Excessive dietary sodium consumption increases blood pressure, which increases the risk for stroke, coronary heart disease, heart failure, and renal disease. According to a recent CDC report on vital signs, 44% of adults consume 3,400 mg or more of sodium per day. This level is considered excessive. A collaborative effort is being conducted by scientists at USDA and Texas Tech University (TTU) to monitor sodium content of bacon and popular cold cuts. Furthermore, sodium content in these products will be compared to those previously reported in 2002-2007 (Patterson et al., 2011). The effect of cooking on the sodium content of regular and low sodium bacon will also be examined.

Objective

- To determine sodium content of bacon products and popular ready-to-eat cold cuts (sliced ham, turkey breast, chicken breast, beef bologna, and hard salami) available in the retail market.
- To compare current sodium values to previously reported data (2002-2007).
- To determine the effect of two cooking methods on the sodium content of regular and low sodium bacon.
- To update the sodium content and other nutrients for luncheon meats and bacon products in the National Nutrient Database for Standard Reference.

Methodology

Sampling: Retail packages of three brands of ready-to-eat (RTE) luncheon meats were purchased from 12 retail outlets using a nationwide sampling plan developed for USDA’s National Food and Nutrient Analysis Program (NFNAP). Regular (n=18), and low sodium (n=6) pre-cooked bacon (n=18) were also sampled using the NFNAP sampling plan.

Preparation: Regular and low sodium bacon were prepared at least two methods: microwave and pan-fried as directed on the label. Proximates (ash, moisture, nitrogen, fat and selected nutrients) were determined by a commercial laboratory using standard AOAC methodology.5, Minerals were analyzed by ICP methodology.6

Quality control: Quality assurance was monitored through the use of standard reference materials (SRM). In-house control materials and random duplicate sampling. Statistics: Data were evaluated using the two factor Analysis of Variance procedure and the Mann Whitney U test.7 Critical value was set at p=0.05.

Excessive dietary sodium consumption increases blood pressure, which increases the risk for stroke, coronary heart disease, heart failure, and renal disease. According to a recent CDC report on vital signs, 44% of adults consume 3,400 mg or more of sodium per day. This level is considered excessive. A collaborative effort is being conducted by scientists at USDA and Texas Tech University (TTU) to monitor sodium content of bacon and popular cold cuts. Furthermore, sodium content in these products will be compared to those previously reported in 2002-2007 (Patterson et al., 2011). The effect of cooking on the sodium content of regular and low sodium bacon will also be examined.

Objective

- To determine sodium content of bacon products and popular ready-to-eat cold cuts (sliced ham, turkey breast, chicken breast, beef bologna, and hard salami) available in the retail market.
- To compare current sodium values to previously reported data (2002-2007).
- To determine the effect of two cooking methods on the sodium content of regular and low sodium bacon.
- To update the sodium content and other nutrients for luncheon meats and bacon products in the National Nutrient Database for Standard Reference.

Methodology

Sampling: Retail packages of three brands of ready-to-eat (RTE) luncheon meats were purchased from 12 retail outlets using a nationwide sampling plan developed for USDA’s National Food and Nutrient Analysis Program (NFNAP). Regular (n=18), and low sodium (n=6) pre-cooked bacon (n=18) were also sampled using the NFNAP sampling plan.

Preparation: Regular and low sodium bacon were prepared at least two methods: microwave and pan-fried as directed on the label. Proximates (ash, moisture, nitrogen, fat and selected nutrients) were determined by a commercial laboratory using standard AOAC methodology.5, Minerals were analyzed by ICP methodology.6

Quality control: Quality assurance was monitored through the use of standard reference materials (SRM). In-house control materials and random duplicate sampling. Statistics: Data were evaluated using the two factor Analysis of Variance procedure and the Mann Whitney U test.7 Critical value was set at p=0.05.

Excessive dietary sodium consumption increases blood pressure, which increases the risk for stroke, coronary heart disease, heart failure, and renal disease. According to a recent CDC report on vital signs, 44% of adults consume 3,400 mg or more of sodium per day. This level is considered excessive. A collaborative effort is being conducted by scientists at USDA and Texas Tech University (TTU) to monitor sodium content of bacon and popular cold cuts. Furthermore, sodium content in these products will be compared to those previously reported in 2002-2007 (Patterson et al., 2011). The effect of cooking on the sodium content of regular and low sodium bacon will also be examined.

Objective

- To determine sodium content of bacon products and popular ready-to-eat cold cuts (sliced ham, turkey breast, chicken breast, beef bologna, and hard salami) available in the retail market.
- To compare current sodium values to previously reported data (2002-2007).
- To determine the effect of two cooking methods on the sodium content of regular and low sodium bacon.
- To update the sodium content and other nutrients for luncheon meats and bacon products in the National Nutrient Database for Standard Reference.

Methodology

Sampling: Retail packages of three brands of ready-to-eat (RTE) luncheon meats were purchased from 12 retail outlets using a nationwide sampling plan developed for USDA’s National Food and Nutrient Analysis Program (NFNAP). Regular (n=18), and low sodium (n=6) pre-cooked bacon (n=18) were also sampled using the NFNAP sampling plan.

Preparation: Regular and low sodium bacon were prepared at least two methods: microwave and pan-fried as directed on the label. Proximates (ash, moisture, nitrogen, fat and selected nutrients) were determined by a commercial laboratory using standard AOAC methodology.5, Minerals were analyzed by ICP methodology.6

Quality control: Quality assurance was monitored through the use of standard reference materials (SRM). In-house control materials and random duplicate sampling. Statistics: Data were evaluated using the two factor Analysis of Variance procedure and the Mann Whitney U test.7 Critical value was set at p=0.05.