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SOIL CARBON RELATIONSHIPS WITH TERRAIN ATTRIBUTES,
ELECTRICAL CONDUCTIVITY, AND A SOIL SURVEY IN A
COASTAL PLAIN LANDSCAPE

J. A Terd!, J. N. Shaw?, D. W. Reeves?, R. L. Raper*, E. van Santen?, and P. L. Mask?

Soil organic carbon (SOC) estimation at the landscape level is critical
for assessing impacts of management practices on C sequestration and soil
quality. We determined relationships between SOC, terrain attributes, field
scale soil electrical conductivity (EC), soil texture and soil survey map units
in a 9 ha coastal plain field (Aquic and Typic Paleudults) historically man-
aged by conventional means. The site was composite sampled for SOC
{0-30 cm) within 18.3 X 8.5-m grids (r = 496), and two data sets were cre-
ated from the original data. Ordinary kriging, co-kriging, regression krig-
ing and multiple regression were used to develop SOC surfaces that were
validated with an independent data set (n = 24) using the mean square
etror (MSE). The SOC was relatively low (26.13 Mg ha™?) and only mod-
erately variable (CV = 21%), and showed high spatial dependence. Inter-
polation techniques produced similar SOC maps but the best predictor
was ordinary kriging (MSE = 9.11 Mg? ha?) while regression was the
worst (MSE = 20.65 Mg? ha—2). Factor analysis indicated that the first
three factors explained 57% of field variability; compound topographic
index (CTI), slope, EC and soil textural fractions dominated these com-
ponents. Elevation, slope, CTI, silt content and EC explained up to 50%
of the SOC variability (P = 0.01) suggesting that topography and histor-
ical erosion played a significant role in SOC distribution. Field subdivi-
sion into soil map units or k-mean clusters similarly decreased SOC vari-
ance (about 30%). The study suggests that terrain attributes and EC
surveys can be used to differentiate zones of variable SOC content, which
may be used as bench marks to evaluate field-level impact of management
practices on C sequestration. (Soil Science 2004;169:819-831)
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The complex arrangement and combinations
of soils, landscapes, biological processes and man-
agement practices within row crop settings result in
high spatial variability of SOC. Thus. quantitative
assessment of soil quality and its relation to C se-
questration 1 needed on a site-specific  basis
{Bergstrom ct al., 2001). Spatial variation of SOC
and 1ts response to soil management is affected by
the combined influence of soil properties and ter-
rain attributes on biological processes. For example,
no tillage and perennial grasses increased microbial
biomass and C mineralization in a study in Col-
orado, but only in productive landscape positions
with high SOC (Burke et al., 1993). Bergstrom et
al. (2001} found that a no-tillage Canadian field
had more SOC than a conventional tllage field
only at well-drained upper slope positions. Van-
denBygaart et al. (2002) found that landscape posi-
tion and erosion deposition history were key fac-
tors in the ability of no-till soils to sequester C.

The semivariogram is commonly used to
quantify and model the spatial dependence of a
soil property, including the distance of the spatial
correlation (range). the amount of variance due to
error (nugget), the maximum variance between
sampling points (sill) and the overall strength of
the spatial correlation (Isaaks and Srivastava, 1989;
Goovacrts, 1998). Some studies have indicated
that SOC has moderate to high variability (CV
21-41%), has strong spatial correlation (nugget/
sill =0.05) and long spatial dependence (range =
250-m) (McBratney and Pringle, 1999).

Soil sampling schemes range from grid based
approaches to area-based approaches such as zone
sampling. Several techniques exist to assess spatial
distributions of soil properties across landscapes
including geostatistical techniques such as krig-
ing (ordinary, universal, co-kriging, etc.), simpler
methods like regression, or even hybrids such as
regression-kriging (Bishop and McBratney,
2001). Interpolation methods allow prediction of
SOC values at unsampled locations when spatial
correlation between observations exists. Predic-
tion methods may use only observations of SQC
(kriging) or incorporate secondary information
provided by correlated properties with SOC (co-
kriging, regression-kriging) (Goovaerts, 1998).

Regression analysis is a relatively simple soil
property mapping technique. Multiple regression
between SOC and terrain attributes out-per-
formed ordinary kriging at low intensity grid
sampling schemes, explaining between 66 to 86%
of the SOC wariability of a Michigan field
(Mueller and Pierce, 2003). However, Florinsky
et al. (2002) using regression with nine terrain at-
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tributes, explined only 37% of SOC variability
of a Canadian prairies landscape.

Rapid spatial measurement of soil EC has
been proposed to assess spatial heterogeneity of
soil properties (Anderson-Cook, 2002). Soil EC
is related to multiple soil physical, chemical and
biological properties. Moisture content, texture,
SOC, and the mineralogy of the soil matrix are
the main factors aftecting EC in many Southeast-
ern USA soils (Shaw and Mask, 2003}, However,
due to covariance, it is problematic to determine
the unique property resulting in corresponding
conductivity changes.

Zone sampling is a method where soil samples
are composited from areas that are expected to
have similar characteristics and less variability than
the entire field. Multivariate statistics, including
principal component analysis, factor analysis and
cluster analysis, have been effective tools for iden-
tification of zones of soil variabilicy within fields
using terrain attributes and soil properties (Fraisse
at al., 2001; Taylor et al., 2003).

Future research evaluating SOC dynamics in
agricultural soils and the effects of management
practices should consider landscape variability.
Estimation and mapping of SOC at the landscape
level and improved understanding of SOC rela-
tionships with other soil properties and terrain at-
tributes is a prerequisite for assessing the impact
of soil management practices on C sequestration
at the field scale.

The objective of this study was to establish
relationships between SOC and terrain attributes
and soil properties in an Alabama coastal plain
field under conventional tillage management for
more than 30 years. In unison with this, we eval-
vated various techniques for assessing SOC spa-
tial variability across the landscape.

MATERIALS AND METHODS
Study Site

The rescarch was conducted at the Alabama
Agriculeural Experiment Station’s E.V. Smith
Reesearch Center in central Alabama (85°33'50”
W, 32725227 N). The site consists of a 9 ha field
with a long history of row cropping, mostly cot-
ton (Gossypium hirsutum L.}, under conventional
tillage (moldboard or chisel plowing and disking)
for the last 30 vears.

Soil and Terrain Attributes Creation

A detailed soil survey, digital elevation, and
EC surveys were developed for delineating soil
and landscape variability within the field.




SOIL SCIENCE

only 37% of SOC variability
es landscape.

weasurement of soil EC has
ssess spatial heterogeneity of
lerson-Cook, 2002). Soil EC
¢ soil physical, chemical and
s. Molsture content, texture,
ralogy of the soil matrix are
cting EC in many Southeast-
v and Mask, 2003}, However,
t is problematic to determine
y resulting in corresponding

>,
s a method where soil samples
m areas that are expected to
ristics and less variability than
altivariate statistics, including
1t analysis, factor analysis and
‘been effective tools for iden-
f soil variability within ficlds
tes and soil properties (Fraissc
>t al., 2003).

evaluating SOC dynamics in
d the effects of management
nsider landscape variability.
ping of SOC at the landscape
understanding of SOC rela-
-soil properties and terrain at-
nsite for assessing the impact
- practices on C sequestration

>f this study was to establish
>n SOC and terrain attributes
in an Alabama coastal plain
ional tillage management for
In unison with this, we eval-
iques for assessing SOC spa-
s the landscape.

LS AND METHODS

Study Site

as conducted at the Alabama
iment Station’s E.V. Smith
» central Alabama (85753'50”
“he site consists of a 9 ha field
of row cropping, mostly cot-
utum L.), under conventional
or chisel plowing and disking)

rain Attributes Creation
survey, digital elevation, and
eveloped for delineating soil
bility within the field.

VOL. 169 ~No. 12

A detailed soil survey (scale ~1:5000) was de-
veloped according to National Cooperative Soil
Survey standards. Soils at the site are mostly finc
and fine-loamy, kaolinitic, thermic Typic and
Aquic Paleudults. Drainage classes were assigned
for each map unit and depth to the seasonal wa-
ter table (WTD) was estimated using the Soil In-
terpretation Records (SIR). Map units were ras-
rerized (5 X 5-m grid) using Arclnfo® 8.0
('ESRI, Redland, California).

The field was surveyed by a direct contact
Veris® Techunology 3100 Soil EC Mapping Sys-
tem (!Veris Technology, Salina, KS) equipped
with a GPS. The field was at fallow during the
survey (winter) and soil moisture conditions were
near field capacity. Measurements were taken in
transects spaced approximately 9-m apart at a
speed of =4 km h™1 Geo-referenced EC data
(mS m™1) were recorded at 1-s intervals at 0~30
em (EC) and 0-90 cm (EC,) depths.

A Trimble® 4600 L.S. Survevor Total Station
was used to determine elevations across the field.
Elevation measurements were taken each second
with a vehicle traveling ~ 5 km h™* in concentric
circles ~5-m apart. Digital elevation models and
terrain attributes were developed using the appro-
priate algorithms and commands in ArcInfo®. Ter-
rain attributes included clevation (ELEV), slope,
aspect (ASP), profile curvature (PROFC), plan
curvature (PLANC), flow accumulation (FA),
catchment area (CA), specific catchment area
{(SCA) and compound topographic index (CTI).
Slope identifies the maximum downhill rate of
change in value from each cell to its neighbors. As-
pect (measured in degrees clockwise from N)
idendfies the down-slope direction of the maxi-
mum rate of change in value from each cell to its
cighbors. Profile curvature is a measure of the
onvexity or concavity of the surface in the direc-
on of slope, while PLANC relates the curvature
f'the surface perpendicular to the slope direction.
Flow accumulation was calculated for each pixcl
based on the accumulated weight for all cclls that
flow into each downslope cell. Catchment area
as calculated for cach pixel as the product of FA
timnes cell area (25 m?). Specific catchment area is
& area orthogonal to the flow direction and was
alculated as the CA divided by the grid size (5
1). The CTI represents the landscape arcas where
ter accumulates and was computed for cach
el according to Moore et al. (1993):

CTI = In (SCA / tan B) (1)

here B is the slope angle (degrees).
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Soil Sampling

Soil samples were collected during Jan-Feb
2001 from 496 regular grid points (8.5 X 18.3 m;
64 grids ha'!). Forty-eight of the grid lines tran-
sected the field (E-W) across the maximum vari-
ability. An additional sct of 24 independent sami-
ples was collected as a validation set. Ten 2.5-cm
dia. sampling cores to a depth of 30-cm were
taken and composited within a 2.5-m radius
from the center of each grid. Two additional data
sets were created from the original 496 sampling
grids (Ggyn,) using a procedure similar to
Mueller and Pierce (2003). The first set was cre-
ated by removing 1/2 of the transects creating a
17 X 18.3-m regular grid with =32 points ha™!
(Gss 5. The second set was created by removing
3/4 of the transects and doubling the separation
distance of points within transects, creating a 34
X 36.6-m grid with =8 points ha™! (Gy,, ).

Soil samples were dried at 535 °C for 48 h and
ground to a 2-mm sicve. Two ground subsamples
from cach of the 496 grid points and three sub-
samples fromi each of the validation points were
analyzed for SOC by dry combustion using a
LECO® CN-2000 analyzer {!Leco Corporation,
St. Joseph, Michigan). Particle size distribution
was determined for 82 of the samples (23.5 X
36.6-m grid) using the pipette method following
organic matter removal (Kilmer and Alexander,
1949). A soil core sampler (5.3-cm dia.) was used
to determine soil bulk density (0-~30-cm) in 5-
cm increments. Bulk density was determined in
62 of the 496 SOC sampling sites with three sub-
samples per site. These values were averaged and
used to compute the SOC on a volume basis (Mg
SOC ha™! in the top 30 cm).

Data Manipulation and Statistical Analysis

Transtormation of soil and terrain attributes
was considered only when high departure from
normality existed. Soil organic C data for which
log-transformation resulted in skewness closer to
0 compared with nontransformed data were log-
transformed prior to analysis. Data were back-
transformed to the original data domain for final
reporting using a weighted back transformation.

Geostatistical analyses were conducted on
geo-referenced SOC, texture, EC and elevation
data using G5+% (*Gamma Design Software,
Plainwell. Michigan). Spatial structurc of the SOC
and soil data were analyzed using semivariograms.
Only isotropic models were used for terrain and
soil data (except SOC) due to the lack of signifi-
cant anisotropy. For SOC data, spherical and ex-
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ponential models were fit to both isotropic and
anisotropic variograms. Directional (anisotropic)
sermivariograms were caleulated for SOC using
angular tolerances of = 30°. Anisotropic semivari-
ance surfaces were used to find the principal axis
for defining the anisotropic variogram model
(Tsaaks and Srivastava, 1989). The nugget:semi-
variance ratio was used to define spatial depen-
dence of the variables. Residual sums of squares
(RSS) was used as a criterion for model selection.

Ordinary kriging was used to interpolate val-
ues of EC, sand, silt and clay content for both 5
X 5-m grids and for each SOC sampling point.
Cross-validation with replacement was used to
evaluate interpolated surface quality (Goovaerts,
1998). Interpolated surfaces of EC, sand, silt and
clay content were stacked with terrain attributes
and depth of scasonal high water table resulting in
a total of fourteen layers (ELEVA, SLOPE, ASP,
PROFC, PLANC, CA, SCA, CTI, EC,;, ECy,
clay, silt, sand and WTD).

Factor analysis was used to reduce the dimen-
sionality of the original data and express original
variables in terms of a few common factors
(Khattree and Naik, 2000). The FACTOR proce-
dure of SASY (Principal component method and
Varimax orthogonal rotation) was used with soil
and terrain attributcs to create groups of corre-
lated wariables (latent variables). Factors with
eigenvalues > 1 were used as criteria for selec-
tion. Scores for the retained factors were obtained
for each of the 496 sampling points using factor
loadings and original values.

Pearson corrclation coefficients (P < 0.01)
were obtained between SOC and terrain and soil
attributes for the 496 SOC sampling points. Re-
gression models between SOC and soil and ter-
rain attributes were obtained using the Maxi-
mum R2 Improvement procedure (MAXR) of
SAS® (SAS Institute, Cary, NC) with P = 0.01
and Mallow’s C(p) statistics as cricerions for vari-
ablc selection (Freund and Littell, 2000). Variance
inflation factors (VIF) exceeding 10 were used
for detection of multicolinear variables.

Values of SOC were interpolated at the same
5 X 5-m grid using four methods: ordinary krig-
ing, co-kriging, regression and regression-krig-
ing. Ordinary kriging and co-kriging operations
were performed with GS+*. Regression-kriging
was performed using ordinary kriging of the
residuals of the multiple regression models show-
ing some degree of spatial structure and subse-
quently adding the kriged residual values to the
regression model estimations  (Bishop and
McBratney, 2001).
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Cross validation of estimated vs actual values
was performed to assess accuracy of kriged or re-
gressed values using 24 independent sampling
points. Miean square error (MSE) and prediction
efficiency (PE) were used as indicators of map ac-
curacy (Gotway ct al., 1996; Mueller and Pierce,
2003):

MSE = 1/n 2, (2(x) — 2*(x))? 2

Where z(x)) = actual SOC content and z* (x;) =
predicted SOC content.

(o

PE = [1 — (MSE, / MSE,)] X 100 (

Where MSE_ is the mean squarc error obtained
from imcrpofation and MSE, is the mean square
error using the sample average.

The field was subdivided into zones using a
clustering procedure similar to Fraisse et al.
(2001) and Fridgen et al. (2004). The cluster
analysis was performed with the data that ex-
plained most of the field variability and was
highly correlated with SOC as evidenced by the
factor and correlation analysis, respectively, Data
layers were normalized (0 — 100) prior to cluster-
ing. Zones were created by unsupervised classifi-
cation using the Management Zone Analyst®
software (Fridgen et al., 2004). This software uses
a fuzzy k-means unsupervised clustering algo-
rithm to assign multivariace data into clusters.
Two performance indices (fuzziness performance
index and normalized classification entropy)
were used to determine the optimal number of
clusters. Optimum numbers of zones wexe se-
lected based on evaluation of the two perfor-
mance indices and in the reduction of within-
zone SOC wvariance. The SOC differences
between clusters or soil map units were analyzed
with the SAS® MIXED procedure where clusters
were considered as fixed effects and sample points
within cach zone as repeated observations.

RESULTS AND DISCUSSION
Soil and Terrain Attribute Variability

Soils ranged from well-drained upland
Paleudults to somewhat poorly drained soils in
concave and relatively lower landscape positions.
The nine soil map units identified within the
study area and their description, drainage class
and area are summarized in Table 1. Soils mainly
vary due to differences in both drainage class and
surface horizon textures (mostly due to historical
erosion). Soil map units explained 34% of the
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tion of estimated vs actual value TABLE 1
to assess accuracy of kriged or re Map Unit Description for the study site
using 24 indcpendent samplin T onomic classification Symbol Drainage class WTDt SOCH Area
juare crror (MS].E) and predictio () (Mg bty (b
were used as indicators Ofma.p : i Typic Paleudults; fine loamy, BaA Well drained 150 2613 2.69
et al., 1996; Mueller and Pierce iceous, subactive, thermic; 0-2% slope
i Typic Palendults; BaB Well drained 150 20,62 0.78
wderately eroded; 2-4% slopes
=1/ R N2
1/n 2 (els) = 2%65) +: Typic Paleudulss; BaC Well drained 150 2320 057
wrely eraded; 4-6% slope
, - * 7o :
actual SOC content and z (Xi" i sboro; Aquic Paleudults; fine-loamy, GoA Moderately well to 60 26,55 1.03
content. iceous, subactive, thermic; 0-2% slope somewhat poorly drained
ce P poorly
. . Jdsbore; Aquic Paleudults; Gol3 Moderately well to 60 22.74  0.60
| — (NISEP / MSE )] X 100 moderately eroded; 2-4% slopes somewhat poorly drained
. : sldsboro/Lynchburg; Aquic Paleudults Go-LyA Somewhat poorly to 35 3359 051
5 the mean squarc error obtamed‘ ind Paleaquults; 0-2% slopes poorly drained
on all]d MSE, is the mean square wyaquic Paleudults; fine-loamy, OpA Moderately well drained 75 2834 098
samp-e g.lv.emge: . ilicéous, subactive, thermic; 0-2% slopes
s Subdl.\thed nto ZOI.lCS using a aquic Paleudults; fine-loamy, OpB Moderately well drained 75 3251 (.68
edure similar to Fraisse et al ceolts, subactive, therinic; 2--4% slopes
idgctl et al. (2“04). The cluster aquic and Aquic Paleudults; 0-2% slope Op-GoA Moderately well drained 75 24.60 1.19
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of the field variability and was
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FLD-== Estinlated Seasonal High Water Table.
OC = Soil Organic Carbon.

QC variation (P = 0.05). Classification of soil
to drainage classes and estimated seasonal high
ater table accounted for only 16% of the SOC
riability (P = 0.05). Map units classified as
mewhat poorly to poorly drained had 36%
ore SOC than well drained units (33.59 vs
68 Mg ha™' respectively). Soils classified as
oderately well to somewhat poorly drained
ssessed intermediate values (27.77 and 25.08
¢ ha™1, respectively).
Soil properties and terrain attributes indi-
ted substantial landscape variability for a 9 ha
Id in this region (Fig. 1). Elevation range was
105t 3-m, and slope gradients ranged between
to 8%, All soil properties showed spatial de-
dence. Both EC, and EC, exhibited high
atial dependence as estimated by the nugget/
semivariance ratio and by the low RSS and
gh R? of the fitted semivariogram models
able 2). The R? and MSE between measured
predicted EC, and EC, indicated both vari-
les were accurately interpolated. Although soil
ctural fractions displayed low nugget/sill ratio,
¢ R? and RSS of the models suggest that they
d only moderate spatial dependence, likely due
the less intensive sampling scheme used. As a
silt, interpolated values of sand, silt and clay
ontents had relatively more error as indicated

TS AND DISCUSSION

Terrain Attribute Variability

ed from well-drained upland
omewhat poorly drained soils in
atively lower landscape positions.
map units identified within the
their description, drainage class
nmarized in Table 1. Soils mainly
erences in both drainage class and
textures (mostly due to historical
nap units explained 34% of the

by the R? and MSE obtained in the cross valida-
tion procedure.

Pearson linear correlation coefficients be-
tween topography and soil attributes are pre-
sented in Table 3. The EC, was highly correlated
with slope {r = 0.60) and moderately correlated
with clay content (r = 0.39), as expected from re-
sults reported in other landscape studies (Mueller
et al., 2003; Shaw and Mask, 2003). The EC vari-
ability across the site is somewhat related to his-
torical erosion, with higher EC found in areas of
exposed subsoils with higher clay content. Our
EC values are relatively low compared with other
studies because of the sandy nature of these soil
surfaces, low organic carbon and soil water con-
tent, and low ionic strength of the soil solution.
Because EC variability is related to soil-terrain
characteristics that largely control soil properties
(Mueller et al., 2003), similar patterns are ob-
served between soil survey, certain terrain attri-
butes, and EC (Fig. 1).

Factor analysis was performed using twelve
variables: ELEVA, SLOPE, ASP, PROFC,
PLANC,CA,CTIT,EC,, EC,silt, sand and WTD.
The first three factors explained 57% of the vari-
ance; the first five factors had eigenvalues >1 and
explained 79% of the data variability (Table 4).
The CA, CTI and PLANC had the highest load-
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TABLE 2

Isotropic semivariogram model parameters for electrical conductivity (BC), sand, silt and clay content

Kriging Cross Validation

Variable N Modelt  Range MNugger il R? RSS (R MSES
m e {units)?--—-—
30-cm (mS oy 4611 Sph 78 0.29 2.70 0.99 0.03 0.87 0.317
#-90-cm (mS ) 4611 Sph 79 0.33 2.32 0.99 0.007 0.87 0.275
i 0-30-cm (g kg™) 82 Sph 60 1.00 2916 0.81 402084 0.39 1851
g30eom (g k™) 82 Sph 7 1.00 276 0.85 243460 0.52 949
1 (g kg™ 82 Sph 82 1.00 2014 0.95 670114 0.49 1110
PSS = Residual Sums of Squares.
E == Mean Square Error,
TABLE 3
Pearson correlation coefficients between soil propertics (0—30—cm) and terrain attributes at the SOC sampling points
= 496 P = 0.01) ' .
abless ELEVA SLOPE ASP PROF PLAN InCA  CTI BC, EC; Sand Sile Clay WTD
EVA 1 - - - - - - - - - - -
SLOPE 041 1 - - - - - - - - - - -
5 NS NS 1 - - - - - - - - - -
—0.46 NS NS 1 - - - - - - - - -
0.28 016 NS 0.38 1 - - - - - - - -
-0.38 019 NS 0.41 0.51 1 - - - - - -
025 039 NS 0.41 0.45 0.74 1 - - - - - -
—0.14 066 NS NS NS NS 038 1 - - - - -
NS 045 NS —012 NS NS —0.36 0.78 1 - - - -
-0.12 NS 033 017 NS 0.14 NS —-032 NS 1 - - -
=027 —023 015 NS NS 012 0.19 —-015 NS  —0.36 1 - -
034 017 —043 —0.16 NS —023 -—025 043 NS  —~0.63 050 1 -
055 012 020 —0.21 014 026 —023 NS NS 022 —064 033 1
SOC —-0.17 —041 NS =013 0.16 0.29 0.48 —031 —-042 —0.25 0.39 NS —0.29

'ELEVA = Elevation: ASP = Aspect; PROF = Profile Curvature; PLAN == Plan Curvature; In CA = Natural Log of
Catchinent Area; CT1 = Compound Topographic Index; ECs = Electrical conductivity 030 cm; ECd = Electrical conduc-
ity 0-90 cm; WTD = Water Table Depth; SOC = Soil Organic Carbon.

IS = not significant at P == 007 level.

TABLE 4
Eigenvalues, cumulative contribution of explained variance, and loading factors for the first five factors
Soil and terrain attributes Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
Elevation —0.26 —0.13 0.20 0.87 0.06
g —0.02 0.70 —02.33 —(0.48 —-0.07
(102 0,05 0.02 0.03 .94
Profile curvature 0.66 0.01 0.01 —0.16 —(1.06
Plan curvature —0.79 —0.09 0.02 0.05 0.04
In catchment area 0.87 0.03 —0.01 —0.25 0.09
Compound Topographic Index 0.86 —0.27 012 (.04 0.09
Electrical Conductivitv 430 cm 0.02 (.93 0.03 = (1L.06 ~0.15
Electrical Conductivity 0-90 cin ~0.06 0.85 0.06 0.06 0.20
Sand (0-30—cm) —0.02 —0.29 —{.65 —0.27 0.46
t (0~30-cm) 0.01 —0.06 0.89 —0.13 0.21
Water table depth —0.06 0.14 —0.70 0.53 0.17
genvalue 2.63 2.28 1.90 1.47 1.26
0.22 0.41 0.57 0.69 0.79

‘umulative Explained Variance (%)
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ing for the first factor, the second factor was
dominated by slope and EC, and the third factor
was dominated by sile, WTD and sand. The ter-
rain attributes that dominated the first two latent
variables are highly related to hydrology and soil
erosion, which likely affece SOC distribution
within the field. The first three factors were the
most significantly (P =< 0.01) correlated with
SOC (r = 0.30,-0.38 and 0.43 for the first, sec-
ond and third factors, respectively). Regression
analysis between SOC and the first five factors
explained up to 40% of the SOC field variability
(P =<0.01).

Soil Oxganic Carbon and Landscape Variability

Correlation of SOC with terrain attributes
and soil properties for the 496 sampling points
(Gyy g are also shown in Table 3 (P = 0.01). Soil
organic C was negatively correlated with EC,
slope, elevation, water table depth and sand con-
tent, and positively correlated with CTI, catch-
ment area, and silt content, The CT1, EC,, slope
and silt content had the highest correlation with
SOC, suggesting that historical erosion and field-
scale water dynamics play a major role in SOC
spatial distribution. Resules for correlation be-
tween SOC and EC are contradictory in the lit-
erature; some studies have found negative corre-
lation (Johnson et al., 2001), while others have
found positive correlation (Kitchen et al., 2003).
Zones with higher CTT values arc likely to have
higher biomass production, lower SOC mineral-
ization, and higher sediment deposition com-
pared with zones of low CTTI. Positive correlation
between SOC and CTI, and negative correlation
between SOC and slope and elevation, are in
agreement with other studies (Moore et al., 1993;
Gessler et al., 2000; Florinsky et al., 2002).

Depending on the SOC grid scheme used,
regression models explained between 52 to 58%
of the SOC variability (Table 5). Multicollinear-
ity was not a problem as indicated by variance in-
flation factors of the sclected model variables.
The CTI,EC,,silt and sand content explained up
to 40% of field variation in SOC. Slope, ELEVA,
EC, and WTD were also related with SOC, but
their contributions to the regression models were
less. Coefficients of determination (R%) relating
SOC with terrain attributes in our study were
higher than the R? (0.37) reported by Florinsky
et al. (2002). Moore et al. (1993) explained 48%
of the SOC variability in Colorado Argiustolls
using terrain attributes. Gessler et al. (2000)
found that best models for SOC prediction for a

California site were developed using CTI (R? =

SOIL SCIENCE

TABLE 5

Regression parameter coefficients, R?, and Mallow's Clp) a
different SOC grid sampling schemes (P < 0.01)

GRID SCHEME

soct SOC SOC
Goas (G (Gy

1

6

8.5 X 183-m 17 X 183-m 34 X3

Intercept 246.59 369.03 45.95
Elevation (m) —-3.176  —3.741 NSE
Slope (%) ~2294  -2349 NS
Aspect (degrees from N) NS NS NS
Profile curvature {m~") NS NS NS
Plan curvature (x5 NS NS 26,464
Catchment area In (m2) NS NS 2.24¢
Compound Topographic ~ 1.142 1.011 NS

Index
Electrical Conductivity, 1.388 1.549 NS

030 em {mS m™)
Electrical Conductivity,  —2.023 —2.402 —1.465

0-90 cm (mS m™)
Clay 0-30-cm {g kg ™} NS -0.074 NS
Sand 0-30-cm {g kg™ ~(1.039 —0.128 —0.077
Sile 0=30—cm (g kg™ 0.070 NS 0.077
Water table depth (cm) 0.031 0.037 NS
Mallow’s C{p) 16.3 18.7 14.2
R2 (.52 0.58 0.52

TSOC = Soil Organic Carbon.
*NS = not significant at P == 0.01.

0.78) or a combination of slope and FA (R? ==
0.80). Similar to our results, these studies also
tfound that CTI is an important terrain attribute
for explaining SOC and associated soil property
variability. Mueller and Pierce (2003), in a study
conducted at Michigan, found that terrain attri-
butes (particularly elevation) and x-y coordinates
explained 66%, 77% and 89% of the SOC vari-
ability using grids of 30.5,61 and 100-m, respec-
tively. These studies did not consider soil
drainage class or soil EC information in their
models. In our study, the R? did not increase
when a less intensive grid sampling was used, and
x-y coordinates were not significantly correlated
with SOC.

Spatial Variability of Soil Otganic Carbon

The SOC semivariograms paramcters indi-
cated that SOC was highly spatially structured
for all grid schemes (Table 6). The ranges for
isotropic - models were about 70-m, and
nugget/sill ratios were low in all cases. Thus, the
SOC data were well suited for kriging because
it had well developed spatial structure, a low
nugget/sill ratio, and the range was much larger
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Nelen SOC SOC
Gumd Gz Gy
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—2.294 —2.349 NS
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TABLE 6

Semivariogram and Cross-Semivariograms model parameters for soil organic carbon {(}-30-cm)
sampled with different grid schemes

Jata Set N  Modelf  Direcdon Range Nugget Sill R2
m e {Units)2------
Grid 8.5 X 18.3-m 496  Sph  Omnidirectional ~ 73.0 0.0043 0.0407  0.997 1.55%10°%
Grid 17 X 183-m 248  Sph  Omnidirectional  69.2 0.0001 0.0428  0.981 1.32%105
Grid 34 X 36.6-m 68  EBxp Omnidirectional  63.4 (0.0093 0.0534 0966  1.21%107°
Cross—Semi Variograms for co-kriging
% CTI Grid 85 X 183-m 496 Sph Omnidirectional ~ 74.8 0.38 4.05 0,991 0.081
¢ X EC, Grid 8.5 X 183-m 496 Sph  Omnidirectional  81.5  —0.01 —3.162 0.934 0812
C X CTE Grid 17 X 183-m 248 Sph  Omnidirectional ~ 35.0 0.09 4.81 0.718  0.572
YO % EC,  Grid 17 X 18.3-m 248 Sph Ommidirectional  79.1  —0.01 ~3.420 0.935  0.763
¢ X E Grid 34 X 36.6-m 68  Sph  Omuidirectional  84.6 —0.01 —2.91 0.748  0.526

ectrical Conductivity 0-90 cm.
Sph = Spherical, Exp = Exponential.
iR6S = Residual Sums of Squares.

an sample spacing. Anisotropy was not signifi-
nt in these data.

Soil EC, and CTI were the variables selected
for co-kriging because they were the most highly
correlated with SOC (r = -0.42 and r = 0.48 re-
spectively), were intensively sampled, and had
high spatial structure (Table 2 and Table 3).
However, correlation coefficients for both vari-
sles were lower than the value suggested as the
fower limit (¢ = 0.70) for co-kriging (Mueller
and Pierce, 2003). Regression kriging was per-
formed with residuals obtained from multiple re-
ession of Gy, and Gy, data sets because
ese were the only regression residuals showing
me degree of spadal structure. Regression
iduals for both grid schemes were fit to well-
ructured  semivariogram  spherical models
{nugget/sill < 0.13) with ranges of = 37-m (Data
ot shown).

Similar to results obtained by Crawford and
ergert (1997) and Mueller and Pierce (2003),
OC maps developed by the different techniques
generally showed similar SOC patterns, but differ-
ences at finer scales existed between techniques
nd grid sampling schemes (Fig. 2). Similar SOC
eans, standard deviations and spatial distribution
rere observed between the surfaces generated
h the different techniques. However, the pro-
portion of the area occupied for the five ranges
clected to represent SOC distribution across the
field fluctuated as much as 60% between interpo-
tion methods, even with the same grid scheme.
1 general, maps obtained by regression presented
he highest level of dissimilarity when compared
fith the ones obtained by other methods.

sOC = Natural log of Soil Organic C, SOC = Soil Organic C, CTI = Compound Topographic Index, EC, = Soil

Map quality between different interpolation
and zone selection methods was assessed at the
validation set using MSE and PE approaches
(Gotway et al., 1996; Bishop and McBratney,
2001; Mueller and Pierce, 2003). The best pre-
diction method for SOC was ordinary kriging
and the worst was regression for all grid sampling
schemes (Table 7). Ordinary kriging reduced
MSE by 74% compared with the field average
approach. Multiple regression was clearly inferior
to all kriging alternatives when spatial correlation
was detected. Prediction of SOC by regression
was improved when model residuals were incor-
porated using regression-kriging, but regression-
kriging did not outperform ordinary kriging. In
general, prediction accuracy increased when
Giopy Was used instead of Gy, however, no sig-
nificant advantage was obtained using a more in-
tensive grid sampling (G, ,,)- These results are in
agreement with the general finding that more in-
tensive grid schemes increase map quality but
such dense sampling is hardly affordable in agri-
cultural fields. The fact that ordinary kriging
out-performed hybrid methods like co-kriging
and regression kriging contradicts some previous
studies (Bishop and McBratney, 2001; Mueller
and Pierce, 2003).

Clusters and Soil Organic Carbon

Variable selection for cluster analysis was
based both on factor analysis loading factors
(Fraisse ct al., 2001) and correlation with SOC.
For example, CTI was selected for clustering be-
cause of its high loading in the first factor and its
high correlation with SOC. The CTI, silt con-
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Ordinary Kriging Qrdinary Kriging Ordinary Kriging
Grid 34 x 36.6-m Grid 17 x 18.3-m Grid 3.6 x 18.3-m

Mean= 26.39 Mean= 26.57 Mean~ 26,26

SD=4.07 8D=35.06 SD= 4.69
Co-kriging (ECd) Co-Kriging (CTH) Co-Kriging (CTH

Grid 34 x 36.8-m Grid 17 x 18.3-m Grid 8.8 x 18.3-m

Py

Mean~ 26.15 Mean= 26.39 §

8= 4,64 SD=5.25 SDx= 5.08
Regression Regression Regression
Grid 34 x 38,6-m Grid 17x 18.3-m Grid 8.5-18.3-m

Mean= 25.54 Mean= 26.09 Mean= 25.97

SD= 4.60 SD=4.72 SD=4.33
Regression Kriging Regression Kriging
Brigd 17 x 18.3-m Grid 8.5 x 98.3-m
Seil Organic C (Mg ha™)
[ 1 0-21 N

21-24
E 24 -28 Y
28-32 Mean= 26.13

SD=5.68

100 0 100 m

Fig. 2. Maps of soil organic carbon (0-30-cm) generated with different interpolation techniques and grid sampling
intensities
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TABLE 7
mparisorl of mean square errors and prediction efficiencies obtained with different SOC interpolation methods using a
jackknifing validation procedure {n = 24)

L;:‘j;t‘:;y Co-kriging Co—ikriging Multiple Regression
N (ECdH (CTI% regression kriging
(isotropic)
Grid
B34 436.6-m
.70 0.63 0.38
Mg ha™1)? 13.027 14.737 20.735
63 58 41
Grid
17 X 18.3-m
.78 0.75 0.76 0.43 0.72
{Mg ha 12 9.099 10.081 9.758 22.5352 12.792
74 71 72 36 64
Grid
8.5 X 18.3-m
0.79 0.74 0.75 (145 0.78
SE (Mg ha™1)? 9.110 11.426 11.424 20.649 9.672
74 67 67 41 72

. = Electrical Conductivity 0-90-cm.
11 = Compound Topographic Index.

= Mean Square Error.
Prediction Efficiency.

t,EC, and EC,, slope, ELEVA, CA and WTD
the variables selected for cluster analysis and
delineation (Fig. 3). Because the fuzziness
mance index and normalized classification
opy index differed in the optimal number of
ers for our field (Fridgen et al., 2004), the
J(C variance reduction as a function of number
usters (Fraisse et al., 2001) was used as an al-
ative approach for obtaining the optimal
ber of classes (Data not shown).

Jescriptive statistics for SOC and some of
¢rrain attributes for each of the six clusters
ed are presented in Table 8. Independent of
grid scheme used, the highest SOC content
found in clusters 4 and 5, while clusters 2 and
d the lowest values. Analysis of variance using
ntensive grid scheme data set (n = 496) in-
ed that most SOC differences between clus-
ere significant (P = 0.05). Cluster 5 corre-
ds to a concave drainage way position
pying the lowest elevation in the field. This
depositional landscape and contains more
y drained soils with accumulation of eroded
nents from upslope arcas. Cluster 4 is an area
latively flat topography located at both ends
¢ field. Clusters 4 and 5 had higher CTT and
ontent, and lower EC values compared with
ther clusters. Clusters 2 and 3, with relatively

low SOC, corresponded to areas situated on slop-
ing eroded soils, with high EC and clay content,
and low CT1. Similar to other studies (Florinsky
et al., 2002: VandenBygart et al., 2002), topogra-
phy and historical crosion strongly influenced the
spatial distribution of SOC at this site. For exam-
ple, clusters 2 and 3 possessed soil and terrain at-
tributes more likely related to low SOC thor-
ough their effects on the field-scale water regime,
biomass production, C mineralization and ero-
sion. Cluster 5 is an area of C accumulation
through sedimentation, relatively high biomass
production, and decreased C decomposition as-
sociated with wetter (anaerobic) conditions.

Subdivision of the field into clusters ex-
plained between 28 to 35% of SOC variability
depending on the grid scheme. These results
were similar to the soil survey approach (34% of
the SOC variability). Soil map units had signifi-
cant statistical differences in SOC, suggesting
both detailed (Order 1} soil surveys and cluster
analysis may be used to guide sampling for esti-
mating SOC at the field-scale.

CONCLUSIONS

Spatial variability of SOC of this field was
highly structured. Ordinary kriging outper-
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Cluster

Fig. 3. Order 1 soil survey and field classification by fuzzy k-means cluster analysis into six zones using soil and ter-
rain attributes: elevation, slope, catchment area, compound topographic index, electrical conductivity (0-30-cm
and 0-90-cm), silt content (0~30-cm) and seasonal high water table depth. Map Units symbols are those described

in Table 1.

formed all prediction methods used; even those
that incorporated secondary information like co-
kriging or regression kriging. Compared with the
field average approach, ordinary kriging reduced
the MSE by 74%. The fact that no further signifi-
cant improvement on SOC quality surfaces were
obtained with Gy, compared with Gy, sug-
gest that a grid of ~20 X 20-m seems to be the
optimal for our field. Nevertheless, such sampling
intensity appears to be hardly affordable for larger
areas and justifies the exploration of alternative
methods for SOC mapping and monitoring.
Our results suggest field-scale EC variability
was mostly related to soil properties related to
historical erosion, while terrain attributes af-
fected SOC variability through their influence

SOIL SCIENCE

on the field-scale soil water regime. Soil water
regime impacts soil C inputs and outputs
through its effects on biomass production, SOC
mineralization, erosion and deposition. Our
study indicates that landscape SQC redistribu-
tion as a result of these processes should be ac-
counted for in studies of C sequestration poten-
tial at the field level. Slope, elevation and CTT in
combination with soil EC, texture and depth to
seasonal high water table explained up to 50% of
SOC variability in this coastal plain field. Subdi-
vision of the field into clusters or soil map units
provided an alternative method for assessing soil
and terrain attributes that influence SOC. Ana-
lyzing within soil map units or clusters devel-
oped using terrain and soil attributes will im-

TABLE 8

Averages for soil properties (0-30 em) and terrain attributes for the clusters developed by k-means clustering procedure
Variables? Elevation  Slope  CT1  EC0-30cm_ EC 0-90cm  WTD Sile Chy _ SOC

Cluster (m) (%) (mS m) {mS nm 1) (cm) gkt (gkg™ {Mg ha™)

1 70.1 0.8 7.5 5.0 6.3 149 254 191 25.97 ¢F

2 69.3 2.1 7.0 7.0 8.0 66 275 190 23554

3 69.4 3.5 6.8 7.0 7.4 147 251 196 2176

4 69.8 (.9 7.6 52 6.4 78 303 180 30.65 a

5 68.4 1.0 8.3 4.5 5.9 58 284 146 2005 b
6 69.8 1.1 7.4 5.0 5.4 77 257 206 24.'&&{ :

fCTI = Compound Topographic Index; EC = soil Electrical Conductivity; WTD = Water Table Depth;

SOC = Soil Organic C.

tMeans followed by the same letter within the column are not significantly different at P = 0.05 level.
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P Units symbols are those described
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soil C inputs

and outputs

s on biomass production, SOC
rosion  and  deposition. Our
1at landscape SOC redistribu-
 these processes should be ac-
wdies of C sequestration poten--
rel. Slope, elevation and CTT in
1 soll EC, texture and depth to
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Sile Cly SOC
kg)  (gkgh)  (Mgha)
254 191 25.97 ¢t
27 190 2355d
251 196 2176 ¢
303 180 30.65a
284 146 20.05 b
257 206 24.99 d

Water Table Depth;

P = (.05 level.
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sve evaluation of the impacts of soil manage-
sit practices on SOC at field scales.
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