I. Devai, R.D. DeLaune, and A. Jugsujinda. 2006. Total mercury and
methylmercury in freshwater and salt marsh soils of the Mississippi river deltaic plain.
Chemosphere 63(8):1300-1303.

Konitzer, K. 1992. Sedimentroerelsers betydekse foer foerdelning och tillgaenglighet av Cs-137
I en mellansvensk skogssjoe (Redistribution of Cs-137 in sediment caused by sediment
Sweden.

Konitzer, K., and M. Meili. 1995. Retention and horizontal redistribution of sedimentary
Chernobyl Cs-137 in a small Swedish forest lake. *Marine and Freshwater Research*
46:153-158.

Konoplev, A.V., R. Avila, A.A. Bulgakov, K.J. Johanson, I.V. Konopleva, and V.E. Popov.

Kruyts, N. and B. Delvaux. 2002. Soil organic horizons as a major source for radiocesium biorecycling in forest ecosystems. *Journal of Environmental Radioactivity* 58(2-3, Special issue SI):175-190

of a radiocesium-contaminated soil: Evaluation of Cesium-137 bioaccumulation in the

Latour, D., M.J. Salencon, J.L. Reyss, and H. Giraudet. 2007. Sedimentary imprint of
Microcystis aeruginosa (cyanobacteria) blooms in Grangent reservoir (Loire, France).

Lauritzen, B. and T. Mikkelsen. 1999. A probabilistic dispersion model applied to the long-range
transport of radionuclides from the Chernobyl accident. Atmospheric Environment
33(20):3271-3279.

Lavi, N., G Golob, and Z.B. Alfassi. 2006. Monitoring and surveillance of radio-cesium in
cultivated soils and foodstuff samples in Israel 18 years after the Chernobyl disaster.

Leady, B.S. and J.F. Gottgens. 2001. Mercury accumulation in sediment cores and along food
chains in two regions of the Brazilian Pantanal. Wetland Ecology and Management

Le Cloarec, M. Bonte, L.I. Philippe, J. Mouchel, and S. Colbert. 2007. Distribution of Be-7, Pb-
210 and Cs-137 in watersheds of different scales in the Seine River basin: Inventories

Pu-239,Pu-240 with natural organic substances in soils. Journal of Environmental
Radioactivity 47(3):253-262.

Lee, M.H., C.W. Lee, and B.H. Boo. 1997 Distribution and characteristics of 239,240Pu and 137Cs

fallout Pu and Cs in the sediment of the East Sea of Korea. Journal of Environmental

from the Humber Estuary, Eastern England. Estuarine Coastal and Shelf Science

Li, S., D.A. Lobb, and M.J. Lindstrom. 2007. Tillage and water erosion on different landform elements on topographically complex landscapes. *Journal of soil and Water Conservation*

Li, Y., J. Yang, Y. Zhui, Chen Jingjian, and Wu Shuxia. 1997. Using 137Cs and 210Pb to assess the sediment sources in a dam reservoir catchment on the loess plateau, China, *CNIC-01155; CSANS-0113*, China Nuclear Information Centre, Beijing. 15p

Luksiene, B., R. Druteikiene, R. Gvozdaite, and A. Gudelis. 2006. Comparative analysis of 239Pu, 137Cs, 210Pb and 40K spatial distributions in the top soil layer at the Baltic coast. *Journal of Environmental Radioactivity* 87(3):305-314.

Mackenzie, A.B., M.S. Baxter, I.G. McKinley, D.S. Swan, and W. Jack. 1979. The determination of 134Cs, 137Cs, 210Pb, 226Ra, and 228Ra concentrations in nearshore marine sediments and seawater. *Journal of Radioanalytical Chemistry* 48:29-47.

Mitchell, P.I., W.R. Schell, A. McGarry, T.P. Ryan, J.A. Sanchez-Cabaza, and A. Vidal-Quedras. 1992. Studies of the vertical distribution of 134Cs, 137Cs, 238Pu, 240Pu, 241Pu, 241Am, and 210Pb in ombrogenous mires at midlatitudes. *Journal of Radiation and Nuclear Articles* 156:361-387.

Mundschenk, H. 1983. Zur sorption cäsium von schwebstoff an sediment des Rheins am beispiel der nuklide 133Cs, 134Cs und 137Cs. *Deutsche Gewasserkundliche Mitteilungen* 27:62-68. (German)

N (click [here](#) to return to index)

Nishita, H., B.W. Kowalewsky, A.J. Steen, and K.H. Larson. 1956. Fixation and extractibility of fission products contaminating various soils and clays: 1. \(^{90}\)Sr, \(^{91}\)Y, \(^{106}\)Ru, \(^{137}\)Cs, and \(^{144}\)Ce. *Soil Science* 81:317-326.

O (click here to return to index)

Owens, P.N. and D.E. Walling. 2003. Temporal changes in the metal and phosphorus content of suspended sediment transported by Yorkshire rivers, U.K. over the last 100 years, as recorded by overbank floodplain deposits. *Hydrobiologia* 454:185-191.

P (click [here](#) to return to index)

Paatero, J., S. Kulmala, T. Jaakkola, R. Saxen Ritva, and M. Buyukay. 2007. Deposition of 125Sb, 106Ru, 144Ce, 134Cs and 137Cs in Finland after the Chernobyl accident. *Boreal Environment Research* 12(1):43-54.

Parkinson, R.W., R.R. DeLaune, C.T. Hutcherson, and J. Stewart. 2006. Tuning surface water management and wetland restoration programs with historic sediment accumulation rates:

erosion and sediment redistribution in river catchments: measurement, modelling and management, CABI, Wallingford, UK.

Poreba, G.J., and A. Bluszcz. 2006. Measurement of 137Cs in cultivated soils from two loess areas in Poland. *Isotopes in Environmental Health Studies* 42(2):181-188.

Purtymum, W.D. 1974. Storm runoff and transport of radionuclides in DP Canyon, Los Alamos County, New Mexico. Los Alamos Scientific Laboratory, LA-5744, 9pp

Q (click [here](#) to return to index)

Ramzaev, V., A. Mishine, V. Golikov, J.E. Brown, and P. Strand. 2007. Surface ground contamination and soil vertical distribution of 137Cs around two underground nuclear explosion sites in the Asian Arctic, Russia. *Journal of Environmental Radioactivity* 92(3):123-143.

Ravera, O., and G. Premazzi. 1971b. A method to study the history of any persistent pollution in a lake by the concentration of 137Cs from fall-out, pp. 703-719. In: Radioecology applied to the protection of man and his environment. EUR 4800.

Ruse, M.E., and M.R. Peart. 2000. Intrasite sampling of Hong Kong soils contaminated by

Ruse, M.E., and M.R. Peart. 1999. Cs-137 reference site characteristics in Hong Kong - Some
considerations. Physics and Chemistry of the Earth Part A-Solid Earth and Geodesy
24(10): 887-891.

for collecting time-integrated fluvial suspended sediment samples. International

bacteria on adsorption of Cs-137 by soils from arid and tropical regions. Journal of
Environmental Radioactivity 74(1-3):151-158.

turf weakly podzolic loam soil: Critical evaluation of the sequential extraction results.
Dopovidi Natsional'noyi Akademiyi Nauk Ukrayiny 0(10):187-191. (Ukrarian)

in soddy weakly podzolic sandy loam soil. Agrokhimiya 0(10):52-58.

Caesium-137 content in Dnieper drowned area sediments in 1993. Dopovidi
Natsional'noyi Akademiyi Nauk Ukrayiny 4:133-136. (Russian)

S (click here to return to index)

Schuller, P., K. Bunzl, G. Voigt, A. Krarupa, and A. Castillo. 2005. Seasonal variation of the radiocesium transfer soil-to-Swiss chard (Beta vulgaris var. cicla L.) in allophanic soils from the Lake Region, Chile. *Journal of Environmental Radioactivity* 78:21–33.

Schuller, P., and A. Ellies. 1994. Einfluß des Jahresniederschlags und der bodenart auf die 137Cs tiefenverteilung in böden Südciches (The influence of mean annual rainfall and soil texture on the 137Cs vertical distribution in soils from southern Chile). *Zeitschrift Fuer Pflanzenernährung und Bodenkunde* 157:429-432. (German)

Tarariko, O.G., V.A. Vergunov, and V.M. Zaplatins'kii. 1996. Redistribution of caesium-137 in agricultural landscapes of the Northern forest steppe with reference to terracing,
trenching and contour ridging associated with erosion control. **Visnik Agrarnoi Nauki** 4:10-15. (Ukrainian)

U (click here to return to index)

323

W (click here to return to index)

Wallbrink, P.J., B.P. Roddy, and J.M. Olley. 1997. Quantifying the redistribution of soils and sediments within a post-harvested forest coupe near Bombala, NSW, Australia, CSIRO, Land and Water Technical report, 7/97, Canberra, Australia

331

333

Walling, D.E., and Q. He. 2001. Model for converting 137Cs measurements to estimates of soil redistribution on cultivated and uncultivated soils, and estimating bomb-derived 137Cs reference inventory (Including Software for Model Implementation). *A contribution to the International Atomic Energy Agency Coordinated Research Programmes on Soil Erosion (D1.50.05) and Sedimentation (F3.10.01)*, Department of Geography, Exeter, UK.

Walling, D., and Q. He. 1997. Models for converting 137Cs measurements to estimates of soil redistribution rates on cultivated and uncultivated soils (Including software for model implementation). *A contribution to the International Atomic Energy Agency Coordinated Research Programmes on Soil Erosion (D1.50.05) and Sedimentation (F3.10.01)*, Department of Geography, Exeter, UK

Walling, D.E., Y. Zhang, and Q. He. 2006. Models for converting radionuclide (137Cs, excess210Pb, and 7Be) measurements to estimates of soil erosion and deposition rates (including software for implementation), University of Exeter, UK, 31 pp.

Wan, G.J., P.H. Santschi, M. Strum, K. Farrenkothen, A. Lucek, E. Werth, and C. Schuller. 1987. Natural (210Pb, 7Be) and fallout (137Cs, 239,240Pu, 90Sr) radionuclides as geochemical tracers of sedimentation in Greifensee, Switzerland. *Chemical Geology* 63:181-196.

X (click here to return to index)

Y (click here to return to index)

Z (click [here](#) to return to index)

studies by environmental radionuclides and their application to soil conservation measures", May 1998, Bucharest. IAEA, Vienna, Austria.

(click [here](#) to return to index)