T

L

Incorporating CO2 Responses




l ‘ Important Mechanisms

affect the assimilation rate of carbon by a plant
leaf.

 The magnitude of the response of plant growth

to CO, depends on plant type (C, or C;) and CO,
level

* Elevated CO, concentrations result in reduced
stomatal conductance and an increase in water
use efficiency

 Photosynthesis is temperature dependent

’ * CO, content in the atmosphere and sunlight




Input Variables

e Light intensity [PAR umol m= s! photons]
e CO, Concentration [umol CO, mol™* air]
e Temperature [°C]

e Relative humidity — vapor pressure deficit
[kPa]

“» Nitrogen [mgr gr]

‘ m e Leaf water status [kPa water potential]



Model components (processes) to
simulate photosynthesis

Photosynthesis (carbon assimilation):
response to PAR, CO, and temperature

Conductances and transpiration: response to
vapor pressure deficit and wind.

Canopy radiative transfer: response to sun
angle, and canopy size/structure
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Temperature dependence of

photosynthesis in corn
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Kim et al. 2007. Temperature dependence of growth development and
photosynthesis in maize under elevated CO2. Env. and Exp. Bot., 61: 224-236




Photosynthesis response to light
and CO, in cotton (a C; plant)

Photosynthesis and Environment
Light-Response Curves

e 720 ppm
o 360 ppm

Photosynthesis, mg CO5 mZs
e

0 500 1000 1500 2000

PAR, pmolm< 71




Models for Plant Response to CO,

- | * Farquhar biochemical model of gas exchange

| » Scaling CO, response in a radiation use
efficiency equation




1. Photosynthesis

e CO, supply (source)
— Diffusion equation
— Function of external CO, (gradient)
— Stomatal control (conductance)

e CO, biochemical demand (sink)
— Michaelis-Menten kinetics model
— C; model

— C, model

e Accounts for the CO, concentrating mechanism
and related leakage

* C, leaf temperature and PAR tie the two
processes together




Farguhar - von Caemmerer - Berry
(FVCB) model (C,)

A=V_-0.5V_ Ry
A. = Net carbon assimilation rate due to
carboxylation
V_= Rate of carboxylation
V_= Rate of oxygenation
Rp= Rate of respiration




Farguhar - von Caemmerer - Berry
(FVCB) model (C,)

Michaelis-Menten - the simplest enzyme kinetics model.

Can be used to describe the relationship between the rate of enzyme catalysed
reaction (V) and the concentration of the substrate [S]. The equation has two
parameters (ie basic properties of the enzyme), Ky and Vi

Vmax, the maximum rate of the reaction

V, velocity of
reaction
involving
substrate S

[S], concentration of substrate under investigation

Ky (the Michaelis-Menten constant) is a measure of the affinity that the
enzyme has for the substrate - the bigger Ky the lower the affinity.

Source:
http://www.tbi.univie.ac.at/~raim/harvest/workshop.brno/presentations/harbinson.pdf




C, photosynthesis model

Leaf A-C, response
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Modeling C, temperature
dependence at elevated CO,

Photosynthesis - Transpiration
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e Temperature optimum is unchanged under elevated CO.,.
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temperature at low temperatures

E (mmol m?s™)



Temperature responses of leaf photosynthetic parameters. Maximum
PEP-Case activity estimated by initial slope of A-C, response (A), leaf
dark respiration (B), Leaf A, at saturating PAR (C), and quantum
efficiency of PSIl measured as F /F_, (D).
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- 2. Stomatal Conductance and Water
Relations



Daily transpiration as a function of water
stress and CO, in potato

Diurnal transpiration values at 45 DAE
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Stomatal conductance

Ball, Woodrow, Berry (1987)
g, = b{m(Ah/C)

= Q. stomatal conductance for water vapor
= b, m: empirical coefficients

= A: net CO, assimilation rate

= hg: relative humidity at leaf surface

m C.: leaf surface [CO,]

Requires photosynthetic rate (A) as input
Lacks stomatal response to water stress



3. Energy balance equation

R - L _I_ H _I_ Z(E Long-wave radiation

abs

— R, Absorbed radiation Sensible heat
- — L: Long-wave radiation
— H: Sensible heat loss S W

- — JE: Latent heat loss (evaporative <
cooling) ¥

Evaporative cooling




' ‘ Model for Leaf Gas-Exchange

|* C, (von Caemmerer and Furbank, 1999) and
C, Photosynthesis model (Farquhar and von
Caemmerer, 1981)

— (biochemical demand for CO,):

. » Stomatal conductance model (physical supply
of CO,): Ball, Woodrow and Berry (1987)

e Transpiration and leaf temperature:
Penman’s linearized energy budget equation




Coupled gas exchange model

e Component models are
coupled numerically which
requires iteration.

e Scaling up to canopy

— Sunlit and shaded leaf class
method

e Validation
— Tested against independent data




Temperature response (leaf level)
for corn
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A,.. and Stomatal Conductance
Response to Temperature and CO,
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Calibrated leaf level light response
for corn
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Temperature response of observed and simulated
canopy photosynthesis for corn in growth chambers
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Simulation of canopy photosynthesis
response to water stress in corn
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Simple approach — scale CO2
response
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l ‘ Summary and Conclusions

. » A biochemical model of photosynthesis is a
useful approach to modeling the effects of
elevated CO2 on photosynthesis

 Parameters can be fit with data from leaf gas
exchange equipment but fitting the
parameters has some problems

e Mechanisms for adaptation by leaves to CO2
are missing.




THANK YOU!
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Simulated carbon Assimilation rate
and intracellular [CO2]
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