1. Title

2. Officially, a “statistic” is any function of data.  The mean is such a function, and it often serves as a summary statistic.  However, the science of Statistics is mostly concerned with inference.  For inference, we assume a model for the phenomenon that we are studying, and we use statistics to estimate parameters of that model, and assess our confidence in those parameter estimates

3. What about this word “model?”  We use models in various ways; sometimes to represent what an object looks like, and sometimes to see how it functions.

4. The field of spatial statistics is ultimately concerned with taking complex real objects and making a simple representation of them as points, lines, or polygons.  We then assume measurements come from this representation, and that there are functional relationships among measurement, either to other measured variables or to each other through their spatial relationships.  Together, we create a representational model, a functional model, and a probability model.  This situation is more complex than slide 3, but we strive to do inference in the same way.  That is, we specify the form of the model, but we don’t know the values of the parameters.  We use data and statistics to estimate these parameters, which is known as inference.
5. Let’s take slide 4, and consider each model one at a time.  First, let’s see how we represent spatial data.  Here is some notation often used in spatial statistics.
6. The 3 most common types of spatial data.

7. Examples of geostatistical data.  The data are measured values at points (the spatial representation of the location), where the underlying surface is spatially continuous.  Because that surface is continuous, we could choose an infinite number of samples, and predict at an infinite number of locations.

8. Examples of lattice data.  The data are measured values, usually in polygons (the spatial representation of the location), but in any situation where underlying “surface” is a finite set of locations.  Prediction of unsampled locations is often not a goal here, because we’ve measured all of them.  Typically, we smooth the observed spatial measurements.
9. Examples of spatial point patterns.  The data are the points themselves (the spatial representation of the location).  There are not measurements at the points.  In geostatistics, we choose the sample points; here, the points themselves are the random quantities.

10. Now, let’s look at the functional models in slide 4.  As biologists and scientists, we usually want to create models that establish relationships among variables.   The most common models are linear, but nonlinear models are becoming more common.  The term prediction is used when we are “predicting” potentially observable quantities; that is, the response variable in our models.  That is, we have gone out and measured some of these.  We assume that these values come from some model, and there are parameters in that model.  We use the term “estimate” when estimating these parameters.  Because they are parameters in a model, they are not directly observable.

11.  Finally, we get to the heart of spatial statistics.  The probability model.  This probability model is spatially autocorrelated.  But watch out; that word “autocorrelation” has many uses, and my experience is that people often use it but with different meanings.  This causes some confusion and lack of communication.  Here are 5 distinct definitions.
12. Let’s concentrate on 4 of the meanings (the Fourier one is not often confused with the rest).  We can have 1) autocorrelated data, 2) as stochastic process with autocorrelated errors, 3) a model for how autocorrelation is related to distance, and 4) an autocorrelation statistic (a function of data displayed in relation to distance).

13. Autocorrelation Models. The things that we actually need to worry about are the autocorrelation models, and how to estimate them.  There are several ways to display autocorrelation models, and they have associated terms.  In geostatistics, the terms are nugget, partial sill, sill, and range.  This slide shows the relationships between autocovariance, (semi)variogram, and autocorrelation functions. 
14. Autocorrelated Processes. This slide shows that a model with trend and uncorrelated errors can produce data that look very similar to no trend but autocorrelated errors.  I have showed the formulas in the cells so you can simulate data yourselves in EXCEL.  It is very easy to create this simple stochastic process with autocorrelated errors.

15. Autocorrelated Processes. If you do it yourself, use F9 to re-simulate the data.  Notice that the trend model always trends up, creating autocorrelated data but there is not autocorrelation model for the errors.  The model with autocorrelated errors can wander up and down, but is constrained by the fact that values should be similar to their neighbors.

16. Why spatial statistics? In the first process (top), all random variable are HIGHLY correlated (they are all equal).  A realization (pattern) is generated by taking the outcome of a single random variable and setting all others equal to it.  It will be hard to get a good estimate of the mean, mu, in this case.  In the second process (bottom), all random variables are independent.  In this case, the sample average converges rapidly to the mean parameter mu.  So, in general, positive autocorrelation (which is largely the case) makes it harder to do estimation.  However, consider predicting the 6th value.  In this case, we get perfect prediction using the autocorrelated model.  So, in general, positive autocorrelation is beneficial for prediction.  Why spatial statistics?  To use autocorrelation for prediction, and get our confidence intervals correct when the errors are autocorrelated.
17. Why spatial statistics? When errors are independent, the prediction is equal to the fit.  When errors are autocorrelated, prediction is different than the fit.  The same properties as above are generally true: for independent errors the fit is better than for autocorrelated error, but for independent errors the prediction is worse than for autocorrelated errors. 
18. Goals of Spatial Statistics. Inference on a random variable at a location that has not been measured is termed “prediction.”  Inference for parameters of a model is termed “estimation.”  We will use the linear model.  Although linear models are not perfect, they provide useful approximations in many cases.  We can categorize some goals of our modeling.  Mapping and sampling are part of prediction, and regression and designed experiments are part of estimation.
19. Why do we need autocorrelation models?  With just a few parameters, we can model a whole covariance matrix.
20. How do we estimate the parameters in the autocorrelation models?  Here are a few named methods, but I won’t get into them here.

21. Can we use any decreasing function as an autocorrelation model?  If we try some, such as the linear-with-sill, and we use Euclidean distance measured in 2-D space, then the “covariance” matrix really isn’t a covariance matrix.  For example,  if you tried to do kriging in 2-D using the linear-with-sill model, your kriging variances might be negative, which is a bit embarrassing (for a statistician).
22. Here is stream network, where we represent a stream as a line, and samples on a stream as points.
23. Suppose that we have a stream network like the one shown on the left, and suppose that we want to measure distance along the stream, not 2-D Euclidean distance.  Then some models that work in 1-D (like the linear-with-sill), and even some that work in 2-D, like the spherical, will not give a valid “covariance” matrix.  On the right, as the range parameter increases, the linear-with-sill and spherical models have a negative minimum eigenvalue, which can cause, you guessed it, those nasty negative variances again!

24. Now, let’s look at some examples.  I’ll order my examples by goals, rather than models.  One of the goals is mapping (a subset of prediction).  Basically, we want to predict the value at unsampled locations.

25. Each prediction will have a kriging variance.  Assuming the predictions are normally-distributed, we can give the quantiles of prediction (prediction intervals are much like confidence intervals and try to “capture” the true value).

26. Lower and upper 95% prediction intervals for kriging maps of ozone in California.
27. By the same logic, using a normal distribution, we can compute the probability of exceeding some threshold value (e.g., an EPA value that causes some action, such as treated gasoline to lower emissions).  These are called probability maps.
28. My experience is that mapping is not as interesting to ecologists, biologists, and many scientists, as spatial regression.  Here, we want to do the same thing as normal regression, except that we are worried that the errors may be spatially autocorrelated.

29. This example has many covariates that are suspected to affect lizard abundance.

30. In spatial regression, we are interested in estimation.  That is, estimating the coefficients that relate lizard abundance to covariates.  After fitting some models, we ended up with two covariates that seemed to have a significant effect on lizard abundance.
31. As in any good modeling, we should check our models.  When using regression, the data may look fine, but the lack of fit shows up in the residuals.  Here, it is clear there is an outlier (look at the histogram and boxplot in the previous slide).
32. Case-deletion diagnostics can be adapted to spatial models.
33. After removing the outlier, the residuals look fine.
34. Cross-validation is another diagnostic.  We remove each datum, one at a time, and then predict is with all of the other data.  If the regression and autocorrelation models are working well, we should see predictions near the true values, and hence a 1 to 1 plot.  In reality, it is not that perfect, and the slope is often less than one because spatial prediction tends to “smooth.”
35. So far, we have assumed that the autocorrelation model depends only on distance.  It is possible that the errors are more autocorrelated in one direction than another.  We can model this as well, with 2 extra parameters, and this is call anisotropy.  When direction doesn’t matter, it is called isotropy.

36. Now, we can try some model selection.  Do we need an anisotropic model for the lizard data?  One way to assess the models is by summarizing cross-validation results.  There is no evidence of bias for either model.  RMSPE is the square root of the average difference squared between the true and predicted values.   Just remember that smaller is better.  The RMSPE is lower for the anisotropic model, meaning the the cross-validation predictions are, in general, closer to the true values.  The confidence coverage is a little better for the anisotropic model as well.  So the anisotropic model seems like the better one.
37. Other popular model selection criteria that can be used.
38. A comparison of AIC, RMSPE, and actual coverage of the 95% prediction interval during cross-validation.  It looks like the anisotropic exponential model is best based on both AIC and RMSPE, and has proper prediction intervals.
39. Inference in the spatial regression.  The anisotropic exponential model of autocorrelation among the random errors has 5 parameters, and the estimates are shown here.  This affects the estimate of the relationship between lizard abundance and ant abundance and sandy soils.  The estimated coefficients are shown here, along with standard errors, t-values, and a test that the null hypothesis of the effect is 0.  Note that without using spatial modeling, many more covariates were estimated to be “significantly” related to lizard abundance.
40. Some references on spatial regression that I have been involved with.
41. Now let’s move on to spatial designed experiments.  The data will come from some glades in the Ozarks.
42. Here’s Noel Cressie sitting on one of these glades back in 1989.

43. Let’s play a little game.  In the upper left, the numbers indicate the number of vascular plant species in each plot.  Now, suppose that we had applied some treatments (such as fire at different times of the year), and their true effect is given in the table on the left.  Then the observed data are shown at the bottom.  All we get to use is the treatment type and the observed values (true value + true treatment).  Our goal is to estimate some contrasts of those treatments.  The 5 contrasts that we will consider are shown in the upper right.
44. Just a reminder of where we are.  Designed experiments, from a linear model viewpoint, are pretty much just like regression.  Our goal is to estimate the treatment effects (and the contrasts), which are parameters, just like regression parameters, but we also have the autocorrelated errors, with a model of spatial autocorrelation.
45. We can choose from a variety of spatial models of autocorrelation.  Because the plots are polygons, we can choose from lattice models (CAR, SAR, more on those later), or geostatistical models (exponential, spherical, which you’ve already seen).  Lattice models use the idea of neighbors, rather than distance.  Here, geostatistical models use distance from centroids of polygons.
46. A comparison of contrast estimates assuming independence, and spatial models, where we use geostatistical models and lattice models, and both classical likelihood estimation and Bayesian estimation methods.  There is not a great deal of difference among the spatial methods.  In general, their confidence intervals are narrower than independence models (OLS).  In general, their estimates are closer to the true value.  One interesting exception is contrast 5.  Note that treatments 4 and 5 are spatially clustered and separated.  Hence, the difference between treatments 4 and 5 could be due to spatial effects, or treatment effects.  The spatial models “recognize” that this is a bad design for estimating contrast 5.  OLS makes no distinction between contrasts 4 and 5.
47. In the last slide, we examined one random application of treatments.  What happens if we do it 1600 times?  Do the spatial methods work on average the way they are supposed to?

48. Here is the mean-squared error (MSE), 95% confidence interval coverage, and the power to detect non-zero differences, for each of the 5 contrasts.  MSE is the average difference squared between the true and estimated values.  Just remember that small is better.  Values shaded in pink and red are signficantly different from what they should be.  The main thing to notice is that the MSE is much smaller for spatial REML than classical ANOVA, but it still has the proper coverage for it’s confidence intervals.  Hence, it is much more powerful than ANOVA.  Plain maximum likelihood estimation has bias problems.

49. Some references for that I have been involved with.

50. Last goal is sampling.  Here is an example using moose surveys.

51. One of the big differences between classical sampling and spatial models for sampling is what is assumed to be random, and what is assumed to be fixed.  Classical sampling assumes the pattern is fixed, and samples are taken randomly.

52. The two models used in the previous slide.  The second is a stochastic process which is exactly the one that you can create using EXCEL as in slides 14 and 15.
53. Let’s consider 2 situations: 1) the underlying population is spatially continuous, and 2), the underlying population is spatially discrete, and we’ll compare classical sampling to geostatistics for each case.

54. Here is an example of a spatially continuous population; snow depth over a large region in Alaska.  Here we see the connection between sampling and prediction.  Sampling from a geostatistical viewpoint is predicting the average value over a region, rather than at a single point.

55. Here is a fixed continuous surface.  The bluer areas are lower, and the redder areas are higher values.  The white circles are locations of random samples.  Now, let’s see which does better, classical sampling estimators or a geostatistical estimator (called block kriging) for estimating the average value of the surface (I know the true value because I created the surface from sines and cosines and was able to calculate the integral).  I then too 1000 random samples to assess the average performance of each method.
56. Here we see RMSPE again.  The lower the RMSPE, the better.  We can see that block kriging does better than simple random sampling, but still has valid 80% confidence intervals.

57. Now let’s consider case 2), where the underlying population is spatially discrete, and we’ll compare classical sampling to geostatistics for each case.

58. Here is an example.  Again we see the connection between sampling and prediction.  Sampling from a geostatistical viewpoint is predicting the average value in a set of sample units, rather than at a single sample unit.
59. Here is an example of vascular plant species richness in 200 plots.  We know what the true average is – now let’s take 1000 different samples of 100 and compare the average performance of classical sampling to a geostatistical method.

60. Here we see RMSPE again.  The lower the RMSPE, the better.  We can see that finite population block kriging does better than simple random sampling, but still has valid 80% confidence intervals.

61. In the last example, the underlying population was fixed (it did not change from one random sample to the next).  Hence, we can’t really assess fixed designs (because nothing would change; neither the population nor the sample).  Here, we simulate the population from a stochastic process 1000 times, and then take a random sample of 50, but also use a fixed sample design shown by the green squares.  Two of 1000 simulations are shown, with larger values as larger redder circles, and smaller values as smaller bluer circles.
62. Performance results.  The lower the RMSPE, the better.  The spatial models are better than classical random sampling, but still have valid 80% confidence intervals.  The fixed design of systematically placed pairs is better than a random sample when using geostatistical methods.
63. A real example from a moose survey in Alaska.  We used a stratified design.
64. Flying the survey and counting moose.

65. Tracks of airplanes within the plots.
66. The modeled autocorrelation, shown here as a semivariogram.

67. The estimates, using both stratified random sampling and finite population block kriging.  For the estimate of the total number of moose, there is not a big difference between the two.  However, when estimating a small area, the spatial method does better.  The ability to estimate populations within small subareas is a big advantage for the spatial methods.
68. A summary of my experience on some of the advantages and disadvantages of using geostatistical methods for sampling.
69. Some reference that I have been involved with.
70. Doing good science means building good models, and then doing valid inference on these models.  As models get more complicated, it is necessary to form collaborations.  Generally, the scientist is on the left of this slide, helping to guide the question, the measurements, and realistic models that attack the question.  The statistician collaborates on what kinds of models are feasible for inference, and then uses data to do the inference.  Then the scientist needs to interpret the results that hopefully shed new light on the question.
